:::

【2020 Application Example】 Automatic fruit screening system: A solution that uses neural networks, AI, and automation to improve fruit screening efficiency by 10 times, increase output value by NT$1.7 billion, and significantly improve quality with 93% accuracy

Taiwan is located in the subtropics and has a diverse geographic environment that is very suitable for growing fruit. Bananas and pineapples were once extremely popular export commodities that we are proud of. However, farmers in consuming countries gradually obtained the excellent seeds of Taiwan’s fruits, and were able to grow the same quality fruit but at a more affordable price, causing our fruit exports to face a major crisis! At present, although Taiwan's fruits such as mango and guava still have certain competitive advantages, if they fail to make further progress compared with other countries, they will still encounter the same problem over time and cannot be ignored! Fruit quality and brand value are the only ways for Taiwan's fruit industry to remain competitive internationally.

Fruit screening is the main link in fruit production and marketing that determines quality. Currently, the industry is highly dependent on aging rural manpower, resulting in rising fruit screening costs due to labor shortage and making it extremely difficult to maintain stable yield. Therefore, the automation of fruit screening work has become a very important and urgent issue. Professor Chi-Chun Lee at the Department of Electrical Engineering of National Tsing Hua University led a team to develop an automatic fruit screening system that combines cameras, conveyor belts, and AI. The system currently has an accuracy reaching 93%. One production season can increase the output value of mango by NT$1.7 billion. With the gradual development of the AI system, the accuracy is expected to improve in the future, and the same system can also be applied to other fruits, further promoting traceable fruit and driving the technological upgrading of Taiwan's fruit industry.

Fruit screening relies heavily on scarce manpower, and the aging of the rural population makes the situation even worse

Professor Chi-Chun Lee learned about the fruit industry’s dilemma from his classmate Yu (alias), who had studied together in the United States. Yu is the young second-generation successor of one of Taiwan's largest fruit import and export companies. According to Yu's observations in the industry over numerous years, Taiwan's fruit production and export usually generated good profits at first, but after fruit farmers in the consuming countries obtained the seeds, they will often attempt to grow the fruit locally to reduce costs and obtain greater profits. If Taiwanese fruits cannot surpass the products of fruit farmers in consuming countries in terms of quality or brand value, they will be eliminated because competitors' costs are indeed lower.

Fruit screening is used to divide fruits according to quality. If they cannot pass the minimum specification, they will be discarded as waste products. In practice, the work of screening fruits will be carried out by farmers' goods yards and distributor' packaging yards respectively. However, if it is not properly handled by the collection freight yards and the packaging yards do not do a good job in sampling in the early stage, it will result in a loss for distributors and cause 30% of A/A+ grade fruits to be eliminated.

This job relies heavily on experienced fruit screeners. More experienced fruit screeners can not only control the quality and reduce the chance of fruit damage in the fruit screening process, but also have the ability to pick out about 10% more A+ grade fruits, which adds great value. What worries the industry is that experienced fruit screeners are gradually decreasing due to the aging population in rural areas, making them a very rare resource. Such rare human resources are often in high demand during busy farming periods. Farmers or distributors who fail to hire experienced fruit screeners have to settle for less experienced one, taking on the risk of additional losses and paying greater costs. The most unfortunate situation suffering a loss of 30% mentioned above.

▲ Fruit screening is an important process in the later stages of fruit production when packaging and selling. Failure to properly control quality will result in huge losses.

AI is very suitable for assisting in fruit screening, but it is difficult to obtain data sets

After understanding Yu's difficulties, Professor Lee found that this was a problem that could be solved using AI - although fruit screening relies heavily on experienced fruit screeners, it is a highly repetitive task. Handling repetitive tasks with a large amount of data has always been a strength of AI.

However, the first problem appeared even before research and development work started: Which fruit do we start with?

First of all, a suitable fruit must reach a certain export volume, and the fruit must still have considerable room for growth. For some fruits that lack international competitiveness, such as bananas and pineapples, companies no longer have the ability to invest more funds to purchase equipment, let alone sponsor R&D or assist the R&D team in experiments.

When you have an idea, you need to pick up the pace and put it into practice as soon as possible! Therefore, Irwin mango, which still has a certain advantage in terms of scale, was selected as the first experimental subject of the automatic fruit screening system.

The first step after harvesting mangoes is to screen the fruits for the first time at the goods yard. After the fruits are screened, they are sent to the packaging yard for fumigation and disinfection, and preparation for sale or loaded into containers for export. However, exporters with a deeper understanding of the target market will have stricter quality requirements and will often screen the fruit again to ensure the quality of the fruit before fumigation at the packaging site. Since employees at the goods yard are paid based on the number of mangoes screened rather than on the quality of the mangoes, they focus on quantity when working. As a result, to ensure the quality of the selected fruits, the subsequent packaging factory has to screen the fruit again, increasing labor. The solution seems simple and clear - A camera, machine conveyor belts for grading and sorting, and an AI that can distinguish the quality of mangoes from their appearance are all that are needed to achieve automatic fruit screening. However, the hard part is how can AI distinguish the quality of mangoes? That’s right, you must start by establishing a training data set! In order to create the data set, Professor Lee's team established a website that allows anyone to upload photos of mangoes and rate them. Once the data sets are refined, they can be used to train AI.

▲ The fruit screening machine developed by Professor Lee's team uses AI image recognition to select the best looking mangoes.

The accuracy of the trained AI reaches 93%, which can increase the output value by NT$1.7 billion in one season.

In 2019, the assistance of the Industrial Development Bureau (now the Industrial Development Administration of the Ministry of Economic Affairs) and AI HUB accelerated the verification of the technology.

Professor Lee's team accumulated 100,000 entries of data during the 2-month empirical period, and the accuracy of the trained AI reached 93%! This is far higher than the manual screening accuracy of 70%, resulting in a clear difference in quality. In terms of export value, the output value of mango is expected to be increased by NT$1.7 billion in one season! It can also reduce labor costs by NT$1.866 million and avoid the seasonal labor shortage problem mentioned above.

In addition, since it is no longer necessary to screen the fruit once at the goods yard and packaging yard each, it also reduces losses caused by human error in the fruit screening process. When the technology becomes more mature, the same system can be applied to other fruits exported by Taiwan, such as wax apple and guava, in the future, taking Taiwan's fruit industry to the next level.

Since it is AI, accuracy can be improved through continuous training, and continuous adjustment of algorithms and cooperation with equipment manufacturers can significantly improve production capacity. In addition, Professor Lee is also organizing the AI Cup competition with the sponsorship of manufacturers and the government, allowing more teams to use the same data set to continue to develop the algorithm, in hopes of facilitating further cooperation with companies that are interested.

Irwin mango grade identification system on AI HUB

Professor Lee's team hopes to use the power of AI to achieve complete traceability of fruits from production to packaging and transportation, thereby increasing the brand value of Taiwan's fruits! Besides hoping to allow Taiwan's fruits to seize a place in the fiercely competitive foreign markets, with high-quality supply, Taiwan's fruits can also shine internationally and become the pride of Taiwan.

▲ Taiwan's fruits still have certain competitive advantages in the international market, but they also face competitive pressure from fruit farmers in consuming countries as they are exported.


▲ Easily save NT$1.866 million per mango season and significantly improve quality.

 

 

 

 

 

 

Recommend Cases

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data

【導入案例】東森得易購導入OneID AI流量變現服務 成本效益可達2倍
Eastern Home Shopping Implements OneID AI Traffic Monetization Service, Cost-Effectiveness Up to 2 Times

How to integrate consumer data from various group companies to create advertising synergy and enhance the conversion rate of e-commerce guided orders is probably what every cross-industry business owner dreams of No problem, this can be achieved gradually through AI Eastern Home Shopping is affiliated with the Eastern International Group, which includes East International, Eastern News Cloud, Eastern Insurance Representatives, Eastern Natural Beauty, Eastern Global Marketing, Eastern Pet Cloud, HerEastern, Focus Media, Hong Kong Strawberry Net, and Bear Mom's Vegetable Market, among other companies With cross-industry and cross-domain relationships within the group, and independent operations of membership systems in each unit, consumer data could not be exchanged within the group, making it difficult to uphold Eastern Group's promise to 'place customers in a godly position' Eastern Group’s companies cover a wide range of industries, with large and scattered member databases The Eastern Group boasts significant member traffic and has applied AI news recommendation algorithms and other related technologies across various venues However, the independence of member systems in each unit of the Eastern Group prevents the exchange of consumer data within the group, lacking a comprehensive basis for consumer behavior analysis This results in the inability to enhance the precision of personalized services and marketing strategies When analyzing the challenges and trends of the current retail market, Eastern Group remarked that in response to changing consumer demands, non-traditional business models are emerging, leading to the fragmentation of retail Various emerging business models provide services or products catering to their niche markets, leading consumers to rely less on traditional retail models Retail fragmentation, becoming more apparent in emerging countries, rapidly develops new forms of retail such as high-growth flash sale eCommerce, which threatens traditional B2B2C eCommerce platforms These emerging business models quickly divide traditional retail spaces and could revolutionize existing market rules The retail market is expected to continue evolving towards segmentation The rapid integration of AI applications in the new retail industry to meet highly competitive markets Under the trend of merging physical and digital realms, the line between offline retailers and online e-commerce is increasingly blurred Offline retailers are setting up brand official websites and developing brand apps, investing in e-commerce platforms, while e-commerce operators are starting to established offline physical experience stores, enhancing touchpoints with customers Both are exploring consumer data profiles through offline-online integration, based on AI technologies like machine learning, deep learning, computer vision, language processing, mobility control, and decision-making technologies to actively integrate intelligent retail AI applications, shaping the new retail industry Additionally, Google Chrome claimed in 2021 that it would disable 3rd party cookie functionality within two years, causing retail companies to lose the ability to track personalization via Cookies and understand user behavior across different times, locations, and ads This will prevent cross-device, cross-platform tracking, forcing companies to transform and face big challenges in traffic advertising sales Therefore, the Eastern Group decided to implement the 'OneID AI Traffic Monetization Service Validation Plan', establishing an exclusive data alliance for the Eastern Group, using 'Unified ID' for cross-industry, cross-service data exchange Transforming from collecting personalized data of related companies to analyzing common behavioral characteristics of consumers across industries, segmenting them to obtain users with similar behaviors, and providing interesting content Additionally, utilizing first-party data and AI technologies to improve ad click-through rates, enhancing the advertising value and e-commerce guided order conversion rates This AI technology project is co-developed by Eastern and ASUS computers, encompassing major development tasks such as project planning, system architecture design, system environment setup, algorithm development, algorithm model validation, and system verification The employed technologies include a big data parallel processing framework, natural language processing, user recommendation embedding systems, similarity search, search engine indexing, and click rate prediction This project aims to develop a comprehensive data collection, processing, and integration platform 'Data Middleware', collecting various data sources, focusing on users as the basic unit, forming structured data tables, and calculating user tags for precise characterization of each user Subsequently, this data is utilized for precise AI advertisement placements Eastern Data Middleware structure diagram Eastern Home Shopping introduces OneID AI Traffic Monetization Service, predicting cost-effectiveness to be up to 2 times Eastern stated that this project primarily applies 'user behavior data' and 'AI technology', with user behavior data provided by the Eastern Group and AI technology being co-developed by company and ASUS teams, covering systems such as AD Serve, precise audience estimation system, AI automatic optimization system, advertising efficacy system, and user profiling system The customer data and traffic of AI technology co-developed with ASUS remain independent and not interconnected According to estimates, this development project's total cost-effectiveness could reach 200, expected to precisely capture the user's digital trajectories, behavior, and profiles, potentially resulting in significant growth in customer lifetime value LTV, effectively integrating Eastern's online and offline services, enhancing membership service content, and substantially increasing corporate value In the future, as the Eastern Group continues to expand into international markets, it currently targets Mainland China as the primary promotion market, extending the entire service module with Eastern Global’s operational model to the global Chinese market while ensuring compliance with GDPA, merging it with Strawberry Net to provide Eastern's new retail services with the advantages of big data and AI globally Eastern Group will expand its services and technology to the global market through Strawberry Net「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
Preventing Problems Before They Arise: Leadtek Research Develops AI Technology for Early Detection of Heart Failure Symptoms

With the increase in the elderly population, the incidence of various chronic diseases is rising daily Among these, heart failure is not only a silent killer it has a very long disease course with a high recurrence rate, leading to increased burden on healthcare personnel However, by using medically certified electrocardiography acoustics devices, coupled with AI predictive assessment of heart failure risk and remote care systems, diagnosis can be aided significantly, helping doctors make accurate diagnoses for subsequent patient medical care or referrals Heart failure has a lengthy course and medical expenditure is five times that of diabetes If you find yourself short of breath even with minimal movement, or if you wake up from sleep needing to sit up to feel comfortable, or if you have symptoms such as swollen lower limbs, anxiety, restlessness, fatigue, or a loss of appetite, be cautious These could be signs of heart failure According to statistics, there are about 60 million people with heart failure worldwide, with 5 million new cases every year In China, nearly 290 million people suffer from cardiovascular diseases, accounting for the second leading cause of death among urban residents around 12 million of these are heart failure patients, accounting for over 59 of cardiac-related deaths The disease course of heart failure is exceptionally long, and both its recurrence and rehospitalization rates are exceedingly high, resulting in medical costs that are twice that of hypertension and five times those of diabetes According to US research statistics, the 30-day mortality rates for patients with myocardial infarction and heart failure are respectively 166 and 111, and the rehospitalization rates within 30 days are 199 and 244 The symptoms of heart failure, because they are similar to those of other diseases such as chronic obstructive pulmonary disease and asthma, have an 185 misdiagnosis rate, which poses a challenging problem for healthcare institutions Leadtek, a major graphics card manufacturer, has been investing in the medical and healthcare sector since 2000 Following two heart attacks in 2011 and 2015 experienced by Chairman Lu Kunshan, Leadtek has focused on health big data, independently developing AI technology for heart failure recognition This AI application reads patients' electrocardiograms and phonocardiograms to perform anomaly detection and model prediction of heart failure risk, enabling early detection of disease symptoms Leadtek independently developed heart failure AI recognition technology to predict medical history and risk Leadtek's independently developed heart failure AI recognition technology has the following three judgment functions 1 Prediction of heart failure history Classifies electrocardiogram and phonocardiogram data into 'with hospitalization history of heart failure' and 'no history of heart failure' 2 Risk prediction of heart failure Provides a predictive risk value of heart failure occurrence based on the electrocardiogram and phonocardiogram data 3 Prediction of heart failure recurrence risk For patients with heart failure, it reads their phonocardiogram and electrocardiogram data, assessing the risk prediction of heart failure recurrence Leadtek states that the application of heart failure AI recognition technology can assist doctors in making more efficient and accurate diagnoses, facilitating subsequent medical treatment or referrals for patients As an instance, in studies of heart failure patients discharged from Taipei Veterans General Hospital, using the EMAT Electromechanical Activation Time index and SDI Systolic Dysfunction Index calculated by the synchronized electrocardiography-acoustic device as treatment guidelines resulted in a higher survival rate compared to those treated based on traditional symptoms This research has also been published in the authoritative international cardiology journal JACC, receiving recognition in the international market System manufacturers can apply heart failure AI recognition technology for other value-added applications Leadtek states that cooperating system manufacturers can choose to build their own heart failure AI risk prediction engine, uploading their system's electrocardiogram and phonocardiogram data to Leadtek's heart failure AI risk prediction engine, which then returns risk prediction values for integration by system manufacturers cooperating manufacturers as a value-added application input Not just for clinical use, the heart failure AI risk prediction engine can also be extended for use at home or in the workplace Additionally, this system can be extended to other applications, including One, hospital outpatient screening Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to conduct a 10-second rapid test in outpatient and emergency departments to assess a patient's cardiac history and heart failure risk Two, discharge risk assessment Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to assess the heart failure risk during a patient's hospital stay The test data can serve as a pre-discharge risk assessment and prognostic indicator Three, continuous home care Patients can use the electrocardiogram and phonocardiogram recorder, wearable electrocardiogram recorder, and transmit through a home transmission box gateway to measure electrocardiogram and phonocardiogram signals at home and upload them to the amor health cloud platform for heart failure AI risk prediction analysis Patients can manage their health autonomously via an APP, reviewing historical physiological trends disease management nurses can manage member health through the health management backend Web Four, home rehabilitation training Patients can wear a health bracelet to monitor activity, fatigue, circulation, and sleep, autonomously managing their health through the mobile APP and observing the risk of heart failure, engaging in exercise and rehabilitation training to aid in swift recovery The heart failure AI recognition technology system can also be extended to employee home care applications Additionally, in factories or offices, this system can also achieve employee health management goals, with applications including One, workplace safety units Provide employees with wearable electrocardiogram recorders before they start work duties Two, physiological monitoring for business executors While executing business duties or training, employees wear wearable electrocardiogram recorders for fatigue warnings, signaling whether physiological conditions allow continued execution of tasks Task segments can use data transmission boxes or apps to upload physiological monitoring information to the health management platform, assessing the heart failure risk for operations staff, with test data serving as an indicator for enterprise resource human units and public safety Three, workplace physiological monitoring center care The workplace physiological monitoring center can inspect and record employees' historicalphysiological trends through the health cloud platform Four, workplace nursing units Nursing units receiving instructions from the physiological monitoring center can provide health management advice based on employees' physiological trends nursing centers can manage employee health through the health management backend Web Five, employees can wear health bracelets to monitor activity, fatigue, circulation, and sleep, autonomously managing their health and observing the risk of heart failure through the mobile APP, engaging in exercise and rehabilitation training to aid in rapid recovery Workplace application of heart failure cloud care and big data center diagram「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」