:::

【2020 Application Example】 AOI fabric inspector lowers the false negative rate, and reduced the re-inspection volume by 70%

Low detection rate, slow speed, difficult recruitment and high personnel costs

The textile industry has always been a labor-intensive industry. At present, almost all textile companies worldwide still inspect fabrics manually. There are three major pain points in manual fabric inspection: Low detection rate, slow speed, difficulty in recruiting workers, and high personnel costs On average, a fabric inspector can find up to 200 defects in one hour with a defect detection rate of about 70%.

However, inspectors are only able to maintain their concentration for 20 to 30 minutes at most, and their fabric inspection speed is generally limited to 20 to 30cm/s. Fabric inspectors become fatigued if they exceed this time and speed.

Domestic and foreign AOI fabric inspection machines purchased by textile manufacturers have not yet been officially integrated into the production line. At the beginning, 10,000 suspected defects could be detected in one roll of fabric. The detection rate was high but the accuracy [screening] was low. The number of suspected defects has been reduced to 7000, but is still not at the level of experienced inspectors.

High-speed cameras capture defects and record defect locations

▲High-speed cameras capture defects and record their locations

The rule-based defect identification method currently used by manufacturers requires a lot of adjustment time (about 1 to 3 months) before the manufacturers (site) actually uses it, and there is currently no solution to automatically correct the identification model after use. As a result, manufacturers need to spend extra time to adjust parameters. Therefore, it requires considerable cost for both manufacturers and clients (sites).

Current manufacturers' grey cloth inspection process

▲Current grew fabric inspection process of manufacturers

The specific method used by the guidance team and cooperating manufacturers to implement AI identification technology and learning framework (for model retraining) into the defect inspection process is described below

1. AI-based defect identification model:

Utilizes the large amount of image data collected (including fabrics with and without defects) to construct the defect detection model through machine learning, such as SVM, or deep learning object detection methods, such as SSD or YOLOv3. This model is used to determine the condition of the surface of grey fabric and determine if it is a normal product or a defective product, thereby achieving defect identification.

2. Identification model retraining framework:

If there is an error in the judgment of the visual inspector, the image will be marked and the data will be used in the dataset for re-training. After a certain number of misjudged data is accumulated, the system will automatically start the identification model retraining function, and the new model that is generated will automatically replace the old recognition model, thereby achieving the purpose of model update.

Post-project implementation grey cloth defect inspection process

▲Grey fabric defect inspection process after the implementation of this project

Low false negative rate and solves the challenges of labor shortage and higher quality requirements in the industry

This project uses a deep learning network architecture to reclassify defects that are detected, including real defects and false defects, and can further classify real defects and false defects to lower the false negative rate of traditional AOI solutions. This is expected to reduce re-inspection volume by 70% and above for fabric inspectors, eliminate concerns about implementation in the current production line, accelerate the application of AI-based AOI solutions by textile manufacturers, and solve the challenges of labor shortage and higher quality requirements in the industry.

Recommend Cases

這是一張圖片。 This is a picture.
Using Plant Growth Chambers as an Example - Standardizing Electronic Device Procedures Based on Imaging

In recent years, global climate change and environmental issues have become increasingly severe, causing major impacts on agricultural production Traditional agriculture heavily relies on weather conditions, facing challenges such as unstable crop quality, plummeting yields, and difficult pest control Particularly in Taiwan, agricultural biotech companies and farmers have suffered continuous losses, creating an urgent need for innovative solutions Meanwhile, Taiwan's plant factory industry faces many challenges high equipment and labor costs, an incomplete industrial chain diminishing international competitiveness, and a lack of cooperation among enterprises, all of which limit industry development Additionally, COVID-19the pandemic has highlighted the importance of remote monitoring and management Traditional manual inspections and data collection methods no longer meet the needs of modern agricultural production These issues collectively underline the urgent need for smart agricultural solutions, driving companies like Taiwan's HaiBoTe to develop innovative projects integrating IoT, cloud computing, and artificial intelligence technologies HaiBoTe Cloud Data Integration and Analysis Platform Facing these challenges, the agricultural sector urgently needs a system that can precisely control growth environments, improve resource efficiency, enable remote monitoring, and facilitate intelligent management Existing plant factory equipment often requires complete replacement, with poor compatibility with older equipment, and sensors and camera systems may require different interfaces, making them inconvenient to use Therefore, there is a need for a flexible solution that can integrate various equipment and technologies, providing real-time monitoring and data analysis, and automatically adjusting environmental parameters based on plant growth conditions This demand exists not only in Taiwan but is also a global trend in the development of smart agriculture By incorporating artificial intelligence, more scientific evaluation standards can be established, optimizing production processes, improving yield and quality, while reducing energy consumption and environmental impact Additionally, such smart solutions can attract more young people to participate in agricultural production, promoting industry upgrading and sustainable development Overall, the demand for smart agricultural solutions stems from the urgent requirements to address climate change, enhance production efficiency, reduce costs, and achieve precise management, and this is exactly the problem companies like Taiwan's HaiBoTe are striving to solve Taiwan's plant factory operators are facing a series of severe challenges, which are gradually eroding their competitiveness and survival space Firstly, the high cost of equipment and operations is their biggest burden Each electricity bill feels like a heavy blow, forcing them to balance between ensuring product quality and controlling costs Secondly, the unpredictability brought by climate change has become their nightmare Sudden extreme weather events can destroy their carefully nurtured crops in a short time, causing massive economic losses What's worse, they find themselves increasingly at a disadvantage in international market competition In contrast, large overseas plant factories, with their advanced automation technology and well-organized supply chains, can produce stable-quality agricultural products at lower costs, putting unprecedented pressure on Taiwan's operators On the technical level, they also face numerous challenges Compatibility issues between new and old equipment often put them in a bind, encountering various technical obstacles when trying to integrate different systems Lack of precise data analysis and forecasting capabilities also makes it difficult for them to make production decisions and accurately determine the best growth conditions for each crop Existing monitoring systems provide data that is often disorganized, difficult to interpret and apply Human resource challenges are also severe, with young people generally lacking interest in agricultural work, making it difficult for them to recruit employees with modern agricultural skills Even existing employees often feel exhausted from tedious manual operations and monitoring tasks These problems are intertwined, creating a complex dilemma that leaves plant factory operators confused and anxious They urgently need a comprehensive solution that can enhance factory operational efficiency, reduce costs, and improve product competitiveness, helping them overcome difficulties and regain their footing in the fierce market competition In facing the various challenges of plant factory operators, Taiwan's HaiBoTe company has demonstrated exceptional technical innovation and a flexible customer-oriented development strategy They deeply understand that the solution must be able to seamlessly integrate existing equipment while providing highly intelligent management functions To this end, HaiBoTe's RD team adopted a modular design approach to develop a system that can be flexibly configuredIoTIoT system The core of this system is a smart control hub that can communicate with various sensors and actuators During development, HaiBoTe worked closely with customers, deeply understanding their specific needs and operational environments They even dispatched engineers onsite to observe the daily operations of the plant factories, ensuring that the developed system actually solves practical problems This in-depth cooperation not only helped HaiBoTe optimize their product design but also established a close relationship with customers, laying the foundation for subsequent continuous improvements HaiBoTe's innovation is not just reflected in hardware design but also in their developed intelligent software system This system integrates advanced machine learning algorithms, capable of precise forecasts and optimal control of plant growth conditions based on large amounts of historical data and real-time monitoring information To help customers overcome technical barriers, HaiBoTe designed an intuitive and easy-to-use user interface, which even non-technical operators can master easily Additionally, they provide comprehensive training and tech support services, ensuring customers can fully utilize all functions of the system When facing challenges, HaiBoTe's technical team can quickly identify problems through remote diagnostics and provide solutions In one incident, during a serious equipment failure emergency faced by a customer, HaiBoTe's engineers guided the customer through system remote access, successfully instructing them on repairs and avoiding potential massive losses This full-range service not only solves customers' immediate difficulties but also strengthens their confidence in intelligent management, driving the entire industry toward more efficient and sustainable development HaiBoTe's developed smart agriculture solution not only brought revolutionary changes to plant factories but also painted an encouraging picture for the future of the entire agricultural industry The excellence of this system is evident in several aspects firstly, it achieves precise control of the plant growth environment, significantly improving crop yield and quality stability Through advanced artificial intelligence algorithms, the system can forecast and adjust optimum growth conditions based on historical data and real-time monitoring information, ensuring each plant grows in the ideal environment Secondly, it significantly reduces energy consumption and operational costs, improving resource efficiency The intelligent management system optimizes water, electricity, and nutrient supply, reducing waste and lowering manpower costs Additionally, the system's modular design and strong compatibility allow it to seamlessly integrate various new and old equipment, providing a flexible solution for gradual upgrades of plant factories Most importantly, the system injects a sense of technology and modernity into agricultural production, helping to attract the younger generation to the field and injecting new vitality into the industry Looking ahead, HaiBoTe's smart agriculture system has broad application prospects and expansion potential In addition to plant factories, this system can also be applied to traditional greenhouse cultivation, urban agriculture, and even home gardening In the field of aquaculture, similar technology can be used to monitor and optimize the breeding environments for fish or shrimp In the food processing industry, similar intelligent monitoring and forecasting systems can be used to optimize production processes and enhance food safety Even in the pharmaceutical industry, this type of precise environmental management system could be applied to drug research and production processes To further promote this system, HaiBoTe could adopt a multifaceted strategy Firstly, they could collaborate with agricultural colleges and research institutions to establish demonstration bases, allowing more people to experience the benefits of smart agriculture firsthand Secondly, they could develop customized solutions tailored to different scales and types of agricultural production, expanding the applicability of their products Furthermore, they could raise awareness and acceptance of smart agriculture within the industry by hosting forums, online seminars, and sharing success stories Lastly, they could explore collaborations with government departments to integrate this system into policies supporting the modernization and sustainable development of agriculture, thereby promoting the widespread adoption of smart agriculture on a larger scale Through these efforts, HaiBoTe not only can expand its market share but also make a significant contribution to the sustainable development of global agriculture, truly realizing the vision of technology empowering agriculture 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-09」

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
Hamastar Technology Builds an AI Model Management Platform to Accelerate the Application of AI

Riding the AI hype train, financial service providers are using their solid foundation in the industry to not only transform themselves, but also assist their customers with transformation Hamastar Technology, which has been established for over two decades, has been developing AI technology and assisting industry customers with the implementation of AI in recent years Hamastar Technology believes that to implement a complete AI project, in addition to AI theoretical knowledge, data analysis, and model training capabilities, it is also necessary to develop APIs for data, establish databases, develop front-end RWD web pages, and even consider layout design and user experience based on customer needs These tasks create technical barriers for AI startups Even from the perspective of companies that have reached a certain scale, it is hard to accumulate technical experience and accelerate business growth due repeatedly investing manpower developing similar functions in each project Institutional customers still require high level of customization for AI Using the requirements of government Agency A implemented by Hamastar Technology as an example, users must control false information from specific channels The platform needs to provide data ingestion functions for training models and predictions, and can complete natural language processing NLP text classification model training and use When the model discovers false information, it needs to immediately notify responsible personnel through messaging software The need of Agency B is to use an AI model to automatically classify petitions and immediately provide information on past cases as reference for the petitioner or officer Although the project models are similar data ingestion, model prediction, warning notification, the required functions still need to be separately developed for individual projects, and existing programs and models cannot be reused to speed up the implementation of subsequent projects After in-depth discussion, Hamastar Technology found that pain points of enterprises implementing AI projects include high implementation costs and lengthy project schedules It is difficult for a single enterprise to simultaneously have data scientists, analysts, engineers, and designers Current projects are all focused on solving the needs of specific fields, and it is difficult to reuse the AI models in other fields of application At the same time, the tools are concentrated in AI projects and cannot provide customers with total solutions In other words, due to the "limited manpower," "restricted fields," and "insufficient tools" of AI service providers, the implementation of AI technology projects requires high costs or lengthy timelines These are common problems that companies urgently need to solve Therefore, if there is an AI model application service management platform, it will be able to solve the above difficulties and not only reduce costs, but also accelerate project implementation and provide customers with one-stop solutions AI model application service management platform assists in quickly completing projects Therefore, with the support of the AI project of the Industrial Development Bureau, Ministry of Economic Affairs, Hamastar Technology carried out the "AI Model Application Service Management Platform AISP RampD Project" and engaged in the RampD of AISP products The purpose is for AI service providers to complete the AI projects with twice the result using only half the effort The AISP provides one-stop AI solutions AI service providers can quickly assemble required functions, such as data API, model management, and model prediction result monitoring subscription through existing module functions of the AISP It also provides commonly used graphical tools to help companies quickly design interactive charts or dashboards required by users, effectively reducing the labor costs required to execute projects, shortening the solution POC or implementation time, and accelerating the implementation and diffusion of industry AI In terms of product business model, in the short term, the company will extensively invite IT service providers with expertise in the field of AI to work together, and use platform services to solve the AI implementation problems faced by requesting units in various field, gradually building trust in the platform brand In the mid-term, the company hopes to gradually expand the market based on its past success, and form strategic alliances with multiple IT service providers to solve more and wider problems in specialized fields and provide more solutions for units to choose from The platform combines field experts to jointly expand overseas markets In the long term, after establishing AI strategic alliances in various specialized fields, the platform will have a large number of AI solution experts for specialized fields After accumulating a large amount of successful project experience, Hamastar Technology hopes that the AISP will be able to work with experts companies to expand into the international market Harmastar Technology Co, Ltd was formed in 2000 by recruiting numerous senior professional managers and technical experts in related fields It is committed to software technology RampD and services, and aims to develop into an international software company, actively creating opportunities for international cooperation in the industry Under the excellent leadership of its first president, the company has rapidly grown into a major software company in Taiwan

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
Even the United Nations is on board! Yoyo Data Application captures global business opportunities with agricultural data

Nearly 2,000 days in the fields have made Yoyo Data Application a top player in Taiwan’s agricultural data sector Their comprehensive grasp of crop yields, production periods, and prices has enabled them to collaborate with the United Nations The service area for agricultural land skyrocketed from 24 hectares to over 6,000 hectares in less than three years—a 250-fold increase For Wu Junxiao, founder and CEO of Yoyo Data Application, aligning with global environmental trends and becoming a data company at the intersection of climate technology and the green economy to serve the global market is his ultimate entrepreneurial goal Wu Junxiao, originally an engineer, joined the Industrial Technology Research Institute in 2010, where he honed his profound technical and data science analytic skills 'At that time, I was working in data analysis engineering, and almost all data-related materials would be directed to me Additionally, I worked on indoor cultivation boxes, planting vegetables and mushrooms, hence planting the seed of entrepreneurship by integrating agriculture with data analysis,' Wu recalls Since 2016, Wu Junxiao has been frequently visiting farms to 'embed' himself among farmers and agricultural researchers, chatting and sharing information systematically, which quickly established his agricultural know-how Solid data analysis capabilities have even convinced the United Nations In 2017, he left the Institute to start his own business and founded Yoyo Data Application in 2019 Today, many agricultural businesses are his clients, with service areas rapidly climbing from 24 hectares to over 6,000 hectares, expected to surpass 7,000 hectares in 2022 His clientele includes markets in Japan, Central America, and even entities under the United Nations like the World Farmers Organization, which utilizes the 'Yoyo Crop Algorithm System' supported by Yoyo Data How exactly does Yoyo Data Application manage to impress even UN agencies The 'Yoyo Crop Algorithm System' developed by Yoyo Data Application accurately predicts the production period, yield, and prices Firstly, due to Wu Junxiao's precise mastery over agricultural data, Yoyo Data Application's clients don't necessarily need sensors or other hardware devices 'Sensors are expensive and if you buy cheap devices, you just collect a lot of noise or flawed data, which is useless,' Wu explains He continues, 'Collecting data doesn't necessarily require sensors our data solutions can solve problems more directly and effectively' For instance, one of Yoyo Data Application's products, the Yoyo Money Report Agri-price Linebot, developed in collaboration with LINE in 2020, gathers data on origin, wholesale, and terminal prices spanning over 10 years, driven by Yoyo Data’s proprietary AI algorithms This enables the system to autonomously learn about agricultural product trading prices, using big data and AI to perform price prediction analysis, thereby helping buyers reduce transaction risks and expanding the data application to the entire agricultural supply chain Regarding banana prices, the accuracy of price predictions increased from the original 70 to 998 Wu Junxiao notes that both buyers and farmers are very sensitive to prices Now, through the Yoyo Money Report service, both buyers and farmers can precisely understand the fluctuations in agricultural product prices Yoyo Data can also provide customers with optimal decision-making advice based on predictive models for crop growth, yield, and price estimations Currently, price predictions cover 28 types of crops Precise estimates of production periods and price fluctuations allow Yoyo Data to provide differentiated services based on data analysis The 'Yoyo Crop Algorithm System' provided by Yoyo Data Application incorporates a 'Parameter Bank', usually collecting 200-300 parameters, not just straightforward data like temperature and humidity, but also data divided according to the physiological characteristics of the crops Through effective dynamic data algorithms, it can accurately calculate when crops will flower and when they can be harvested, what the yield will be, and so forth For instance, the prediction accuracy of the broccoli production period is 0-4 days, with the flowering period predicted this year to be precisely 0 days, perfectly matching the actual flowering time in the field In these dynamic calculations, a 7-day range is considered reasonable, and the average error value of Yoyo Data's predictions typically ranges from 2-4 days, with most crop production period accuracies above 80 Through effective dynamic data algorithms, over 120 global crops can have their production periods and yields accurately estimated Using these effective dynamic data algorithms can set estimates for production quantities, helping adjust at the production end Yoyo Data Application's clientele primarily includes exporters of fruit crops like pineapples, bananas, guavas, mangos, pomelos, sugar apples, Taiwan's agricultural production is highly homogenized, often leading to a rush to plant the same crops and resulting in price crashes Yoyo Data Application helps clients differentiate their offerings Thus, Wu Junxiao positions his company as a boutique digital consultant, carefully selecting clients for quality over quantity He notes that Taiwanese agricultural clients focus on how to improve yield rates, even categorizing yield rates by quality, aiming for high-quality, specialized export markets whereas international clients prioritize maximizing per-unit yields, showing different operational approaches in domestic and international markets In addition to agricultural fruit, Yoyo Data Application has also extended its services to the fisheries sector, including species like milkfish, sea bass, and white shrimp, all using the same system to establish various parameters related to the growth of fish and shrimp, such as when to feed and when to harvest, and the anticipated yield, timing, and prices Yoyo Data Application harnesses the power of data to create miracles in smart agriculture In response to the company's rapid development, Yoyo Data Application introduced venture capital funds in 2021 to expand its staff and promote its business Wu Junxiao states that in response to the global trend towards net zero carbon emissions by 2050, he plans to help clients plant carbon in the soil, effectively retaining carbon in the land while also connecting clients to carbon trading platforms, creating environmental business opportunities together Wu Junxiao says that from the start of his entrepreneurial journey, he positioned the company as a global entity, thus continuous international collaborations are planned As a data company serving a global clientele and focused on climate technology and the green economy, this represents Wu’s expectations for himself and his company's long-term goals Yoyo Data Application founder and CEO Wu Junxiao「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」