:::

【2020 Application Example】 Automatic fruit screening system: A solution that uses neural networks, AI, and automation to improve fruit screening efficiency by 10 times, increase output value by NT$1.7 billion, and significantly improve quality with 93% accuracy

Taiwan is located in the subtropics and has a diverse geographic environment that is very suitable for growing fruit. Bananas and pineapples were once extremely popular export commodities that we are proud of. However, farmers in consuming countries gradually obtained the excellent seeds of Taiwan’s fruits, and were able to grow the same quality fruit but at a more affordable price, causing our fruit exports to face a major crisis! At present, although Taiwan's fruits such as mango and guava still have certain competitive advantages, if they fail to make further progress compared with other countries, they will still encounter the same problem over time and cannot be ignored! Fruit quality and brand value are the only ways for Taiwan's fruit industry to remain competitive internationally.

Fruit screening is the main link in fruit production and marketing that determines quality. Currently, the industry is highly dependent on aging rural manpower, resulting in rising fruit screening costs due to labor shortage and making it extremely difficult to maintain stable yield. Therefore, the automation of fruit screening work has become a very important and urgent issue. Professor Chi-Chun Lee at the Department of Electrical Engineering of National Tsing Hua University led a team to develop an automatic fruit screening system that combines cameras, conveyor belts, and AI. The system currently has an accuracy reaching 93%. One production season can increase the output value of mango by NT$1.7 billion. With the gradual development of the AI system, the accuracy is expected to improve in the future, and the same system can also be applied to other fruits, further promoting traceable fruit and driving the technological upgrading of Taiwan's fruit industry.

Fruit screening relies heavily on scarce manpower, and the aging of the rural population makes the situation even worse

Professor Chi-Chun Lee learned about the fruit industry’s dilemma from his classmate Yu (alias), who had studied together in the United States. Yu is the young second-generation successor of one of Taiwan's largest fruit import and export companies. According to Yu's observations in the industry over numerous years, Taiwan's fruit production and export usually generated good profits at first, but after fruit farmers in the consuming countries obtained the seeds, they will often attempt to grow the fruit locally to reduce costs and obtain greater profits. If Taiwanese fruits cannot surpass the products of fruit farmers in consuming countries in terms of quality or brand value, they will be eliminated because competitors' costs are indeed lower.

Fruit screening is used to divide fruits according to quality. If they cannot pass the minimum specification, they will be discarded as waste products. In practice, the work of screening fruits will be carried out by farmers' goods yards and distributor' packaging yards respectively. However, if it is not properly handled by the collection freight yards and the packaging yards do not do a good job in sampling in the early stage, it will result in a loss for distributors and cause 30% of A/A+ grade fruits to be eliminated.

This job relies heavily on experienced fruit screeners. More experienced fruit screeners can not only control the quality and reduce the chance of fruit damage in the fruit screening process, but also have the ability to pick out about 10% more A+ grade fruits, which adds great value. What worries the industry is that experienced fruit screeners are gradually decreasing due to the aging population in rural areas, making them a very rare resource. Such rare human resources are often in high demand during busy farming periods. Farmers or distributors who fail to hire experienced fruit screeners have to settle for less experienced one, taking on the risk of additional losses and paying greater costs. The most unfortunate situation suffering a loss of 30% mentioned above.

▲ Fruit screening is an important process in the later stages of fruit production when packaging and selling. Failure to properly control quality will result in huge losses.

AI is very suitable for assisting in fruit screening, but it is difficult to obtain data sets

After understanding Yu's difficulties, Professor Lee found that this was a problem that could be solved using AI - although fruit screening relies heavily on experienced fruit screeners, it is a highly repetitive task. Handling repetitive tasks with a large amount of data has always been a strength of AI.

However, the first problem appeared even before research and development work started: Which fruit do we start with?

First of all, a suitable fruit must reach a certain export volume, and the fruit must still have considerable room for growth. For some fruits that lack international competitiveness, such as bananas and pineapples, companies no longer have the ability to invest more funds to purchase equipment, let alone sponsor R&D or assist the R&D team in experiments.

When you have an idea, you need to pick up the pace and put it into practice as soon as possible! Therefore, Irwin mango, which still has a certain advantage in terms of scale, was selected as the first experimental subject of the automatic fruit screening system.

The first step after harvesting mangoes is to screen the fruits for the first time at the goods yard. After the fruits are screened, they are sent to the packaging yard for fumigation and disinfection, and preparation for sale or loaded into containers for export. However, exporters with a deeper understanding of the target market will have stricter quality requirements and will often screen the fruit again to ensure the quality of the fruit before fumigation at the packaging site. Since employees at the goods yard are paid based on the number of mangoes screened rather than on the quality of the mangoes, they focus on quantity when working. As a result, to ensure the quality of the selected fruits, the subsequent packaging factory has to screen the fruit again, increasing labor. The solution seems simple and clear - A camera, machine conveyor belts for grading and sorting, and an AI that can distinguish the quality of mangoes from their appearance are all that are needed to achieve automatic fruit screening. However, the hard part is how can AI distinguish the quality of mangoes? That’s right, you must start by establishing a training data set! In order to create the data set, Professor Lee's team established a website that allows anyone to upload photos of mangoes and rate them. Once the data sets are refined, they can be used to train AI.

▲ The fruit screening machine developed by Professor Lee's team uses AI image recognition to select the best looking mangoes.

The accuracy of the trained AI reaches 93%, which can increase the output value by NT$1.7 billion in one season.

In 2019, the assistance of the Industrial Development Bureau (now the Industrial Development Administration of the Ministry of Economic Affairs) and AI HUB accelerated the verification of the technology.

Professor Lee's team accumulated 100,000 entries of data during the 2-month empirical period, and the accuracy of the trained AI reached 93%! This is far higher than the manual screening accuracy of 70%, resulting in a clear difference in quality. In terms of export value, the output value of mango is expected to be increased by NT$1.7 billion in one season! It can also reduce labor costs by NT$1.866 million and avoid the seasonal labor shortage problem mentioned above.

In addition, since it is no longer necessary to screen the fruit once at the goods yard and packaging yard each, it also reduces losses caused by human error in the fruit screening process. When the technology becomes more mature, the same system can be applied to other fruits exported by Taiwan, such as wax apple and guava, in the future, taking Taiwan's fruit industry to the next level.

Since it is AI, accuracy can be improved through continuous training, and continuous adjustment of algorithms and cooperation with equipment manufacturers can significantly improve production capacity. In addition, Professor Lee is also organizing the AI Cup competition with the sponsorship of manufacturers and the government, allowing more teams to use the same data set to continue to develop the algorithm, in hopes of facilitating further cooperation with companies that are interested.

Irwin mango grade identification system on AI HUB

Professor Lee's team hopes to use the power of AI to achieve complete traceability of fruits from production to packaging and transportation, thereby increasing the brand value of Taiwan's fruits! Besides hoping to allow Taiwan's fruits to seize a place in the fiercely competitive foreign markets, with high-quality supply, Taiwan's fruits can also shine internationally and become the pride of Taiwan.

▲ Taiwan's fruits still have certain competitive advantages in the international market, but they also face competitive pressure from fruit farmers in consuming countries as they are exported.


▲ Easily save NT$1.866 million per mango season and significantly improve quality.

 

 

 

 

 

 

Recommend Cases

這是一張圖片。 This is a picture.
CCTV Intelligent Video Search System

Search for a specific person, find someone with a suitcase entering the factory in Gao'an area Color features of the person and the object confirmed, person in blue and black top, suitcase in black color, throughCCTV the intelligent video search system, by setting object and color retrieval conditions, it can successfully locate three video clips containing the target subject This greatly aids operational staff in finding the target items, and through this system, search speed can far surpass manual effort6fold Pain Points The CSE-Kaohsiung Plant is densely equippedCCTVto monitor every corner of the plant area, but when an incidenthappens, it's impossible within a limited time throughCCTVvideo playback to find the incident, the implications and risks behind this are self-evident Many areas that are usually unmanned can easily become security blind spots Thus, how to monitor a vast plant area more intelligently and effectively is one of the crucial aspects of building a smart plant for the semiconductor industry The AES Plant in Kaohsiung covers a vast area, with many important sites requiring monitoring of personnel movements to ensure corporate secrets and employee safety 1 Automated production lines and warehouses In semiconductor enterprises’ automated production lines and warehouses, oftenAGV(Automated Guided VehicleAGVs automated guided vehicles travel at high speeds if plant personnel inadvertently enterAGVthe moving area and cannot issue a warning to the person, then the regrettable accidents that occur will be too late to reverse 2 Material and product storage areas Materials used in semiconductor-related processes are costly if areas storing materials or products are breached, there is a risk of loss of high-value materialsproducts 3 High-security areas Trade secrets relate to the core technological competitiveness of semiconductor-related enterprises if someone breaches the high-security areas, there is a risk of corporate secrets being leaked The safety of trade secrets has always been one of the most critical issues for semiconductor enterprises 4 Loading docks At AESLButthe dock area often has loading vehicles coming and going if someone intrudes into the dock area, there is a risk of vehicle collisions and accidents Additionally, goods awaiting shipment at the dock area could be stolen or potentially damaged from collisions, thus causing significant reputation and financial losses for the company, further leading to production and shipping inconvenience When an abnormal event occurs, how to quickly search for the relevant key footage from massive data Many important locations within the AES Kaohsiung Plant need to be equippedCCTVfor safety checks, butCCTVWith thousands to tens of thousands of cameras, manually searching through footage for an event requires laborious frame-by-frame review which is time-consuming and inefficient In light of advancements in computer vision, it's beneficial to utilizeAIto replace manual playback and searching Problem Scenario Object Detection The data source for object detection comprises two parts Open-source datasetsOIDv4and AES Kaohsiung PlantCCTVImage files For these files, search for usable data, specificallyOIDv4image files For these files, extract the defined nine major categories of objects for training data among them, two object categories, knives and gasoline barrels, were not found inOIDv4found usable data for knives and gasoline barrels, while the remaining seven categories of objects are available fromOIDv4useful training data found for the remaining seven categories of objects, all marked Regarding the Kaohsiung PlantCCTVimage files, select some frames Frame of the footage, and manually annotate the objects to be_detected for training and testing data Nine Major Objects Color Recognition The data source for color recognition is divided into two partsInternet image screenshots, and Kaohsiung PlantCCTVimage files Currently, no publicly available open-source datasets specifically for color recognition applications have been found, so images are collected from the web Search the web for images of the defined nine major object categories, save the images after separating the objects from the background, keeping only the object sections, and mark the images according to color Additionally, for the Kaohsiung PlantCCTVimage files, use the already-markedbounding boxextractCCTVimage files from variousFramesections of objects identified by color, and finally, visually identifiable images are marked according to color Each object category has its specific color definition, depending on the usual colors seen in these objects in real life Dynamic Ignore during Training FromOIDv4during the training of the object detection pilot model, since each image in this dataset is only marked for a single category, but the image may contain other desired detection categories unmarked For such cases, dynamic ignore techniques will be employed during training to avoid confusion Next, use the extracted training data from the Kaohsiung Plant toFine-Tuneenhance the detection rate of the object in specific designated areas Finally, select the model that computes the lowest loss value in the test set during the training process as the main object_detection model Dynamic Ignoring AIHelp You View CCTV The intelligent video search system primarily serves as an assistive system for searching surveillance footage, capable of speeding up the process of finding target events by setting search conditions for objects By simply defining the search conditions, you can quickly produce thumbnails of critical objects and playback for review, shortening the time required for manual case retrieval of the past The search time is quickly6doubled, allowing the front-end security unit to use this platform to strengthen the first line of risk management supervision and take timely preventive measures 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

這是一張圖片。 This is a picture.
AI Assists the Red Cross for Smarter Emergency Response

More Preparation Less Loss The Taiwan Food Bank Association, a non-profit organization, collects donations daily from wholesalers, retailers, manufacturers, and even kind-hearted individuals across Taiwan They also rescue consumable materials that are about to be discarded, properly allocate and deliver to households in need, aiding local underprivileged populations When natural disasters such as earthquakes, landslides, mudslides, typhoons, floods, and droughts occur in Taiwan, the food bank's resources can be immediately deployed for disaster relief This field verification unit is the Nantou County Red Cross AssociationOne of the food bank locations, hereinafter referred to as the Nantou Red CrossIs responsible for tasks like pre-disaster supplies preparation and disaster relief material distribution, helping the government bear the responsibility of disaster relief and aid In Taiwan, various natural disasters have characteristics of different duration and spatial coverage, wide or narrow With the normalization of extreme weather, the scale and number of disasters are gradually increasing and becoming harder to predict The required amount and type of materials differ by disaster, and they must address the lifestyles of the affected areas, rescue needs, traffic conditions, geographical restrictions, and other factors for varied material allocation, facing numerous challenges Typhoon Kanu severely damaged transportation in Nantou mountain areas Nantou County Red Cross planned the mountainous route Puli gt Fazhi Elementary School gt Qin'ai Village gt Aowanda to deliver supplies Disasters happen repeatedly We need to be prepared at all times Effective disaster preparedness can mitigate the impact, including swift response to material needs in affected areas, aid distribution, and even psychological support, providing added security for life and property of those in disaster zones Lack of Timeliness in Disaster Information To improve the living conditions and address the lack of supplies in remote areas, the Taiwan Food Bank Association has partnered with the Nantou Red Cross and has successively established food bank points in Nantou City, Puli, and Ren'aiLixing, Ruiyan, XinyiWangmei, Tongfu, Shuili, Lugu and Caotun among others9establish food bank locations, providing supplies worth a certain amount per household every month6001000in New Taiwan Dollars However, many challenges still need to be overcome during natural disasters For example, when typhoons, earthquakes, and landslides occur, the information source for disaster relief dispatch systems relies on post-disaster reports The time lag between reporting, response, and execution prevents timely adjustment and distribution of 'disaster relief' supplies based on the needs of affected areas, affecting rescue efficiency due to lack of timely information The 'preparedness' supplies of the Nantou Red Crosssuch as dry food, water, instant noodles, etc,are recorded manually in terms of stock, expiration dates, and distribution,When a disaster occurs, there is a chance that 'preparedness' supplies have expired and cannot become 'disaster relief' supplies It’s also possible that both conditions mentioned above occur simultaneously, leading to a need for more time to reassign 'preparedness' supplies into usable 'disaster relief' materials On the other hand, upon receiving information about shortages in disaster areas, the supplies donated by the public often grossly differ from the actual needs of the disaster zone, leading to an excess of supplies The Process of Material Operations Before and After a Natural Disaster AIAnticipating Natural Disasters Reinforcing the Accuracy of Preparedness Material Dispatch Application API Technology connects to compute the state of the climate, the intensity of disaster rescues, prioritizing the main tasks of the Nantou Red Cross and the needed areas of search and rescue Coordinated with the existing heavy rain and typhoon simulation disaster training of the Nantou Red Cross, a 'Natural Disaster Emergency Preparedness Material Dispatch and Supplement Decision System' is establishedreferred to as the Emergency Preparedness Material System。 In material management, inventory data along with immediate supply data are entered into the Emergency Preparedness Material System for comparison and analysis, helping the Nantou Red Cross quickly recognize materials like cookiesdry food, beverages, frozen food, toilet paper, etc, and determining whether they should be 'preparedness' materials or regularly distributed materials Adding to this, information forecasting understands the potential disaster conditions in remote areas, facilitating food delivery, addressing both front-end food wastage and backend practical needs When a natural disaster occurs, it enables faster response and decision-making, completing material deployment, hence increasing the speed of material operation transition20。 AI Emergency Preparedness Material System Helps Rapidly Adapt Material Distribution Through the field verification of the Nantou Red CrossAIthe system, material management, and related applications are promoted to more emergency response organizations in different areas, while continuously improving the alert functions within the Emergency Preparedness Material System, strengthening the technological foundation for alerts, enhancing prediction accuracySystem immediacy, and optimizing the data collection and analysis process Simultaneously, it can collaborate with government agencies, meteorological departments, or other rescue teams to discuss integrating more data sources, establishing a mechanism to share resources and data promptly, sharing information in real-time, helping more emergency response organizations enhance their disaster response abilities, seizing the golden rescue time 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

這是一張圖片。 This is a picture.
Realizing the dream of unmanned stores, Magpie Life is building the future of the smartphone industry

"The DNA of Magpie Life is not limited to vending machines We believe that vending machines combine technology, access, and humanities to bring us exciting results" This is a sentence on the official website of Magpie Life Let the vending machines bring To live a pleasant life and build a considerate, technological and sustainable future for the smartphone industry is also the original intention of Magpie Life Founded in 2018, Magpie Life launched Taiwan’s first private-brand mobile payment scan code sensor 4 months after its establishment, completing the consumption experience through screen touch The Magpie U1 smart vending machine manages the POS system and gathers data in the background, allowing consumers to synchronize with the world's new retail pace and experience a new retail consumption experience of purchasing convenience, checkout security, visual entertainment, and improved logistics replenishment efficiency Traditional vending machines lack information visibility and AI technology assists in information transparencyThis time, the Magpie smart vending machine is also equipped with AI technology to provide adjustable shelf space , a vending machine equipped with an industrial computer and a large-size touch display screen to achieve the purpose of a store-less store Magpie Life stated that the biggest problem with traditional vending machines is the lack of information visibility To check inventory, replenishment personnel must physically inspect each machine, which is time-consuming and costly When a machine breaks down, it will generally be unable to operate for a long time Most failures go unreported and are not discovered until the next restocking crew arrives to replenish supplies Then you have to wait for a service technician to be scheduled, which can take weeks Traditional vending machines lack real-time interactivity When consumers encounter problems after inserting coins, manufacturers cannot handle them immediately In addition, traditional vending machines are less flexible and cannot adapt to changes in consumer preferences Traditional vending machines have shortcomings such as limited change shopping, single payment tools, limited number of products, and few choices Affected by the COVID-19 epidemic, consumption habits have shifted to contactless methods, causing the unmanned store market to heat up Generally, vending machines can only place relatively simple products such as drinks, food, etc The properties available for sale are limited The patented vending machine developed by Magpie can adjust the shelf space and is equipped with a lifting cargo elevator, which is suitable for various types of goods In addition, the machine is equipped with an industrial computer and a large-size touch display screen, which can meet the needs of advertising support at the same time It is expected to move towards a storeless store According to Magpie Life Observation, the consumer market trend in the past two years is that consumers demand convenient life, food consumption patterns value dining experiencesimple and fast, and are equipped with mobile phone-connected ordering models, and hot drinks and Fresh food delivery is the focus of two major trends The location, items sold, consumption methods and multiple payment methods are the focus of market growth for smart vending machines In terms of convenience, Taiwanese consumers still prefer to purchase vending machine food near stations, airports, schools, and businesses in business districts Various payment methods are also gaining more support from consumers, indicating that in the future, automatic Vending machines can be developed in two directions diversified items and diversified payment methods AI sales forecast technology integrates back-end management to achieve precise marketing purposesDue to the wide variety of products, it is difficult to know the performance of products under different factors such as season, market conditions , promotional activities, etc, it is easy to cause out-of-stock or over-inventory situations Magpie Life has specially developed "AI sales forecasting technology" and integrated it into the back-end management system, hoping to lock in customer purchasing preferences and intentions through data analysis In order to achieve the purpose of precise marketing, make accurate business decisions and effectively allocate limited resources The introduction of AI systems can achieve the three major goals of precise marketing, inventory management and supply chain management This system is a replenishment decision-making aid designed specifically for supply chain managers It uses AI to predict future sales demand, helping companies effectively optimize production capacity, inventory and distribution strategies Its overall system architecture includes1 Data exploratory analysis function Provides automatic value filling, automatic coding and automatic feature screening functions for missing values in the data 2 Modeling function 1 Provides model training functions for two types of prediction problems regression Regression and time series Time Series Forecast nbsp2 Supports Auto ML automatic modeling, and the best model is recommended by the system Integrated models can also be established to improve model accuracy nbsp3 Supports multiple algorithm types Random Forest, XGBoost, GBM and other algorithms nbsp4 Supports a variety of time series models exponential smoothing, ARIMA, ARIMAX, intermittent demand, dynamic multiple regression and other models nbsp5 Supports a variety of model evaluation indicators R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification and other indicators nbsp6 Supports automatic cutting of training data sets and Holdout verification data sets, and can manually adjust the ratio nbsp7 Supports automatic model ensemble learning Stacked Ensemble, balancing function learning Balancing Classes, and Early Stopping nbsp8 Supports the creation of multiple models at the same time The system will allocate resources according to modeling needs, so that modeling, prediction and other tasks have independent computing resources and do not affect each other In the overall server space With an upper limit, computing resources can be used efficiently nbsp9 It has in-memory computing function, which can use large-capacity and high-speed memory to perform calculations to avoid reading and writing a large number of files from the hard disk and improve computing performance 3 Data concatenation function Using API grafting and complete data concatenation automation, there is no need to manually import data, improving user experience 4 Chart analysis function Provides visual charts and basic statistical values for product sales AI data analysis solutions have two major advantages 1 Entrepreneurship machines can be rented and sold at low cost to open unmanned physical stores and cooperate with the chain retail industry Through smart machines, entrepreneurs can rent and sell them at a lower cost than the store rent Cost of running a retail business Two cooperation models, machine sales and leasing, are provided, and the choice is based on the evaluation of the industry 2 Various types of products are put on the shelves Products are sold anytime and anywhere 24 hours a day Up to 60 kinds of diversified products can be put on the shelves Large transparent windows enhance the visibility of products Regular replenishment and tracking of product sales status are available, and product types can be adjusted according to needs Recently, the line between the Internet and the physical world has blurred, the way customers interact has changed significantly, and consumer demand is changing and personalized The retail industry is facing unprecedented challenges and uncertainties, and mastering data has become key AI data analysis solutions can help the retail industry quickly activate large amounts of data, create seamless personalized experiences, optimize the operational value chain and improve efficiency, and strengthen the core competitiveness of enterprises 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」