:::

【2020 Application Example】 AI Detection System Using Deep Learning, Detecting Irregular Polyhedral Defects in Just 0.5 Seconds!

Traditional manufacturing industries rely on manual visual inspection of products, lacking stability in quality yield

For products made by traditional manufacturing industries, 'quality yield performance' is a critical issue and a decisive factor for customer business requirements. Although many AOI vision inspection systems have been introduced in recent years, there are still numerous limitations that cannot be overcome when automating these inspection systems.

For example, the production of small quantities of diverse products, the inability to standardize irregular polygonal product dimensions, and the halo effect on glass or metal products from different lighting angles make it difficult to assist product yield filtering through AOI vision inspection, thus many traditional manufacturing industries still use manual visual inspection on their production lines.

Manual inspection is labor-intensive and time-consuming, with expensive solutions from abroad

A domestic model creation company often needs to manufacture products that are customized and diverse. Although it uses imported high-grade mold equipment, product appearance quality testing is still largely done by manual visual inspection. Testing standards vary by employee, and to adequately inspect the appearance of each product, the time each person spends cannot be easily controlled. Often the same product needs to be examined repeatedly to meet quality standards, which is very labor-intensive and time-consuming and also sensitive to external environmental influences.

Although the model company had evaluated adopting foreign AOI vision inspection equipment, a single set of equipment is expensive and only capable of inspecting certain types of product parameters, and lacks a learning feature to achieve diversified inspection goals, thus passive maintenance of the original plan is still necessary…

Customized solution significantly improves inspection efficiency and saves labor costs

To reduce the misjudgment rate of manual operations and operational costs, thus enhancing the competitiveness of the company's products, the model company sought assistance from 500HU Tech Ltd., hoping through customized service to leverage AI Deep Learning technology to improve the shortcomings of traditional AOI vision inspection systems, expanding the range of products that usable vision inspection systems can handle, and more accurately enhancing the accuracy of vision-inspected products.

With the support of the AI Innovation Research Center at National Central University, and based on the definition of five defect conditions provided by the model company, such as scratches, lint, white spots, damage cracks, and uneven baking paint, the initial step involved gathering a training dataset and manually replicating defect conditions on other parts and angles of the product, then using a program to generate defect images under different angles and lighting changes, followed by marking defects.

Then, using software methods for training sets required by different algorithms, such as VGG, RestNet, Inception, DenseNet, Xception, SqueezeNet, target migration learning, classification problem Faster_Rcnn, SSD, Yolo, Mask_Rcnn, and other object recognition algorithms, after comprehensive consideration of accuracy and speed, SSD was chosen as the main core testing and inspection algorithm.

Then, the format of the training set required by the selected algorithm was produced, used as the comparative model; then, using different AI frameworks, such as tensorflow, keras, practical verification tests were conducted, and verification test reports were produced. Ultimately, optimal application parameters were adjusted for each product inspection, ensuring an average inspection accuracy rate of 95%, with the inspection time reduced from 5 seconds to an average of 0.5 seconds.

Originally, the model company's production process involved manual inspection followed by stamping a QC stamp on batches or sorting out defective products. After introduction of this inspection system, the original process was maintained, but it sped up the manual judgment time, and during the process, recording for archival purposes took place, with defective items highlighted in red and recorded as photos, thus categorized into a 'defective-to-be-inspected' section. Manual inspection would then determine if the product was qualified to move to the next inspection, significantly enhancing inspection efficiency and saving labor costs!

Low-cost, high-efficiency new AI inspection option!

As the technology of visual inspection by machines replaces human labor, it plays an increasingly vital role in the production of small, diverse orders, urgent orders, and situations where there is a labor shortage. In contrast to expensive foreign inspection solutions, domestic providers can offer relatively cheap and customized solutions; whether in terms of purchase costs or inspection efficiency, they are attracting more businesses ready to try, effectively enhancing the quality yield of manufacturers and thereby increasing competitiveness.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI Can Make Coffee! Autonomous Coffee Roasters Relying on AI for Precise Location Setting and Cultivating Loyal Customers

Have you had your morning coffee yet Over the past decade, Taiwan has gradually formed a coffee drinking culture With the advancement of AI technology, autonomous coffee roasters can now rely on AI for precise location setting while also cultivating a loyal customer base Let's see how this is done According to the International Coffee Organization ICO, Taiwanese consume approximately 285 billion cups of coffee annually, with the coffee market in Taiwan estimated at 80 billion TWD, growing about 20 each year In recent years, the 'drinking coffee' culture in Taiwan has become synonymous with popularity, with coffee being the most frequently chosen daily beverage by 65 of the population Coffee enthusiasts, particularly the more avid ones, are willing to pay more for coffee beans that suit their tastes An increasing number of unmanned drink kiosks have also begun to appear in the Taiwanese beverage market Unmanned coffee beverage shops face difficulties in expanding quickly, primarily due to two major issues one is the appropriateness of customer flow and machine placement locations which still rely on manual analysis the second is penetrating the market of mid to high-end coffee lovers accurately AI resolves two major challenges for autonomous coffee roasters suitable placement and cultivating a loyal customer base To tackle these issues and help autonomous coffee roasters quickly break into the market, Raysharp Electronics intends to implement AI for people flow counting analysis and unfamiliar face recognition These technologies aim to calculate the crowd size at potential roaster locations and classify consumers by gender and age for more precise market analysis They also provide multiple choices for the roasting of raw coffee beans, offering a more customized service tailored to the needs and tastes of professional coffee aficionados with a pack of 'high-quality roasted beans' Since 2018, the rise of unmanned stores has been mainly due to owners wanting to reduce persistently rising rent and personnel costs However, the initial assessment of store locations still requires hourly labor expenses for manual estimation of customer flow, leading to possible miscalculations of both on-site consumers and passerby traffic These inaccuracies may prevent precise real-time analysis of customer flow, or even misguided estimations of operational efficacy after a trial run, thus missing the optimal timing for loss-preventing location retraction Raysharp Electronics introduces autonomous coffee roasters equipped with AI-based people counting analysis and facial recognition Raysharp Electronics combines AI people counting analysis and facial recognition with the coffee trend known as 'black gold', addressing the preferences of numerous coffee connoisseurs in Taiwan who enjoy personally selecting coffee beans at bulk stores and frequenting high-quality grinding cafes or chain coffee shops A new concept for the first autonomous coffee roaster offering choices based on the origin, variety, and roasting methods of coffee beans has emerged AI coffee roasters enhance customer loyalty and materials management efficiency by 20 For the advanced development of autonomous coffee roasters, Raysharp Electronics engineers have equipped the AI NVIDIA development platform on the basis of TCNNFacenet Through AI, tens of thousands of images related to gender and age are used for sample training, allowing even first-time coffee roasting customers to be easily classified using unfamiliar face recognition This gains consumer trust, enhances willingness to use, and allows for recording purchase information and future product recommendations, leading to consumer purchase behavior analysis This information helps owners tailor future material preparation based on consumer preferences for different coffee beans, reducing raw material transportation and storage issues, and improving material management efficiency by 20 Moreover, by placing these autonomous coffee roasters in high-traffic areas, owners can use cameras to capture the crowd and assess whether the machine location has an adequate customer base, quickly analyzing whether to reposition the machines, and more easily targeting the best locations for middle and high-end coffee lovers The unmanned coffee roaster features a professional roasting mode interface, providing options based on the origin and variety of coffee beans, their roasting methods light, medium, deep, and related temperature, wind speed, and timing settings If improvement needs arise during the process, engineers can adjust firmware parameters and also assist in integration with the owner's ordering system Staff members briefly describe the operation of the autonomous coffee roaster 'Black Gold' penetrates deeper into coffee shops, science parks, and commercial buildings through AI This autonomous coffee roaster targets coffee connoisseurs and can be placed in middle to high-end coffee shops to roast more customized coffee beans than those available in bulk stores Upon completing a batch of coffee beans, it immediately provides them to professional technicians within the coffee shops for grinding and manual brewing The remaining roasted beans can also be taken home for brewing and enjoyment It also adds value to coffee shops by better understanding consumer preferences for coffee beans and launching more customer-attracting drink promotions and appropriate inventory management In addition to coffee shops, the autonomous coffee roaster can also utilize AI-based people counting analysis to precisely set up near scientific parks and commercial buildings, offering high-quality coffee beans for office brewing to internal employees with high coffee consumption needs Furthermore, implementing a physical membership system can initiate coffee bean purchase promotions or periodic payment incentives, thus attracting new clients and cultivating existing customer loyalty and retention The operation interface of the smart autonomous coffee roaster「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
Massive Digital Engineering AOI Intelligent Robotic Arm Inspection System Significantly Improves Defect Detection Accuracy

Taiwan is known as a manufacturing powerhouse, yet quality defect detection has always been a chronic sore point in production lines While AOI equipment is available to assist, most use fixed machinery which are limited by angles, resulting in less precise diagnostics and high false positive rates Massive Digital Engineering introduced an AOI intelligent robotic arm detection system that effectively reduces false positives and increases the accuracy of defect detection Generally, the yield rate of products affects the costs for enterprises and the return rate for customers The quality defect detection process in the manufacturing industry often necessitates a substantial amount of quality inspection labor Although there is AOI equipment to assist, these tools are mostly fixed detection machines Fixed cameras are easily limited by angles, resulting in less precise diagnostics and high false positive rates Thus, personnel need to re-screen and inspect afterwards, often manually visual inspection misses defects on average about 5, and can be as high as 20 Three major pain points in manufacturing quality detection Robotic Arm AOI with dynamic multi-angle inspection helps to solve these issues According to the practical understanding by Massive Digital Engineering, there are three main pain points in detecting product quality within the manufacturing industry Pain point one, manual inspection of product quality is prone to errors Currently, the manufacturing industry largely relies on human labor to inspect product appearance, but human judgment often entails errors, such as surface scratches, color differences, solder appearance, etc The error rate in defect judgment is high, and can only be inspected at the finished product stage, often leading to whole batch rejections and high costs in labor and production Pain point two, inability to quantify and record data from quality inspections Traditional manual inspections do not maintain inspection data, which makes it difficult to assign responsibility when quality disputes occur Moreover, high-end contract manufacturing orders from overseas brands often require traceability and corresponding defect records, which traditional human inspection methods struggle to meet Pain point three, limitations of traditional AOI visual inspection systems Current manufacturing uses AOI visual inspection systems, which due to the limitations of visual software technology, employ fixed cameras, fixed lighting, and single-angle operations This method may handle flat or linear-shaped products like rectangular or square items at a single inspection point However, it is more challenging to implement for products with complex shapes eg, irregular automotive parts, requiring multi-point and multi-degree inspections Massive Digital Engineering developed an AOI intelligent robotic arm detection system, effectively improving the accuracy of defect detection To address the pain points in quality inspection in manufacturing, Massive Digital Engineering initiated the concept of developing a multi-angle, movable inspection device, starting with the combination of two representative technologies in factory automation - robotic arms and machine vision By integrating robotic arms with AOI for dynamic multi-angle AI real-time quality inspection, the limitations of fixed inspection systems are addressed, and visual inspection techniques are enhanced by leveraging artificial intelligence, further elevating the sampling of images from flat to multi-dimensional and multi-angular Selected the automotive industry as the real-world testing ground to quickly respond to customer needs The AOI intelligent robotic arm detection system, utilizing AI technology including unsupervised learning, supervised learning, and semi-supervised learning, allows operators to use unsupervised deep learning techniques to learn about good products even when initial samples are incomplete or there are no defective samples, applying it in the visual inspection of automatic welding of car trusses This can solve issues of limited angles with fixed machinery before implementation, less precise diagnostics, and high false positive rates Automotive components are high in unit price and demand a stricter defect detection accuracy In industries that have adopted AI services, the automotive manufacturing sector was chosen as the real-world testing ground Massive Digital Engineering states that the automotive industry mainly consists of related component manufacturers and components typically have a higher unit price, hence requiring more in terms of quality inspection and yield rates, and demanding stricter accuracy Therefore, the automotive sector was chosen as the area for introduction By using a robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection, not only can the defect quality error rate of automotive components be improved, but the fixed-point AOI optical inspection can be enhanced to meet the measurement needs of most industries and finally, establishing a third-party system platform to build an integrated monitoring system platform, enabling immediate response and action when issues arise This system allows for recording and storing important data of products leaving the factory, serving as a basis for future digital production lines and virtual production At the same time, in the event of defects, it can immediately connect to Massive's MES monitoring system, quickly responding to the relevant manufacturing decision-making department, subsequently utilizing ERP systems for project management and reviews, effectively improving production efficiency and reducing production costs Helps to reduce communication costs and aims to become an industry standard In terms of industry integration, it provides a foundational standard for data continuity among upstream and downstream businesses, reducing communication costs within the supply chain Through certification of the contract manufacturers and brand owners, there is a chance to become the industry standard configuration Through the data database established by this project, operators can further optimize their supply chain management solutions using big data analysis Data Analysis, based on data, establish forecast planning, and utilizing technology to link upstream and downstream data of the supply chain, accurately controlling product quality In the future, when interfacing with European, American, and Japanese markets, which demand highly fine-tuned orders, operators can respond and integrate the industry supply chain Supply Chain more swiftly Ultimately, through the benchmark demonstration industry's field verification, such as with the automotive component manufacturing industry used as the benchmark demonstration field, by implementing the robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection system project, the supply chain connection between automotive contract manufacturers and OEMs can be optimized, becoming the industry standard Further seeking more AI teams to join the cross-industry development on the field collaboration platform, driving the overall ecosystem combining AI innovation with field application Self-driving vehicle developed by Massive Digital Engineering「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data