:::

【2020 Application Example】 Automatic fruit screening system: A solution that uses neural networks, AI, and automation to improve fruit screening efficiency by 10 times, increase output value by NT$1.7 billion, and significantly improve quality with 93% accuracy

Taiwan is located in the subtropics and has a diverse geographic environment that is very suitable for growing fruit. Bananas and pineapples were once extremely popular export commodities that we are proud of. However, farmers in consuming countries gradually obtained the excellent seeds of Taiwan’s fruits, and were able to grow the same quality fruit but at a more affordable price, causing our fruit exports to face a major crisis! At present, although Taiwan's fruits such as mango and guava still have certain competitive advantages, if they fail to make further progress compared with other countries, they will still encounter the same problem over time and cannot be ignored! Fruit quality and brand value are the only ways for Taiwan's fruit industry to remain competitive internationally.

Fruit screening is the main link in fruit production and marketing that determines quality. Currently, the industry is highly dependent on aging rural manpower, resulting in rising fruit screening costs due to labor shortage and making it extremely difficult to maintain stable yield. Therefore, the automation of fruit screening work has become a very important and urgent issue. Professor Chi-Chun Lee at the Department of Electrical Engineering of National Tsing Hua University led a team to develop an automatic fruit screening system that combines cameras, conveyor belts, and AI. The system currently has an accuracy reaching 93%. One production season can increase the output value of mango by NT$1.7 billion. With the gradual development of the AI system, the accuracy is expected to improve in the future, and the same system can also be applied to other fruits, further promoting traceable fruit and driving the technological upgrading of Taiwan's fruit industry.

Fruit screening relies heavily on scarce manpower, and the aging of the rural population makes the situation even worse

Professor Chi-Chun Lee learned about the fruit industry’s dilemma from his classmate Yu (alias), who had studied together in the United States. Yu is the young second-generation successor of one of Taiwan's largest fruit import and export companies. According to Yu's observations in the industry over numerous years, Taiwan's fruit production and export usually generated good profits at first, but after fruit farmers in the consuming countries obtained the seeds, they will often attempt to grow the fruit locally to reduce costs and obtain greater profits. If Taiwanese fruits cannot surpass the products of fruit farmers in consuming countries in terms of quality or brand value, they will be eliminated because competitors' costs are indeed lower.

Fruit screening is used to divide fruits according to quality. If they cannot pass the minimum specification, they will be discarded as waste products. In practice, the work of screening fruits will be carried out by farmers' goods yards and distributor' packaging yards respectively. However, if it is not properly handled by the collection freight yards and the packaging yards do not do a good job in sampling in the early stage, it will result in a loss for distributors and cause 30% of A/A+ grade fruits to be eliminated.

This job relies heavily on experienced fruit screeners. More experienced fruit screeners can not only control the quality and reduce the chance of fruit damage in the fruit screening process, but also have the ability to pick out about 10% more A+ grade fruits, which adds great value. What worries the industry is that experienced fruit screeners are gradually decreasing due to the aging population in rural areas, making them a very rare resource. Such rare human resources are often in high demand during busy farming periods. Farmers or distributors who fail to hire experienced fruit screeners have to settle for less experienced one, taking on the risk of additional losses and paying greater costs. The most unfortunate situation suffering a loss of 30% mentioned above.

▲ Fruit screening is an important process in the later stages of fruit production when packaging and selling. Failure to properly control quality will result in huge losses.

AI is very suitable for assisting in fruit screening, but it is difficult to obtain data sets

After understanding Yu's difficulties, Professor Lee found that this was a problem that could be solved using AI - although fruit screening relies heavily on experienced fruit screeners, it is a highly repetitive task. Handling repetitive tasks with a large amount of data has always been a strength of AI.

However, the first problem appeared even before research and development work started: Which fruit do we start with?

First of all, a suitable fruit must reach a certain export volume, and the fruit must still have considerable room for growth. For some fruits that lack international competitiveness, such as bananas and pineapples, companies no longer have the ability to invest more funds to purchase equipment, let alone sponsor R&D or assist the R&D team in experiments.

When you have an idea, you need to pick up the pace and put it into practice as soon as possible! Therefore, Irwin mango, which still has a certain advantage in terms of scale, was selected as the first experimental subject of the automatic fruit screening system.

The first step after harvesting mangoes is to screen the fruits for the first time at the goods yard. After the fruits are screened, they are sent to the packaging yard for fumigation and disinfection, and preparation for sale or loaded into containers for export. However, exporters with a deeper understanding of the target market will have stricter quality requirements and will often screen the fruit again to ensure the quality of the fruit before fumigation at the packaging site. Since employees at the goods yard are paid based on the number of mangoes screened rather than on the quality of the mangoes, they focus on quantity when working. As a result, to ensure the quality of the selected fruits, the subsequent packaging factory has to screen the fruit again, increasing labor. The solution seems simple and clear - A camera, machine conveyor belts for grading and sorting, and an AI that can distinguish the quality of mangoes from their appearance are all that are needed to achieve automatic fruit screening. However, the hard part is how can AI distinguish the quality of mangoes? That’s right, you must start by establishing a training data set! In order to create the data set, Professor Lee's team established a website that allows anyone to upload photos of mangoes and rate them. Once the data sets are refined, they can be used to train AI.

▲ The fruit screening machine developed by Professor Lee's team uses AI image recognition to select the best looking mangoes.

The accuracy of the trained AI reaches 93%, which can increase the output value by NT$1.7 billion in one season.

In 2019, the assistance of the Industrial Development Bureau (now the Industrial Development Administration of the Ministry of Economic Affairs) and AI HUB accelerated the verification of the technology.

Professor Lee's team accumulated 100,000 entries of data during the 2-month empirical period, and the accuracy of the trained AI reached 93%! This is far higher than the manual screening accuracy of 70%, resulting in a clear difference in quality. In terms of export value, the output value of mango is expected to be increased by NT$1.7 billion in one season! It can also reduce labor costs by NT$1.866 million and avoid the seasonal labor shortage problem mentioned above.

In addition, since it is no longer necessary to screen the fruit once at the goods yard and packaging yard each, it also reduces losses caused by human error in the fruit screening process. When the technology becomes more mature, the same system can be applied to other fruits exported by Taiwan, such as wax apple and guava, in the future, taking Taiwan's fruit industry to the next level.

Since it is AI, accuracy can be improved through continuous training, and continuous adjustment of algorithms and cooperation with equipment manufacturers can significantly improve production capacity. In addition, Professor Lee is also organizing the AI Cup competition with the sponsorship of manufacturers and the government, allowing more teams to use the same data set to continue to develop the algorithm, in hopes of facilitating further cooperation with companies that are interested.

Irwin mango grade identification system on AI HUB

Professor Lee's team hopes to use the power of AI to achieve complete traceability of fruits from production to packaging and transportation, thereby increasing the brand value of Taiwan's fruits! Besides hoping to allow Taiwan's fruits to seize a place in the fiercely competitive foreign markets, with high-quality supply, Taiwan's fruits can also shine internationally and become the pride of Taiwan.

▲ Taiwan's fruits still have certain competitive advantages in the international market, but they also face competitive pressure from fruit farmers in consuming countries as they are exported.


▲ Easily save NT$1.866 million per mango season and significantly improve quality.

 

 

 

 

 

 

Recommend Cases

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI Can Make Coffee! Autonomous Coffee Roasters Relying on AI for Precise Location Setting and Cultivating Loyal Customers

Have you had your morning coffee yet Over the past decade, Taiwan has gradually formed a coffee drinking culture With the advancement of AI technology, autonomous coffee roasters can now rely on AI for precise location setting while also cultivating a loyal customer base Let's see how this is done According to the International Coffee Organization ICO, Taiwanese consume approximately 285 billion cups of coffee annually, with the coffee market in Taiwan estimated at 80 billion TWD, growing about 20 each year In recent years, the 'drinking coffee' culture in Taiwan has become synonymous with popularity, with coffee being the most frequently chosen daily beverage by 65 of the population Coffee enthusiasts, particularly the more avid ones, are willing to pay more for coffee beans that suit their tastes An increasing number of unmanned drink kiosks have also begun to appear in the Taiwanese beverage market Unmanned coffee beverage shops face difficulties in expanding quickly, primarily due to two major issues one is the appropriateness of customer flow and machine placement locations which still rely on manual analysis the second is penetrating the market of mid to high-end coffee lovers accurately AI resolves two major challenges for autonomous coffee roasters suitable placement and cultivating a loyal customer base To tackle these issues and help autonomous coffee roasters quickly break into the market, Raysharp Electronics intends to implement AI for people flow counting analysis and unfamiliar face recognition These technologies aim to calculate the crowd size at potential roaster locations and classify consumers by gender and age for more precise market analysis They also provide multiple choices for the roasting of raw coffee beans, offering a more customized service tailored to the needs and tastes of professional coffee aficionados with a pack of 'high-quality roasted beans' Since 2018, the rise of unmanned stores has been mainly due to owners wanting to reduce persistently rising rent and personnel costs However, the initial assessment of store locations still requires hourly labor expenses for manual estimation of customer flow, leading to possible miscalculations of both on-site consumers and passerby traffic These inaccuracies may prevent precise real-time analysis of customer flow, or even misguided estimations of operational efficacy after a trial run, thus missing the optimal timing for loss-preventing location retraction Raysharp Electronics introduces autonomous coffee roasters equipped with AI-based people counting analysis and facial recognition Raysharp Electronics combines AI people counting analysis and facial recognition with the coffee trend known as 'black gold', addressing the preferences of numerous coffee connoisseurs in Taiwan who enjoy personally selecting coffee beans at bulk stores and frequenting high-quality grinding cafes or chain coffee shops A new concept for the first autonomous coffee roaster offering choices based on the origin, variety, and roasting methods of coffee beans has emerged AI coffee roasters enhance customer loyalty and materials management efficiency by 20 For the advanced development of autonomous coffee roasters, Raysharp Electronics engineers have equipped the AI NVIDIA development platform on the basis of TCNNFacenet Through AI, tens of thousands of images related to gender and age are used for sample training, allowing even first-time coffee roasting customers to be easily classified using unfamiliar face recognition This gains consumer trust, enhances willingness to use, and allows for recording purchase information and future product recommendations, leading to consumer purchase behavior analysis This information helps owners tailor future material preparation based on consumer preferences for different coffee beans, reducing raw material transportation and storage issues, and improving material management efficiency by 20 Moreover, by placing these autonomous coffee roasters in high-traffic areas, owners can use cameras to capture the crowd and assess whether the machine location has an adequate customer base, quickly analyzing whether to reposition the machines, and more easily targeting the best locations for middle and high-end coffee lovers The unmanned coffee roaster features a professional roasting mode interface, providing options based on the origin and variety of coffee beans, their roasting methods light, medium, deep, and related temperature, wind speed, and timing settings If improvement needs arise during the process, engineers can adjust firmware parameters and also assist in integration with the owner's ordering system Staff members briefly describe the operation of the autonomous coffee roaster 'Black Gold' penetrates deeper into coffee shops, science parks, and commercial buildings through AI This autonomous coffee roaster targets coffee connoisseurs and can be placed in middle to high-end coffee shops to roast more customized coffee beans than those available in bulk stores Upon completing a batch of coffee beans, it immediately provides them to professional technicians within the coffee shops for grinding and manual brewing The remaining roasted beans can also be taken home for brewing and enjoyment It also adds value to coffee shops by better understanding consumer preferences for coffee beans and launching more customer-attracting drink promotions and appropriate inventory management In addition to coffee shops, the autonomous coffee roaster can also utilize AI-based people counting analysis to precisely set up near scientific parks and commercial buildings, offering high-quality coffee beans for office brewing to internal employees with high coffee consumption needs Furthermore, implementing a physical membership system can initiate coffee bean purchase promotions or periodic payment incentives, thus attracting new clients and cultivating existing customer loyalty and retention The operation interface of the smart autonomous coffee roaster「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
Advancing to Smart Logistics 5.0: Hsinchu Logistics Delivers Medical Materials with Ultra-High Efficiency

After incorporating AI technology, traditional logistics companies have seen significant improvements in transportation efficiency and reductions in transportation costs, especially in the transfer of medical materials which involves timely service and rights of hospitals and patients The implementation of intelligent logistics can save medical material businesses the cost of constructing GDP warehouses and other expenses up to millions A major domestic logistics leader, Hsinchu Transport HCT, owns a fleet of 3,500 vehicles and a storage area of 60,000 square meters, providing customized logistics solutions including logistics, commerce, finance, information, distribution, storage, and processing The company handles up to 580,000 parcels per day, with a maximum capacity reaching 900,000 parcels, making the enhancement of transshipment efficiency crucial for HCT Medical materials transportation at hospitals need optimization of current operational processes and enhancements in systematization and intelligence Especially the transportation of hospital medical materials, which encounters various challenges Medical materials suppliers need to cater to varying customer product demands, temperature requirements, and delivery times through multiple logistics providers This highly depends on the experience and careful control of operations staff Whether it is the product shipment or actual logistics process, each step must be interconnected Any human errors can impact the service timing and rights of the hospitals and patients Thus, all concerned businesses, along with the government and hospitals, are working to optimize current operational processes and elevate the level of systematization, automation, and intelligence to minimize service errors and cost losses HCT's distribution process prior to AI implementation Currently, with the government's push for standardized platform operations on the demand side of hospitals, supply-side businesses collaborate through data coordination to improve the accuracy and efficiency of product shipments, enhancing operational quality and management benefits at the demand side At the same time, some businesses are also investing in the standardization and systematization of internal operational processes, thus enhancing operational efficiency and quality In the freight logistics sector, logistics companies' warehouse staff need to expend labor to control different logistics shipment operations If they often receive emergency task notifications for shipments to medical facilities, they usually depend on small regional logistics providers to provide customized delivery services Although this improves delivery times, it does not allow for integrated informational services The new GDP regulations for medical materials require suppliers to undergo GDP compliance certification Therefore, Hsinchu Transport, assisted by the Ministry of Economic Affairs' AI coaching program, not only extends existing logistics services compliant with GDP regulations but will also use data integration and optimized AI technologies to help medical material businesses streamline and improve their logistics operations Complex logistics issues are solved using the Simulated Annealing SA algorithm To meet the 'Good Distribution Practices for Medical Devices,' Hsinchu Transport is not only actively introducing new logistics vehicles but will also implement artificial intelligence-based mathematical optimization technologies to assist in intelligent scheduling at nationwide business points and transshipment stations They aim to optimize the routing of medical materials between business points or regions thereby enhancing efficiency in the distribution process Currently, during the transshipment process of medical materials at Hsinchu Transport, detachable tractor heads and containers are used Each business point and transshipment station differ in location design and staffing, impacting the throughput per unit of time Furthermore, daily cargo conditions size, destination vary, and due to these fluctuating and distinct demands, the deployment of tractor heads and containers changes accordingly Under these circumstances, Hsinchu Transport relies on past experiences to schedule departures at each satellite depot and adjusts daily according to the cargo needs Due to the reliance on empirical scheduling, it is often difficult to consider all variables and considerations, leaving room for improvement in the current departure schedules The cargo delivery planning inherently constitutes an NP-Hard problem, difficult to solve with traditional analytical methods Hsinchu Transport, in collaboration with Singular Infinity, utilizes the Simulated Annealing SA algorithm to find solutions The new logistic service introduced by Hsinchu Transport is 'GDP Container Shift Planning' This planning involves estimating future volumes of medical materials between stations and scheduling container truck shifts accordingly, ensuring timely and quality delivery of medical materials while maximizing operational benefits and reducing travel distances Hsinchu Transport introduces AI-optimized shift planning, constructing the most efficient route from its origin to destination Hsinchu Transport introduces 'Optimized Shift Planning' service, reducing transportation costs by 5 The introduction method involves using cloud software services Hsinchu Transport regularly inputs 'Interchange Item Tables' from station to station into the 'Optimized Shift Planning' service After setting the algorithm parameters, a GDP container shift schedule is generated At the same time, developing a Hsinchu Transport medical material scheduling system allows Hsinchu Transport's medical transport units to compile suitable schedules through the Interchange Item Tables Under the same level of service, it's estimated that this can reduce transportation costs by 5, saving medical material businesses millions in construction costs for GDP warehouses and distribution Due to its requirements for sanitation, temperature, and its fragility, the transportation and transshipment of medical materials should be minimized to reduce exposure and risk However, logistics efficiency and costs must still be considered AI designs the most efficient route for each cargo from its origin to destination, effectively completing daily transportation tasks In response to the future high development demand of industrial logistics, distribution and transshipment AI optimization will be a key issue Through this project, a dedicated project promotion organization will be established, staffed with AI technology, IT, and process domain talents After accumulating implementation experience, the application of AI will gradually expand, comprehensively optimizing and transforming Hsinchu Transport's operational system, and partnering with AIOT and various AI domain partners to accelerate and expand the achievement of benefits「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」