如何有效率地分析海量增長的專利資訊,挖掘潛在價值? 專利是技術、市場和競爭資訊的寶貴來源。然而,公開的專利文獻總數已高達1.2億件,僅去年一年就新增630萬件。如何才能讓這些海量專利文獻為己所用? 專利分析為充分挖掘專利資訊的價值,提供了一條不可或缺且切實可行的途徑。通過專利分析,可以瞭解自身與競爭對手各自專利組合的優勢、不足和機會,以及全球專利申請趨勢、技術全景及可能存在的空白領域等。 然而專利分析要求透徹理解底層資料,包含:資料的用法和用途,以及能夠解決的問題等,如何才能有效運用及分析海量資訊,正是最讓人頭痛的問題…… 非結構化的資料型態,只能透過人工閱讀整理,十足惱人! 「專利說明書」是融合法律與科技用語且具有法律效力的文件,屬於非結構化的資料,過去各項檢索分析都是以人工閱讀內文與整理,實乃曠日廢時,且經常發生追趕不上訴訟時程的情況。在協助企業進行專利佈局時,常面臨無法量化競爭對手與客戶之訴訟風險程度,也難以量化專利之品質與價值,造成國內某企業智權管理公司之業務範圍無法進一步地擴大,也無法促進外界對專利加值應用的瞭解程度。 近年來,企業智權管理公司也開始協助企業中的研發人員,提前掌握影響產業未來發展的重要科技及其專利競爭情報,能使相關人員更從容地進行專利佈局,並提高專利品質與價值。然而,大部份業務範圍在代理專利軟體,如:知識產權運營管理資訊系統 (IPServ),主要是協助企業或個人進行智慧財產權管理,但目前並無為企業或個人提供「專利監控」類數據分析的服務。 ▲知識產權運營管理資訊系統(IPServ) 這些專利軟體包含專利檢索、管理與維護等,而專利大數據是否能夠成功輔助企業掌握市場現況、專利價值、訴訟威脅及監控競爭對手的不法侵權行為,全是仰賴專利數據之取得。但專利數據之清理非常費時,所以一直是個讓人頭痛不已的問題,直到台灣資料科學股份有限公司研發出「企業專利監控之AI數據分析平台」,才終於出現曙光…… 傳統專利分析曠日廢時,改用「企業專利監控之AI數據分析平台」, 一鍵搞定! 「企業專利監控之AI數據分析平台」的發想,是使用專利申請的案件中之「專利編碼」與「公司產業別」等具鑑別力的影響因子,透過大數據分析,並增加相關新聞資料,再以機器學習方式透過AI輔助專家,分析市場現況、避免訴訟威脅以及監控競爭對手的不法侵權行為。 這些最後萃取出來的因子也將影響個股的表現,對此可以根據不同的企業屬性和發展方向,朝向「客製化大數據分析」提升企業的戰略位置。希望透過平台的搜尋可以快速讓企業於新增產品線時,了解競爭對手的專利佈局,避免侵權的情況發生;或廠商要找合作夥伴時,也可以從有高度研發的公司來篩選,將此平台作為競合關係的好工具。 ▲系統操作流程圖 傳統上專利分析曠日廢時,需透過人工檢索專利、閱讀專利資料,才能產出一份專利分析報告,現在只要藉由「企業專利監控之數據分析平台」,使用者可輸入某年度或自己與競爭對手的公司名稱,經過系統分析後,即可快速得知該年度及公司間的技術布局、變化趨勢監控等結果,節省作業時間及人力。 例如,若要知道市場上對於物理、化學、電學的相關技術發展現況,可分析IPC專利號碼,檢視哪些公司的持有專利有群聚現象,藉此研判該群聚專利為相關技術或相互依賴的技術,了解公司之間在專利布局上的相似度、產業趨勢,縮短決策時間,搶先布局或做專利迴避設計。 透過人工智慧改善傳統的人工專利檢索的作業以提高工作效能,「專利監控平台」幫助專利分析人員更方便了解特定技術領域的專利發展現況,以預測未來技術研發方向。而「專利布局」是企業針對專利組合,透過整合市場、產業、法律等因素,構建嚴密的保護網,形成有利的研發方向、降低侵權風險。 嚴謹的專利布局可幫助公司在戰略規劃時避開地雷區,避免不必要的訴訟戰;或可透過搶先申請專利及購買專利,擴大自身技術的保護範圍,而要達成此目的,關鍵是經由分析大量的專利資料,領先同業找出趨勢。以本公司開發之產品線人流資訊流天線為例,專利監控平台可針對產品之專利組合,達到上述目標。 ▲人流資訊流天線產品圖 未來,將針對專利文件內容之標題與摘要進行文字探勘(Text Mining)。前期人工輔助,後期採機器學習方式,建立「專利詞庫自動斷詞系統」。應用此斷詞系統將標題與摘要進行斷詞,計算字詞頻率(TF)與反轉文件頻率(IDF)。透過統計方法(如相關相數),擷取專利文件特徵,找出專利之間強關聯性之相關字詞。提升探勘專利之相似度,更進一步了解專利訴訟之風險。 協同專利業者,打造更便利的「企業專利監控AI數據分析平台」! 經由「企業專利監控之AI數據分析平台」的「平台網絡圖」查詢,可讓公司或事務所快速看到其相關的產業公司佈局在哪些專利上。對於「專利」而言,各公司可以思索應全由自家研發申請,或直接從產業龍頭單獨購買專利授權。對於「公司產品」而言,要商品化時可因應時代變遷採取不同的策略,前幾年也許是敵對的,隨著產品發展的差異而是今日的盟友。 ▲專利監控平台顯示2009年度大立光電與其相關產業之網絡圖 而在「公司交叉比對」功能查詢中,可一次選擇多年,對於和主要公司相似度較高的對比公司,從年度變化可了解雙方是否發展太過相似的專利,而使二者處於高風險侵權的風暴範圍之中。當數據庫資料更多時,還可以進一步計算「專利風險率」,讓習慣讀數字或圖表的使用者能從另一角度快速知彼知己。甚至未來增添更多參數後,可以估計「侵權金額」,但取得參數內容,還需與專利業者協同合作,一同打造更便利的專利風險監控平台。 ▲台積電與華亞科技、力晶科技之間相似度指標的走趨圖
如何有效率地分析海量增長的專利資訊,挖掘潛在價值? 專利是技術、市場和競爭資訊的寶貴來源。然而,公開的專利文獻總數已高達1.2億件,僅去年一年就新增630萬件。如何才能讓這些海量專利文獻為己所用? 專利分析為充分挖掘專利資訊的價值,提供了一條不可或缺且切實可行的途徑。通過專利分析,可以瞭解自身與競爭對手各自專利組合的優勢、不足和機會,以及全球專利申請趨勢、技術全景及可能存在的空白領域等。 然而專利分析要求透徹理解底層資料,包含:資料的用法和用途,以及能夠解決的問題等,如何才能有效運用及分析海量資訊,正是最讓人頭痛的問題…… 非結構化的資料型態,只能透過人工閱讀整理,十足惱人! 「專利說明書」是融合法律與科技用語且具有法律效力的文件,屬於非結構化的資料,過去各項檢索分析都是以人工閱讀內文與整理,實乃曠日廢時,且經常發生追趕不上訴訟時程的情況。在協助企業進行專利佈局時,常面臨無法量化競爭對手與客戶之訴訟風險程度,也難以量化專利之品質與價值,造成國內某企業智權管理公司之業務範圍無法進一步地擴大,也無法促進外界對專利加值應用的瞭解程度。 近年來,企業智權管理公司也開始協助企業中的研發人員,提前掌握影響產業未來發展的重要科技及其專利競爭情報,能使相關人員更從容地進行專利佈局,並提高專利品質與價值。然而,大部份業務範圍在代理專利軟體,如:知識產權運營管理資訊系統 (IPServ),主要是協助企業或個人進行智慧財產權管理,但目前並無為企業或個人提供「專利監控」類數據分析的服務。 ▲知識產權運營管理資訊系統(IPServ) 這些專利軟體包含專利檢索、管理與維護等,而專利大數據是否能夠成功輔助企業掌握市場現況、專利價值、訴訟威脅及監控競爭對手的不法侵權行為,全是仰賴專利數據之取得。但專利數據之清理非常費時,所以一直是個讓人頭痛不已的問題,直到台灣資料科學股份有限公司研發出「企業專利監控之AI數據分析平台」,才終於出現曙光…… 傳統專利分析曠日廢時,改用「企業專利監控之AI數據分析平台」, 一鍵搞定! 「企業專利監控之AI數據分析平台」的發想,是使用專利申請的案件中之「專利編碼」與「公司產業別」等具鑑別力的影響因子,透過大數據分析,並增加相關新聞資料,再以機器學習方式透過AI輔助專家,分析市場現況、避免訴訟威脅以及監控競爭對手的不法侵權行為。 這些最後萃取出來的因子也將影響個股的表現,對此可以根據不同的企業屬性和發展方向,朝向「客製化大數據分析」提升企業的戰略位置。希望透過平台的搜尋可以快速讓企業於新增產品線時,了解競爭對手的專利佈局,避免侵權的情況發生;或廠商要找合作夥伴時,也可以從有高度研發的公司來篩選,將此平台作為競合關係的好工具。 ▲系統操作流程圖 傳統上專利分析曠日廢時,需透過人工檢索專利、閱讀專利資料,才能產出一份專利分析報告,現在只要藉由「企業專利監控之數據分析平台」,使用者可輸入某年度或自己與競爭對手的公司名稱,經過系統分析後,即可快速得知該年度及公司間的技術布局、變化趨勢監控等結果,節省作業時間及人力。 例如,若要知道市場上對於物理、化學、電學的相關技術發展現況,可分析IPC專利號碼,檢視哪些公司的持有專利有群聚現象,藉此研判該群聚專利為相關技術或相互依賴的技術,了解公司之間在專利布局上的相似度、產業趨勢,縮短決策時間,搶先布局或做專利迴避設計。 透過人工智慧改善傳統的人工專利檢索的作業以提高工作效能,「專利監控平台」幫助專利分析人員更方便了解特定技術領域的專利發展現況,以預測未來技術研發方向。而「專利布局」是企業針對專利組合,透過整合市場、產業、法律等因素,構建嚴密的保護網,形成有利的研發方向、降低侵權風險。 嚴謹的專利布局可幫助公司在戰略規劃時避開地雷區,避免不必要的訴訟戰;或可透過搶先申請專利及購買專利,擴大自身技術的保護範圍,而要達成此目的,關鍵是經由分析大量的專利資料,領先同業找出趨勢。以本公司開發之產品線人流資訊流天線為例,專利監控平台可針對產品之專利組合,達到上述目標。 ▲人流資訊流天線產品圖 未來,將針對專利文件內容之標題與摘要進行文字探勘(Text Mining)。前期人工輔助,後期採機器學習方式,建立「專利詞庫自動斷詞系統」。應用此斷詞系統將標題與摘要進行斷詞,計算字詞頻率(TF)與反轉文件頻率(IDF)。透過統計方法(如相關相數),擷取專利文件特徵,找出專利之間強關聯性之相關字詞。提升探勘專利之相似度,更進一步了解專利訴訟之風險。 協同專利業者,打造更便利的「企業專利監控AI數據分析平台」! 經由「企業專利監控之AI數據分析平台」的「平台網絡圖」查詢,可讓公司或事務所快速看到其相關的產業公司佈局在哪些專利上。對於「專利」而言,各公司可以思索應全由自家研發申請,或直接從產業龍頭單獨購買專利授權。對於「公司產品」而言,要商品化時可因應時代變遷採取不同的策略,前幾年也許是敵對的,隨著產品發展的差異而是今日的盟友。 ▲專利監控平台顯示2009年度大立光電與其相關產業之網絡圖 而在「公司交叉比對」功能查詢中,可一次選擇多年,對於和主要公司相似度較高的對比公司,從年度變化可了解雙方是否發展太過相似的專利,而使二者處於高風險侵權的風暴範圍之中。當數據庫資料更多時,還可以進一步計算「專利風險率」,讓習慣讀數字或圖表的使用者能從另一角度快速知彼知己。甚至未來增添更多參數後,可以估計「侵權金額」,但取得參數內容,還需與專利業者協同合作,一同打造更便利的專利風險監控平台。 ▲台積電與華亞科技、力晶科技之間相似度指標的走趨圖