:::

【2022 Application Example】 USRROBOT's AI Lawn Mowing Robot Enters the Blue Ocean of Golf Market

An AI smart lawn mowing robot, resembling a vacuum robot, shuttles back and forth on the 30-hectare golf course lawn for weeding. This robot, independently developed and designed by Taiwanese, is equipped with the world's first electronic fencing positioning technology which utilizes high-precision GPS integrated with cloud AI computation to determine the most efficient mowing paths, targeting the lucrative blue ocean market of golf courses.

This AI lawn mowing robot was developed by USRROBOT, a Taiwanese startup established in 2019. Chao-Cheng Chen, the president of USRROBOT, once served as the executive vice president of one of the top five ODM tech companies in Taiwan, and specializes in software and hardware integration. When he served as the chairman of the Service Robot Alliance, he knew that the service robot industry was bound grow rapidly due to declining birth rates and the growingly severe labor shortage.

New demand - The horticulture market is large and the has rigid demand

"To develop the core technology of service robots, we must find rigid demand. Looking at European and American countries, there is a shortage of labor, but demand for horticulture has increased, and there has been a long-term shortage of 7-10% of horticultural workers." Under this strong "rigid demand," Chao-Cheng Chen established USRROBOT, and the company's first product is the AI lawn mowing robot.

In terms of overseas markets, the United States is the world's largest horticulture market, accounting for 30%-40% of the global output value. It is estimated that there are about 1 million horticulture workers, but they have been experiencing a labor shortage of 7%-10% in recent years and have not been able to improve the situation. The main reasons for labor shortage are: Aging population and gardening is a labor-intensive job, so young people don't want to do it. Unlike in Taiwan, European and American countries attach great importance to lawn maintenance and have expressly stipulated in the law that heavy fines will be imposed for failing to mow the lawn. Therefore, the AI lawn mowing robot has considerable market development potential.

The introduction of AI multi-device collaborative mowing sensor technology is expected to reduce the burden of staff maintaining the golf course

▲ The introduction of AI multi-device collaborative mowing sensor technology is expected to reduce the burden of staff maintaining the golf course

The AI lawn mowing robot developed by USRROBOT is currently in its second generation. Domestic universities and well-known art museums are using the latest model M1, and it is also being used by some world-renowned high-tech companies and well-known universities in the United States. The company is currently involved in negotiations for subsequent business cooperation.

USRROBOT stated that the professional RTK system currently used can reduce the original GPS positioning error from tens of meters to about 2 centimeters, allowing the robot to move accurately outdoors. After setting the boundaries, it can be easily operated using the app.

New application - Implementation in golf courses solves the problem of labor aging and shortage

Chao-Cheng Chen further explained that the National Land Surveying and Mapping Center is a RTK service provider. RTK provides the error reference map of the positioning point. USRROBOT can access the positioning error value of a specific position through 4G Internet access. The AI algorithm of USRROBOT reduces the general 10-20 m error of GPS to 2 cm. After positioning, USRROBOT then uses six-axis accelerator positioning, gyroscopes, and wheel differential sensing devices for software and hardware integration. Only by matching the wheel's movement pattern and the terrain can accurate mowing path planning be achieved.

The AI lawn mowing robot, which is 62 cm wide, 84 cm long, 46 cm high, and weighs only 25 kg, can set the mowing boundaries in the cloud. It can avoid pools and sand pits through settings, using AI algorithms to automatically calculate the optimal path. It is able to mow approximately 150 ping of grass in one hour. The battery can be used continuously for more than 6 hours. The battery life is currently the highest in the world. In addition to general gardening companies, with the assistance of the AI project team of the Industrial Development Bureau, Ministry of Economic Affairs, USRROBOT's AI lawn mowing robot has been applied to golf course lawn mowing.

A well-known golf course located in Taiping District, Taichung City currently has a staff of 5 people who are responsible for the lawn, planting maintenance, and other landscape maintenance of the entire 30-hectare course. However, the average age of staff is as high as 55 years old, and the golf course has been unable to recruit new staff members for a long time. In view of the aging staff and the shortage of manpower, the golf course hopes to mitigate the impact with AI technology, and is therefore using AI multi-device collaborative mowing sensor technology, in hopes of reducing the burden of staff maintaining the golf course.

New challenges - Expert systems are needed to overcome difficulties with different grass species

"This AI lawn mowing robot has low noise, low pollution, low labor costs, and is waterproof and anti-theft. In the lawn mowing process, it can identify and avoid obstacles through ultrasonic sensors while maintaining mowing quality, maintaining aesthetic and consistent grass length." Chao-Cheng Chen went on to say that the most important part about golf courses is that the grass pattern should be beautiful and free from diseases and pests.

Based on the site survey, golf courses are mainly divided into three major areas: green, fairway and rough. There is no problem using the current mowing robot to mow the rough area, and it can overcome slopes within 20 degrees.The short grass in the fairway area may only be two centimeters long, and the grass types are also different, so the cutterhead design needs to be modified.As for the grass in the green area, the grass must be mowed close to the ground and maintained in a consistent direction because it affects the putting speed. Many factors will affect the green index, and this part requires more research and testing.

The AI lawn mowing robot can identify and avoid obstacles through ultrasonic sensors while maintaining mowing quality

▲ The AI lawn mowing robot can identify and avoid obstacles through ultrasonic sensors while maintaining mowing quality

The AI smart lawn mowing robot has a built-in camera that can be used to detect the health condition of the lawn. Chao-Cheng Chen said that in the future, an expert system will also be introduced for early determination of whether there are diseases, pests in the lawn or whether there is sufficient moisture, and provide lawn health data analysis to customers, so that they can take preventive and response measures sooner to reduce disaster losses.

Chao-Cheng Chen, who is also a good golfer himself, said that golf has developed well in Taiwan. However, due to weather factors, such as rainy and humid climate and typhoons, Taiwan's golf courses have harder soil and more potholes compared with top tier golf courses overseas. If AI lawn mowing robots are to be widely introduced into golf courses, there are still many difficulties that must be overcome. However, Taiwan's difficult terrain creates a good testing ground. Once Taiwan can overcome the many problems and successfully introduce the robot, it will be able to expand to overseas markets and seize new market opportunities in a blue ocean.

Chao-Cheng Chen, President of USRROBOT

▲ Chao-Cheng Chen, President of USRROBOT

 

Recommend Cases

【導入案例】汙水處理的救星 結合大數據與AI技術打開環保產業另一片天
Savior of Wastewater Treatment: Combining Big Data and AI Technology Opens Another Horizon in the Environmental Industry

As water resources deplete and environmental protection needs increase, wastewater treatment plants have increasingly adopted AI technology to assist in monitoring and warning systems Zhongxin行's integration of big data and AI technology has opened up new possibilities in the environmental industry In the future, besides boosting the technological momentum of the wastewater treatment industry, it can also be promoted to other industries to foster technological and economic development Founded in year 1980 as Zhongxin Engineering later renamed to Zhongxin行 Company Limited, it is one of the largest and most technically equipped environmental companies in the domestic operation and maintenance field Zhongxin行's achievements in the operation and maintenance of sewer systems span across Taiwan, including science parks, industrial zones, international airports, schools, collective housing, national parks, and factories Introduction of AI systems in wastewater plants Precisely reduces medication addition times and lowers the risk of penalties for water quality violations At the wastewater treatment plant in Hsinchu Science Park, Zhongxin行 introduced the 'AOMBR Carbon Source and Aeration Intelligent Enhancement Control System Development,' which accurately predicts air volume control and reduces medication times, thus lowering the risk of hefty fines Zhongxin行 points out that with the vigorous development of advanced industries and increasingly strict effluent standards, a slight misalignment in equipment control can lead to major discrepancies in water quality In recent years, many wastewater treatment facilities have incorporated automatic control functions, yet onsite conditions often deviate slightly from theoretical expectations, causing situations where good treatment technologies must continuously adapt and adjust to achieve effective effluent water quality control 'The better the quality of the effluent, the greater the pressure on the operators This is the biggest pain point for Zhongxin行,' said a senior manager candidly Regular water quality testing and equipment maintenance ensure that effluent water stays below legal standards This means that operators need to be on top of equipment and water quality conditions daily If there are sudden anomalies in influent water quality or equipment malfunctions, linked issues can lead to pollution Therefore, besides performing regular maintenance and testing, it is critical to constantly monitor the dashboard to ensure system stability, consuming both manpower and mental energy Zhongxin行's on-site operators work 24-hour shifts, constantly monitoring effluent water quality Combined with laboratory water testing and analysis, if the wastewater treatment values do not meet requirements, they face both administrative and contractual fines from environmental agencies and granting authorities, which also create significant psychological pressure on the employees Over the years, Zhongxin行 has built up a vast database of water quality information and invaluable experience passed down among employees, allowing a comprehensive understanding of the entire system's operational characteristics Moreover, by analyzing equipment or water quality data for key signals, problems in the treatment units can be pinpointed If AI technology could be adopted to replace manual inspections of wastewater sources and generate pre-warning signals for systematic assessment, it would significantly alleviate the pressure on staff Response time reduced from 8 hours to 4 hours, saving half the time By implementing 'AOMBR Carbon Source and Aeration Intelligent Enhancement Control System Development,' Zhongxin行 utilizes accumulated wastewater data along with verbal recounts of operator experiences on-site With the support of AI technology and environmental engineering principles, key parameters in the biological treatment unit such as carbon source dosages and aeration can be effectively controlled Through the AI transformation of wastewater treatment, a balance is achieved among pollutant removal, microbial growth, equipment energy conservation, and operation economization, achieving rationalized control parameters Carbon source and aeration parameter adjustment steps range from data collection, model training to prediction verification In the long run, incorporating historical data calculations, AI can operate within known boundary conditions, not only recording past water quality and equipment operational characteristics far more accurately, but also developing predictive models to find optimal solutions that offer the best results in terms of chemical use, energy saving, reduced greenhouse gas emissions, and pollutant removal According to Zhongxin行's estimates, originally due to human parameter adjustments leading to errors, controlling response time would take about 8 hours With the introduction of AI technology, not only can measurement errors be reduced, but also the control response time can be shortened to 4 hours, saving around half the time This enhancement increases the turnover rate of personnel and effectively reduces the risks of penalties due to operator errors and thus markedly reducing the pressure on employees Dashboard digital display panel illustration「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】佐翼科技無人機導入高爾夫球場域 可節省一半人力
Droxo Tech Applies Drones in Golf Courses to Reduce Manpower by Half

For most golf courses, the operations and management is a headache "Golf courses are selling turf and need to be properly taken care of," a golf course manager bluntly pointed out Facing the market pain points of labor shortage, aging population and high cost, the use of AI drones for pesticide spraying and pest control will reduce labor costs by more than half and greatly improve the overall operational efficiency At noon in early summer, an AI drone is slowly taking off at the Taipei Golf Club in Taoyuan Its main task is to test AI drone fertilizing and pesticide spraying on the golf course In fact, drones of Droxo Tech, the company performing this task, are widely used for fertilization, pesticide spraying, and pest and disease control for rice, bananas, and tea trees For golf courses with turfs that often cover tens to hundreds of hectares, AI drones are needed to assist in turf maintenance Data collection, development of pesticide spraying AI models, and multispectral image analysis and testing will be carried out in the current stage In the future, large-scale technology implementation and verification will be carried out to set an example for applying drones to golf courses Using AI drones to fertilize and spray pesticides can reduce the manpower required by half The traditional way of maintaining the turf in golf courses is to carry spray buckets or drive spraying vehicles to spray areas one by one "Domestic golf courses began to plant ultra-dwarf Bermuda grass in 2001 This grass species prefers a cool climate and is not suitable for Taiwan's hot and humid weather" Droxo Techrsquos CEO further pointed out that to prevent turf from pests and diseases, pesticide spraying is necessary For an 18-hole golf course, it is equivalent to spraying pesticides once a week, and the T-ground and fairways are sprayed every two months For golf courses, spraying pesticides is time-consuming and labor-intensive It is important to note that large-scale spraying will increase the risk of personnel poisoning and increase the amount of pesticide used Benefits of applying agricultural drones to golf courses According to Droxo Techrsquos research, golf course pests include Spodoptera litura, which comes out at night to look for food, so pesticide spraying must be carried out in the evening According to the traditional method, pesticide spraying requires two vehicles and three personnel for a total of 45 hours If AI drones are used for fertilizing and pesticide spraying, it only takes one operator to spray 08 hectares of land in 20 minutes, saving about two-thirds of the manpower and reducing operating costs by about 30 Using AI drones to fertilize and spray pesticides on golf courses can reduce the manpower required by half In addition to the significant benefits of using agricultural drones for golf course turf maintenance, Droxo Tech also specially introduced AI multispectral image recognition for NDVI Normalized Difference Vegetation Index analysis "The so-called multispectral is to direct light with different wavelengths on the turf, and the reflected images are collected for analysis" Droxo Tech CEO Liu continued to explain that each plant absorbs light with different wavelengths, so multispectral imaging can determine the growth status of grass species At the same time, combined with AI image recognition, the distribution of pests and diseases can be accurately detected, and the amount of pesticide used is determined on this basis Cross-domain collaboration to build a multi-source turf image databasenbsp Using AI multispectral image recognition technology, Droxo Tech will collect visible light, multispectral, thermal images, and hyperspectral images to establish a multi-source turf image database to fully understand the growth cycle of Bermuda grass Droxo Tech has accumulated rich experience in agricultural AI drone pesticide spraying , but there are still many problems that need to be overcome to implement AI solutions in golf courses For example, it is necessary to establish a new pesticide spraying model and test flight methods, especially the application of multispectral image recognition PoC is not difficult, but actual implementation requires more test evidence, repeated inferences, and collaboration with plant experts This part must rely on the cross-domain integration of legal entities such as the Institute for Information Technology III, gathering more fields for verification, and creating a paradigm before it can be more widely adopted by golf courses There are not many international cases on the application of AI drones in golf courses During the verification process, it is not yet known whether it can be quickly copied to the next golf course However, Droxo Tech CEO Liu believes that through cross-domain collaboration, clearly defining the problems and listing them one by one, supply and demand parties can reach a consensus, propose solutions to each problem, and seek cooperation with internal and external resources Only then will we be able to gradually achieve the goal of making golf courses smarter and smoothly assist the industry with transformation Zuoyi Technology's CEO, Liu Junlin 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
HRT Technology Improves Production Efficiency by 20% Through AOI Detection of Defects in VCSEL Packaging

In 2017, the launch of the iPhone X made 3D sensor technology used in Face ID highly popular, which drove the development of VCSEL, a core component in the 3D sensor module In the detection of defects in incoming packaged VCSEL, the use of AI inference models can solve the industry's issue with low yield and improve reliability to 95 VCSEL technology currently can be used in many applications and various end consumer markets, including robots, mobile devices, surveillance, drones, and ARVR VCSELs are a good solution in applications that require high-speed modulation capabilities, such as cameras and biometrics VCSEL technology has a wide range ofnbsp applications, including in drones Pictured Zoyi Technology's Agricultural Drone VCSEL technology has a wide range of applications, AI technology assists in defect detection HRT Technology stated that the packaged VCSEL market is also facing strong price competition from competitors, and needs to further reduce costs and enhance product competitiveness One of the key problems is the replacement of glass lens with epoxy resin lens The production of traditional glass lenses has high yield, but the cost is higher than that of epoxy resin lenses Due to the cutting process of epoxy resin, the side wall of cutting lines can easily have rough edges, causing it to be oversized The release of stress caused by heat during the mounting process will directly cause the optical lens to break HRT Technology pointed out that the incoming inspection of VCSEL epoxy resin lenses is very important Under the constraints of packaging space, the space for fitting the package and optical lens is limited Moreover, the optical lenses will be confined to a metal frame If the dimensional tolerances are properly controlled, stress release due to heat during mounting can easily cause the optical lens to break, resulting in a yield loss of up to 10 in the VCSEL package reliability verification, resulting in an increase in production costs In order to solve the problems above, HRT Technology hopes to use AI to monitor the size and appearance defects of epoxy resin components in the VCSEL epoxy resin lens incoming stage, verifying whether their dimensions meet specifications, whether the cutting edges are smooth, and whether there are any defects in their appearance Since traditional incoming material inspection requires a rough visual inspection by humans to distinguish the quality The problem of image collection needs to be solved first to successfully collect image data Therefore, HRT Technology first developed an Automated Optical Inspection AOI device, which includes X, Y, Z three-axis motion, high-resolution cameras, and related control software to automatically record images After collecting the image data, opencv aligns the test image and a normal image to determine differences between the two images, and then pixel mapping is used to compare the pixel area to complete initial screening Manual labeling is carried out according to the image classification above, including samples that are normal, have defects in appearance, or have different shape characteristics, and then algorithm training and verification is carried out Residual neural network ResNet or other related algorithms are used for deep learning to identify the quality of lenses Implementation of AOI inspection improves production efficiency by 20 and above Comparing the differences before and after the implementation of AI image inspection, the incoming VCSEL lens inspection before implementation only involved manual inspection of the appearance The lens is packaged on the VCSEL package that has completed die bonding After passing the general light up test, the final reliability test high temperature reflow is performed Failed samples go into the rework process However, after the implementation of AOI inspection, it can screen defective lenses sooner and reduce the cost of subsequent materials input, it can also reduce the need for rework due to failure, improving yield to 95 and above in the reliability verification This is expected to help companies reduce production costs by 10 and increase production efficiency by 20 and above The difference before and after implementing AI image detection HRT Technology pointed out that this technology is an AI application developed based on tiny images It uses deep learning algorithms to identify defects in the images The trained network automatically classifies image data to predetermined categories Defect categories can be determined through reference images, so cumbersome programming is not required In the industrial machine vision environment, deep learning is mainly used for classification tasks in applications, such as inspection of industrial products or identification of parts In the future, with the development of IoT wearable devices and the trend of energy saving, the size of optoelectronic components will continue to shrink This technology can be applied to the detection of defects in the appearance of other tiny optoelectronic components in the future