:::

【2020 Application Example】 RPA Robots, Accelerating E-commerce Work Efficiency by 15 Times

Labor-intensive, prone to oversights and errors, low shipping efficiency

A domestic hook-and-loop tape traditional manufacturing transformation and brand management company has expanded new markets and business opportunities through the e-commerce platform model. This requires reliance on substantial labor for product listing, order organizing, inventory management, and shipment tracking. This results in limited product varieties and quantities that can be handled, and manual data entry is often prone to oversights or errors, affecting shipping efficiency and customer satisfaction, which is critical for the competitive advantage of the business in e-commerce.

Internally, many operations rely heavily on repetitive tasks across various computer systems, web pages, emails, etc. Currently listed on 15 e-commerce platforms, updating single e-commerce information alone requires 2-3 months (over 200 items), making rapid expansion difficult; limited by manpower, product information is not detailed enough, leading to doubts in e-commerce reviews, affecting orders and subsequent satisfaction. Presently, orders are only confirmed once a day, leading to an information gap of up to 24 hours. Annually, there are over ten thousand orders to process into shipment orders, typically accumulating for 15-30 days before once grouping deductions from inventory, resulting in always inaccurate stock levels.

Streamlined Client Interface, Accelerating Implementation Efficiency

The mentoring team collaborates with Ruijing Engineering Technology to integrate AI and RPA technologies through a web-based architecture. Robotic Process Automation (RPA) applications are not installed on the local desktop but are stored on a server and accessed only when needed by the user.

This technology, known as Thin Client, provides higher performance and security compared to the Thick Client, which requires downloading applications and data to the local desktop. The Thin Client does not require downloads on the local machine.

RPA collaborative service features include:  Web Scraping: Complex web data collection and arrangement  Email manipulation: Data analysis and disassembly of content and attachments  Web operation: Precise and rapid web operations or filling in specific fields  Application operation: Timed positioning operations of other window applications  Data processing: Data format conversion, decomposition, and reassembly  File Exchange Management: Timed file production, add/delete/modify, FTP upload/download  Database operation: Heterogeneous database data exchange, read or write to a specific DB  Data recognition: Fixed format field data processing; screenshot, snapshot, alphanumeric text parsing and recognition  Scheduling: Can be timed, repeated, cross-process all the above processes  Alert mechanism: Email, Line Notification etc. designated or broadcast notification

Software Robot Technology Solution Execution Architecture

▲Software Robot Technology Solution Execution Architecture

AI software robots enhance the processing speed of orders, inventory management, and purchasing in manufacturing operations, developing automated services to avoid data duplication and input errors, and seamlessly integrating processes across systems operating 24/7. The war room panel facilitates statistical analysis and real-time sales conditions on each e-commerce platform, predicting and optimizing product inventory.

Direct Purchase Order Process Automation Robot

▲Direct Purchase Order Process Automation Robot

E-commerce Information War Room Statistical Analysis Dashboard

▲E-commerce Information War Room Statistical Analysis Dashboard

Software Zero Errors, Reducing Costs by 15% to 90%

面對快速變化又競爭激烈的市場環境,更需要減少重複性、低產值的工作,將人力運用在更高價值的工作上。

Facing a rapidly changing and highly competitive market environment, it is essential to reduce repetitive, low-value tasks, focusing manpower on higher-value work. RPA software robots are 15 times more efficient than indirect staff, also enhancing process quality to near-zero error rate execution quality, offering opportunities to reduce costs by 15% to 90%. Since it doesn't require significant changes to existing workflows, businesses generally do not need to spend substantial manpower on retraining or adapting to new workflows, which contributes to a higher acceptance rate among businesses. Even in software deployment, it only takes about 4-5 weeks to go live.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
Taking advantage of green energy business opportunities, Hua Molybdenum Industry creates all-vanadium redox flow battery energy storage system equipment, the best choice for long-term energy storage

Green energy is the future trend and will surely lead to huge business opportunities in the future Wind power has been one of the green energy sources that have attracted global attention in recent years It will become an important force in my country's renewable energy and help Taiwan's power generation reach the goal of 20 by 2025 to improve Taiwan's energy independence As the number and power of domestic wind turbines wind turbines increases year by year, it is particularly important to ensure that the power storage equipment achieves safe, long-term performance, is not easily attenuated during charging and discharging, and is sustainable, low-carbon and environmentally friendly At the same time, the wind turbine equipment itself Health inspection, maintenance and repair have also become the focus of wind farm operators In order to meet the needs of wind farm customers, the green energy business unit of Hua Mo Industry has launched long-lasting energy storage all-vanadium redox flow battery electrolyte and wind turbine AI predictive operation and maintenance, providing 100 safety, long-term efficiency and reducing customer initial manufacturing costs cost-effective power energy storage equipment, and through AI predictive operation and maintenance services to help customers reduce power generation costs by 10 and save up to 30 in maintenance and warranty costs Hua Molybdenum Industry was established in 1998 The industry started by refining vanadium, molybdenum and rare metal elements and other products, and used them in high-end steel, professional chemicals and specialty chemicals industries, and vanadium is more like a steel-making Vitamins can increase the effectiveness of steelmaking Among them, vanadium and molybdenum related products are one of the company's main projects The company sees that the all-vanadium redox flow battery, which is 100 vanadium-based, will be a very promising mainstream green energy technology in terms of long-term energy storage in the future, and before 2010 The government has actively invited legal entities such as the Industrial Research Institute to conduct research on related component materials in solid-state batteries and all-vanadium batteries In addition, the Ministry of Economic Affairs expects renewable energy to account for 20 of power generation in 2025 and reach 15GW Based on the above Considering this, Hua Molybdenum Industry decided to devote all its efforts to research and invest in the technological development of self-developed all-vanadium redox flow battery electrolyte in 2017, in order to accelerate the compliance rate of renewable energy in 2025 Hua Molybdenum pointed out that "renewable energy power is relatively unstable, and Taiwan itself lacks lithium resources In lithium battery manufacturing, almost 80-90 of battery cells must rely on foreign procurement, and there is a lack of 100 domestic self-sufficient energy storage Resources and technology "Similarly, how does Taiwan overcome the problem of having no natural vanadium resources To this end, Hua Molybdenum Industry uses original technology to use waste catalysts from petrochemical industries such as CNPC refineries or Taishuo petrochemical processes Up to 10 of the vanadium ion content can be used to extract high-value vanadium resources, thereby producing Taiwan's 100 self-made all-vanadium redox flow battery electrolyte without being affected by resources, effectively achieving resource recycling Since 2017, Hua Molybdenum Industrial has successfully created all-vanadium flow electrolyte technology, and has successfully passed product verification by the Industrial Research Institute, the Nuclear Research Institute and many international manufacturers Taiwan’s power storage energy target is to reach 15GW in 2025 Its power distribution includes 500MW in Taipower’s automatic frequency regulation system, 500MW in E-dReg and 500MW in existing or newly built solar power plants For example, electricity consumption is mainly between 4 pm and 10 pm, which is the peak period for people's daily electricity consumption For this reason, the Energy Administration specifically requires Taipower to strengthen the upgrade of energy storage equipment, which has also driven the market's interest in all-vanadium redox flow batteries Energy storage system equipment is in high demand In addition, Taiwan's current total power reserve construction and contribution has not yet reached 100MW, and the gap from the 2025 target of 15GW of power storage is still more than 15 times Using all-vanadium redox flow batteries to successfully create 100 safe, low-carbon, environmentally friendly and long-lasting energy storage system equipment Compared with the short-term power storage of lithium batteries, the biggest advantage of all-vanadium redox flow batteries is that it is globally recognized as a long-term power reserve It can store energy for a long time up to 12 hours, which means that if it is charged for 12 hours, It can release power for 12 hours Compared with the electricity measurement method of general energy storage systems, which is daily electricity consumption power in kilowatts x time in hours, for all-vanadium redox flow batteries, power and hours are different Special design, the power is also called a stack, which is composed of four materials metal, polymer mold, carbon felt and graphite plate, and the power consumption time is calculated based on the amount of electrolyte in cubes Therefore, when the power electric push x the amount of electrolyte the daily electricity consumption of our all-vanadium redox flow battery for energy storage The product features of the all-vanadium redox flow battery energy storage system equipment include four major features safety, long-term performance, not easy to decay during charging and discharging, and sustainable, low-carbon and environmentally friendly The quality of the all-vanadium flow battery is 100 safe Since the electric energy is stored in the vanadium-containing electrolyte, it can avoid any flammable accidents caused by a fully charged energy storage system In terms of battery life, compared to the short battery life of lithium batteries, all-vanadium redox flow batteries can have a battery life of more than 20-25 years through changes in price Regarding the charge and discharge performance of energy storage, unlike lithium batteries which have a certain number of charge and discharge times 5000-600 times, there is no limit to the number of charge and discharge times of all-vanadium redox flow batteries Regarding zero carbon emissions, which is highly valued globally, unlike lithium batteries which have recycling issues, the electrolyte of the all-vanadium redox flow battery can be used permanently The material components of the stack are environmentally friendly and fully recyclable to create a truly sustainable and low-cost Carbon-friendly energy storage system Onshore wind turbine AI prediction smart operation and maintenance allows customers to reduce power generation costs by 10 and save maintenance and warranty costs by up to 30 Hua Molybdenum Industry not only improves the long-term power storage efficiency of renewable energy customers through all-vanadium redox flow battery energy storage system equipment and helps customers reduce initial purchase costs, but also uses AI smart operation and maintenance empirical calculations for offshore and onshore wind turbines Field demonstrations were drawn on Taipower's onshore wind farm, and we actively accumulated our own technical experience and energy in AI predictive operation and maintenance With the support of the AI HUB project of the Industrial Bureau of the Ministry of Economic Affairs, the cooperation site will focus on the Phase I wind farm of Taipower Corporation and provide smart operation data of wind turbines for more than 6 months for analysis The AI predictive operation and maintenance system for onshore wind turbines uses machine learning The main technology provider comes from ONYX Insight, a subsidiary of British Petroleum BP The company uses AI Hub analysis software technology to analyze the wind turbines faced by Taipower Pain point analysis, including power generation loss of road-based wind turbines and damage prediction of key components of land-based wind turbines such as gearboxes, pitch bearings under abnormal vibration three-dimensional vibration frequency or abnormal temperature, etc output Through this implementation, it can effectively help Taipower reduce power generation costs by 10, increase asset value by 12, and save up to 30 in maintenance and warranty costs In the past three years, ONYX Insight has successfully predicted and operated more than 20,000 offshore or onshore wind turbines around the world, accumulating extremely high AI model accuracy It is believed that the international partnership established with ONYX Insight will effectively guide and accelerate the green energy division of Hua Molybdenum Industry in its goal and layout to become an independent technology service provider for wind turbine AI predictive operation and maintenance Works with partner ONYX insight to provide customers with an AI predictive operation and maintenance system, including wind turbine power generation loss and damage prediction of key wind turbine components Building a solid foundation for domestic wind turbine operation and maintenance, using Taiwan as a base to expand to Southeast Asian wind farms The market output value of offshore wind turbine AI predictive operation and maintenance in Taiwan will exceed NT30 billion in the future, and the energy storage market has an output value of more than 100 billion US dollars globally In the future company vision, Hua Molybdenum Industrial hopes to become An independent technical service provider for vanadium flow battery electrolyte and wind turbine AI predictive operation and maintenance The long-term goal is to establish a local supply chain of vanadium flow battery electrolytes around the world by accumulating abundant technology and performance capital to supply industry needs nearby 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
HRT Technology Improves Production Efficiency by 20% Through AOI Detection of Defects in VCSEL Packaging

In 2017, the launch of the iPhone X made 3D sensor technology used in Face ID highly popular, which drove the development of VCSEL, a core component in the 3D sensor module In the detection of defects in incoming packaged VCSEL, the use of AI inference models can solve the industry's issue with low yield and improve reliability to 95 VCSEL technology currently can be used in many applications and various end consumer markets, including robots, mobile devices, surveillance, drones, and ARVR VCSELs are a good solution in applications that require high-speed modulation capabilities, such as cameras and biometrics VCSEL technology has a wide range ofnbsp applications, including in drones Pictured Zoyi Technology's Agricultural Drone VCSEL technology has a wide range of applications, AI technology assists in defect detection HRT Technology stated that the packaged VCSEL market is also facing strong price competition from competitors, and needs to further reduce costs and enhance product competitiveness One of the key problems is the replacement of glass lens with epoxy resin lens The production of traditional glass lenses has high yield, but the cost is higher than that of epoxy resin lenses Due to the cutting process of epoxy resin, the side wall of cutting lines can easily have rough edges, causing it to be oversized The release of stress caused by heat during the mounting process will directly cause the optical lens to break HRT Technology pointed out that the incoming inspection of VCSEL epoxy resin lenses is very important Under the constraints of packaging space, the space for fitting the package and optical lens is limited Moreover, the optical lenses will be confined to a metal frame If the dimensional tolerances are properly controlled, stress release due to heat during mounting can easily cause the optical lens to break, resulting in a yield loss of up to 10 in the VCSEL package reliability verification, resulting in an increase in production costs In order to solve the problems above, HRT Technology hopes to use AI to monitor the size and appearance defects of epoxy resin components in the VCSEL epoxy resin lens incoming stage, verifying whether their dimensions meet specifications, whether the cutting edges are smooth, and whether there are any defects in their appearance Since traditional incoming material inspection requires a rough visual inspection by humans to distinguish the quality The problem of image collection needs to be solved first to successfully collect image data Therefore, HRT Technology first developed an Automated Optical Inspection AOI device, which includes X, Y, Z three-axis motion, high-resolution cameras, and related control software to automatically record images After collecting the image data, opencv aligns the test image and a normal image to determine differences between the two images, and then pixel mapping is used to compare the pixel area to complete initial screening Manual labeling is carried out according to the image classification above, including samples that are normal, have defects in appearance, or have different shape characteristics, and then algorithm training and verification is carried out Residual neural network ResNet or other related algorithms are used for deep learning to identify the quality of lenses Implementation of AOI inspection improves production efficiency by 20 and above Comparing the differences before and after the implementation of AI image inspection, the incoming VCSEL lens inspection before implementation only involved manual inspection of the appearance The lens is packaged on the VCSEL package that has completed die bonding After passing the general light up test, the final reliability test high temperature reflow is performed Failed samples go into the rework process However, after the implementation of AOI inspection, it can screen defective lenses sooner and reduce the cost of subsequent materials input, it can also reduce the need for rework due to failure, improving yield to 95 and above in the reliability verification This is expected to help companies reduce production costs by 10 and increase production efficiency by 20 and above The difference before and after implementing AI image detection HRT Technology pointed out that this technology is an AI application developed based on tiny images It uses deep learning algorithms to identify defects in the images The trained network automatically classifies image data to predetermined categories Defect categories can be determined through reference images, so cumbersome programming is not required In the industrial machine vision environment, deep learning is mainly used for classification tasks in applications, such as inspection of industrial products or identification of parts In the future, with the development of IoT wearable devices and the trend of energy saving, the size of optoelectronic components will continue to shrink This technology can be applied to the detection of defects in the appearance of other tiny optoelectronic components in the future

【解決方案】優式AI智能割草機器人 搶攻高爾夫藍海市場
USRROBOT's AI Lawn Mowing Robot Enters the Blue Ocean of Golf Market

An AI smart lawn mowing robot, resembling a vacuum robot, shuttles back and forth on the 30-hectare golf course lawn for weeding This robot, independently developed and designed by Taiwanese, is equipped with the world's first electronic fencing positioning technology which utilizes high-precision GPS integrated with cloud AI computation to determine the most efficient mowing paths, targeting the lucrative blue ocean market of golf courses This AI lawn mowing robot was developed by USRROBOT, a Taiwanese startup established in 2019 Chao-Cheng Chen, the president of USRROBOT, once served as the executive vice president of one of the top five ODM tech companies in Taiwan, and specializes in software and hardware integration When he served as the chairman of the Service Robot Alliance, he knew that the service robot industry was bound grow rapidly due to declining birth rates and the growingly severe labor shortage New demand - The horticulture market is large and the has rigid demand "To develop the core technology of service robots, we must find rigid demand Looking at European and American countries, there is a shortage of labor, but demand for horticulture has increased, and there has been a long-term shortage of 7-10 of horticultural workers" Under this strong "rigid demand," Chao-Cheng Chen established USRROBOT, and the company's first product is the AI lawn mowing robot In terms of overseas markets, the United States is the world's largest horticulture market, accounting for 30-40 of the global output value It is estimated that there are about 1 million horticulture workers, but they have been experiencing a labor shortage of 7-10 in recent years and have not been able to improve the situation The main reasons for labor shortage are Aging population and gardening is a labor-intensive job, so young people don't want to do it Unlike in Taiwan, European and American countries attach great importance to lawn maintenance and have expressly stipulated in the law that heavy fines will be imposed for failing to mow the lawn Therefore, the AI lawn mowing robot has considerable market development potential The introduction of AI multi-device collaborative mowing sensor technology is expected to reduce the burden of staff maintaining the golf course The AI lawn mowing robot developed by USRROBOT is currently in its second generation Domestic universities and well-known art museums are using the latest model M1, and it is also being used by some world-renowned high-tech companies and well-known universities in the United States The company is currently involved in negotiations for subsequent business cooperation USRROBOT stated that the professional RTK system currently used can reduce the original GPS positioning error from tens of meters to about 2 centimeters, allowing the robot to move accurately outdoors After setting the boundaries, it can be easily operated using the app New application - Implementation in golf courses solves the problem of labor aging and shortage Chao-Cheng Chen further explained that the National Land Surveying and Mapping Center is a RTK service provider RTK provides the error reference map of the positioning point USRROBOT can access the positioning error value of a specific position through 4G Internet access The AI algorithm of USRROBOT reduces the general 10-20 m error of GPS to 2 cm After positioning, USRROBOT then uses six-axis accelerator positioning, gyroscopes, and wheel differential sensing devices for software and hardware integration Only by matching the wheel's movement pattern and the terrain can accurate mowing path planning be achieved The AI lawn mowing robot, which is 62 cm wide, 84 cm long, 46 cm high, and weighs only 25 kg, can set the mowing boundaries in the cloud It can avoid pools and sand pits through settings, using AI algorithms to automatically calculate the optimal path It is able to mow approximately 150 ping of grass in one hour The battery can be used continuously for more than 6 hours The battery life is currently the highest in the world In addition to general gardening companies, with the assistance of the AI project team of the Industrial Development Bureau, Ministry of Economic Affairs, USRROBOT's AI lawn mowing robot has been applied to golf course lawn mowing A well-known golf course located in Taiping District, Taichung City currently has a staff of 5 people who are responsible for the lawn, planting maintenance, and other landscape maintenance of the entire 30-hectare course However, the average age of staff is as high as 55 years old, and the golf course has been unable to recruit new staff members for a long time In view of the aging staff and the shortage of manpower, the golf course hopes to mitigate the impact with AI technology, and is therefore using AI multi-device collaborative mowing sensor technology, in hopes of reducing the burden of staff maintaining the golf course New challenges - Expert systems are needed to overcome difficulties with different grass species "This AI lawn mowing robot has low noise, low pollution, low labor costs, and is waterproof and anti-theft In the lawn mowing process, it can identify and avoid obstacles through ultrasonic sensors while maintaining mowing quality, maintaining aesthetic and consistent grass length" Chao-Cheng Chen went on to say that the most important part about golf courses is that the grass pattern should be beautiful and free from diseases and pests Based on the site survey, golf courses are mainly divided into three major areas green, fairway and rough There is no problem using the current mowing robot to mow the rough area, and it can overcome slopes within 20 degreesThe short grass in the fairway area may only be two centimeters long, and the grass types are also different, so the cutterhead design needs to be modifiedAs for the grass in the green area, the grass must be mowed close to the ground and maintained in a consistent direction because it affects the putting speed Many factors will affect the green index, and this part requires more research and testing The AI lawn mowing robot can identify and avoid obstacles through ultrasonic sensors while maintaining mowing quality The AI smart lawn mowing robot has a built-in camera that can be used to detect the health condition of the lawn Chao-Cheng Chen said that in the future, an expert system will also be introduced for early determination of whether there are diseases, pests in the lawn or whether there is sufficient moisture, and provide lawn health data analysis to customers, so that they can take preventive and response measures sooner to reduce disaster losses Chao-Cheng Chen, who is also a good golfer himself, said that golf has developed well in Taiwan However, due to weather factors, such as rainy and humid climate and typhoons, Taiwan's golf courses have harder soil and more potholes compared with top tier golf courses overseas If AI lawn mowing robots are to be widely introduced into golf courses, there are still many difficulties that must be overcome However, Taiwan's difficult terrain creates a good testing ground Once Taiwan can overcome the many problems and successfully introduce the robot, it will be able to expand to overseas markets and seize new market opportunities in a blue ocean Chao-Cheng Chen, President of USRROBOT nbsp