:::

【2020 Solutions】 Driving AI with Chips, Fansi Data Multiplies Computing Power at Low Cost

A tiny chip capable of driving AI algorithm speeds by nearly a hundredfold, Fansi Data's team is dedicated to software and hardware integration, providing industries including finance, smart healthcare, and smart manufacturing with a cost-effective, high-efficiency way of introducing AI and rapidly undergoing digital transformation.

In recent years, artificial intelligence has been highly prominent; however, practical applications have been limited by high costs. The enhancement of 'computing power' is crucial for breaking through the bottlenecks in AI applications. Fansi Data's customized chip design and solutions can increase processing performance and effectively reduce costs, making AI applications in finance, healthcare, and manufacturing easy and feasible.

The company's core service is the high-performance hardware acceleration platform (FPGA)

Fansi Data was founded in October 2018 by a founding team from National Tsing Hua University, National Chiao Tung University, and National Taipei University. The company currently has 11 employees, including the chip design director Liu Wenkai from the IC design company Huirong Technology, who leads a 5-person IC design team. They spent over a year developing the high-performance hardware acceleration platform (FPGA), which became the company's core service.

Fansi Data integrates software and hardware to develop a high-performance hardware acceleration platform (FPGA)

▲Fansi Data integrates software and hardware to develop a high-performance hardware acceleration platform (FPGA)

'To bring AI to practical implementation, the challenges are cost and real processing situations. Purchasing a standard set of NIDIA GPUs is expensive. If we can adjust the hardware through customization, producing a setup tailored for use, the costs can be significantly reduced.' Said Liao Yanchin, General Manager of Fansi Data, who additionally pointed out that most AI startups currently only have software engineers and lack hardware engineers. Fansi Data excels in data handling and software/hardware integration, has an excellent team, and can efficiently solve data issues while developing software/hardware solutions tailored to customer needs.

Financial markets are notoriously fickle, as evidenced by the recent COVID-19 pandemic, which triggered a global stock market crash and was reinforced by program trading, leading to the unprecedented implementation of four trading halts in U.S. stock exchanges within a decade. This has significantly raised investors' risk awareness.

Zheng Zongyi, co-founder of Fansi Data, experienced in financial trading, points out that in financial markets such as stocks, futures, and warrants, 'speed' is often the key to victory. Typically, the traditional stock trading process involves financial trading data flowing from the network to the mainframe, processed through combination software, measured in milliseconds (ms, 10^-3 seconds), with an average transaction completed in 20 ms. System transaction processing speed, however, is at the nanosecond level (ns, 10^-9 seconds), and through the high-performance hardware acceleration platform (FPGA), each financial matching transaction can be completed in microseconds, a significant difference that can lead to billions in trading gains or losses, and is a major competitive edge for proprietary traders.

Financial services in the domain of securities firms' proprietary sections, new types of financial product trading departments, and high-frequency traders (or major retail traders). In the securities market, market volatility is the result of a tremendous amount of data. If the system operates at nanosecond speed, allowing you to see transaction information instantaneously, ahead by 0.1 seconds, you can make trading decisions before others even see the market data.

Service areas focus on financial technology and smart manufacturing

The risk control systems of bank credit cards can also utilize AI integration acceleration, similar to regulatory technology domains. Establishing an AI model can effectively identify risky credit card transactions and provide responses in a very short time, enhancing the security and smoothness of online transactions.

In the AI credit card risk control system, AI acceleration is also used through software integration. Transactions are prevalent, and fraud is common, similar to regulatory technology domains. By establishing an AI model, risky credit card transactions can be effectively identified, and responses given in a very short time, enhancing the security and smoothness of online transactions. This includes financial transactions and credit card risk identification, all through chip-based transaction data analysis and risk management system direct acceleration calculations.

Financial transaction information acceleration solution

▲Financial transaction information acceleration solution

Currently, many financial companies have their own IT departments, including data scientists, big data analysts, and AI algorithm engineers. What is Fansi Data's advantage in the financial sector? Zheng Zongyi points out that the IT departments in the financial industry are more 'users' of IT, not 'developers' of IT. Moreover, understanding IC design involves high costs, and the financial industry does not need to maintain their IC design team. The specialization is very clear, as Fansi simply develops models for the financial industry to adopt.

Considering personal privacy and data security, financial data is sensitive and often not easily accessible. Fansi Data, by joining the financial technology innovation park (FinTechSpace) and with the assistance of the Institute for Information Industry, applies for the real-time transaction data and corporate annual financial statements, historical trading data provided by the digital sandbox, using it to group data, analyze, model, backtest, and propose AI risk warnings and other solutions for abnormal transactions and risk management.

Besides financial technology, Fansi Data also focuses on AI applications in smart manufacturing, such as developing smart image meter reading through image recognition methods, which can help businesses reduce equipment replacement costs and achieve higher accuracy.

In the process of customized chip design, data analysis, and software/hardware integration, Fansi Data encounters difficulties in data and talent acquisition. At this stage, through interfacing with the digital sandbox and utilizing resources provided by the financial technology innovation park, AI models are built; regarding talent, a lean core team is established, continuously accumulating experience and building a robust entrepreneurial culture to face the ever-growing market demands.

From left to right: Co-founder Zheng Zongyi, General Manager Liao Yanchin, and Chip Design Director Liu Wenkai

▲From left to right: Co-founder Zheng Zongyi, General Manager Liao Yanchin, and Chip Design Director Liu Wenkai

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
Complete checkout in 1 second, Viscovery AI image recognition assists smart retail

Artificial intelligence AI has gradually changed the way various industries operate in recent years However, most of the work is still done by humans, with AI playing a supporting role This has led to emergence of the term "AI Copilot," which stands for "AI-driven tools or assistants" that aim to assist users in completing various tasks and improve productivity and efficiency The concept of AI Copilot comes from the role of "co-pilot" During flight, the co-pilot assists the main pilot in completing various tasks to ensure flight safety and efficiency In fact, there have been signs of various "machines" beginning to play the role of "copilot" in different fields since the Industrial Revolution, assisting humans in completing heavy physical and repetitive tasks, greatly improving factory production efficiency, and driving rapid economic development Following the advancement of computing equipment and breakthroughs in machine learning, deep learning, and image recognition technologies, the concept of AI Copilot has gradually taken shape The development of AI Copilot marks the transition from "machine-assisted to AI-assisted" Early robots could only complete preset repetitive tasks, but today's AI copilot can learn and adapt to new environments and tasks, and continuously optimize its performance in practical applications This transformation not only changes human-machine interactions, but also has a profound impact on various industries The application scope of AI copilot covers various industries, including finance, healthcare, manufacturing, education, retail, etc, and are everywhere to be seen Application of AI copilot in the retail industry AI image recognition checkout In the retail industry, the application of AI copilot has begun to show concrete results Take Viscovery's AI image recognition checkout system as an example This system is a type of AI copilot model that helps store clerks speed up checkout or assists consumers in simplifying the self-service checkout process The store clerk needs to scan the product barcodes one by one in the regular checkout method If a product does not have a barcode, such as bread and meals, the clerk needs to first visually confirm the items, and then input them into the POS checkout system one by one Based on actual measurements at a chain bakery, it takes 22 seconds for an experienced clerk from "visual recognition" to "entering product information of a plate of 6 items into the checkout system" New clerks may need even more time In addition, according to a Japanese bakery operator, it takes 1 to 2 months to train employees to become familiar with products Now with AI image recognition technology, store clerks let AI handle the "product recognition" step, and AI will play the role of copilot, quickly identifying items within 1 second, speeding up checkout to save 50 of checkout time, and optimizing customers'shopping experience The time cost of training employees to identify bread can also be effectively shortened Even for products with barcodes, AI can quickly identify multiple items in one second, which is more efficient than scanning barcodes one by one The self-checkout system "assisted" by AI image recognition allows consumers to successfully complete shopping without the help of store clerks, eliminating the trouble of swiping barcodes or searching for items on the screen, which improves the shopping experience In a time when store clerks are hard to hire due to labor shortage, this also helps stores reduce operating costs AI quickly identifies multiple checkout items in just one second Source of image Viscovery Recently, startups dedicated to developing AI image recognition checkout solutions have emerged in various countries The most lightweight solution currently known is in Taiwan It can be immediately used by installing a Viscovery lens and a tablet installed with Viscovery AI image recognition software at the checkout counter to connect to the store's existing POS checkout system There are various integration methods, including plug-and-play and API solutions integrated with the store's POS system Viscovery AI image recognition system can be painlessly integrated with the store's existing POS system Source of image Viscovery Example of AI image recognition checkout Currently, the Viscovery AI image recognition system is being used in bakery chains in Taiwan, Chinese noodle shops in Singapore, micromarkets in department stores in Sendai, Japan, and Japanese bakeries and cake shops Over 7 million transactions were completed through this AI system, which identified more than 40 million items These use cases demonstrate the extensive application of the Viscovery AI image recognition system in the retail industry In the future, the company will continue to explore the various possibilities of using Vision AI in retail and catering nbsp The Viscovery AI image recognition system is already being used in bakeries, cake shops, restaurants, and convenience stores in Japan, Singapore, and Taiwan Source of image Viscovery

這是一張圖片。 This is a picture.
AI Defect Intelligent Detection - Energy Reduction Smart Monitoring Solutions

AIIntelligent Defect Detection-Smart Monitoring Solution to Reduce Process Energy Consumption When there are over2ten thousand chip resistors on a ceramic substrate, how should one quickly detect defects The answer isUsingAIto detect。 In the era of rapid technological development, Leike proudly announces significant advances in its laser processing technology, thanks to the innovative applications of artificial intelligenceAILeike is committed to integrating advancedAItechnology into laser processing machines, and in2019year, in collaboration with partners, developed the world's first laser machining system that integratesAItechnology, and on this basis further developed in2023year the first ceramic substrate inspection machine that integratesAOIAILASERtechnology Smart Ceramic Substrate Inspection Machine Through the introduction ofAIand machine learning, along with the accumulation of big data samples, the system becomes smarter, which has led to improved product yield within one year5dramatically reducing the inspection time from originally2minutesper piece to just20secondsper piece, drastically lowering inspection costs, enabling efficient initial detection and post-laser marking to reduce waste in subsequent processes, diminishing overall carbon emissions of the site, allowing the automatic generation of detailed inspection reports for data analysis and optimization, which helps increase equipment capacity, reduce human error, enhancing the value of Leike's equipment, and strengthening the international competitiveness of the country's electromechanical industry Leike CorporationLaser TekFounded in1988year, and officially listed as a publicly traded company in2002year Since its establishment, it has become a leading global service provider and manufacturer of electronic packaging materials,SMDElectronic Packaging Materials,SMTinspection equipment, and laser systems Leike's general manager, with years of laser integration experience, observed that passive component customers can produce over20With many years of laser integration experience, he observed that the production capacity of passive component customers can exceed10billionSMDcomponents every month, but withSMDcomponents per month However, as component sizes continue to miniaturize, defect detection during production becomes increasingly challenging With thousands to millions of components on a single ceramic substrate, and as component sizes decrease and their laser processing positions become smaller, the difficulty of detection increases, making production inspection a critical process R-SMD Production Inspection Process AOIproblems of yield overkill relying onAIfor oversight, Yet,AOIthe inspection machine is a widespread and mature type, but the high accuracy on the marketAOIuses a technique that captures small images in a single shot and stitches them into a larger image Although accurate, this method requires more time for small-sizedSMDcomponents, which are more likely to be influenced by environmental factors like lighting and vibration that can cause misjudgments as a result,AOIyield rate can only be estimated by sampling, and components with poor sampling yield are not removed individually but discarded together with good ones manual re-inspection not only increases costs, but the lack of unified inspection standards ultimately results in about2-5products that are not detected as defective enter the subsequent manufacturing process monthly at least2,000thousands of such defective componentsSMDthat were not initially detected causing ongoing printing and machining inspections in subsequent processes Regardless of the waste of ink materials and energy, which increases the cost burden, this also accelerates equipment wear and shortens operational life Each stage of waste increases the site's carbon emissions, unfavorably impacting the company's carbon footprint Post-Adjustment Sample Photo Example 0402 TraditionalAOI High false positive rates in Automatic Optical Inspection AOI are a major production issue for manufacturers, particularly in the passive components industry where 'it's better to mistakenly reject a hundred than miss one'—a high standard, often leading to AOI setting extremely high parameters which makes devices overly sensitive Excessive stringency in data parameter settings can lead to high false positive rates For instance, if the dirt contamination on passive components resembles the color of the printing layers,AOI the misjudgment rate could reach 7 percent Contamination Dirt and Print Layer Color SimilarityAOIProne to Misjudgment Raytek stands apart from otherAOIsuppliers by discarding the stitching of small images or line scanning, effectively preventing data loss and discrepancies caused by hardware or environmental conditions during image processing It employs a large-array photodetector coupled with custom high-resolution lenses, using specialized imaging for composite processing Throughout this process, each pixel of the photodetector contains light information captured from various positions By combining this data, the image resolution and detail are enhanced, reaching a resolution of millions, and with multiple automatic light adjustments, a single shot can manage7070mmachieving an image resolution up to5umobtaining clear images, then throughSmart-AItechniques for analysis and selection Three Innovative Methods to Achieve Rapid InspectionSmart -AI Raytek's General Manager shares, rapidly implementingAItechnology and reducing inspection computation time, further developingSmart-AIthree major approaches Method one, initially useAOIto quickly separate good products from those with controversial defects, focusing the detection on the minority of defective identifications Method two, an automated labeling platform simplifies the training issue by using cameras to collect data from machines, automatic labeling replaces manual labeling, progressively training to improve accuracy The simpler the problem, the less data needed for training Method three,AOIandAIDual-track Advancement In the smart manufacturing process, relying solely onAOIorAIis not enough to accomplish the task alone, it must be preceded byAOIfirst marking the characteristics, distinguishing between good and defective parts, then usingAIa method for labeling and training Subsequently, by utilizing a repeating cascade effect, the detection benefits are greater as more training data accumulates,AOIreducing the ratio of errors,AIand gradually increasing the accuracy ratio Post Adjustment Object Detection and Training Through three major methods gradually building system reliability, and categorizing data for defect sorting, ultimatelyAIreturning the judgement results to the main system, utilizing laser machining to control truly defective products at the front end of the process, reducing the inflow of defective products into other stations, thus minimizing losses due to repeated tests or reprocessing Leading in smart laser equipment, chooseLASERTEKthe right one Continuously developed by the Taiwanese brand Raytek, combiningAIsmart detection and laser processing equipment to progressively build a smart monitoring solution stack from raw materials, products, testing, laser equipment, etc, aiming at reducing the energy consumption of the production process, implementing semiconductor advancements, substrates and component processing among other fields, producing equipment products capable of meeting the end-user demands under low carbon conditions, rapidly and with quality products and services expanding both domestic and international markets, enhancing the global competitiveness of localMade in TaiwanMITequipment 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

這是一張圖片。 This is a picture.
Smart Construction Site Security Platform

In construction site operations, implementing safety protection measures and establishing related processes are essential for controlling workplace safety Every business owner strives to minimize industrial safety risks To reduce the probability of workplace accidents, it is particularly important to inspect personal protective equipment PPE and safety measures The Yongyi Smart Construction Site Security Platform utilizes an AI-embedded system, not only to detect whether workers are properly wearing helmets, but also to manage access control at construction site entrances and verify worker identity The Smart Construction Site Security Platform is also a part of the government's push for the Smart Construction Label Initiative 'Smart Site Management' is one of the three main items under the 'Maintenance Management' indicator, highlighting the importance of 'Smart Site Management' This solution includes access management, surveillance management, safety management, and environmental monitoring as aspects of its AIOT solution Feature Highlights 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-11-09」