:::

【2021 Solutions】 Action Bagel makes AI as simple and efficient as Excel to improve data analysis capabilities

What is AutoML (automated machine learning) and how is it different from ML (traditional data analysis)? It needs further clarification first.

Traditional machine learning must go through data cleaning, data pre-processing, feature engineering, feature selection, algorithm selection, model establishment, model training, parameter adjustment, and then evaluation results to produce model applications. During the process, if there is a problem with the parameters, the algorithm must be re-selected, the model must be re-established, etc., and the process must be repeated hundreds of times. If new information becomes available, all steps must be repeated. Through automated machine learning, the output process of model application only needs to go through the automation of four major steps: data cleaning, feature engineering, data modeling and model evaluation to achieve model application. Even if new data needs to be collected, it can be achieved through Automated machine learning is achieved, saving time and effort.

ML and AutoML Comparison source: Action Bagels Ltd

▲Comparison between ML and AutoML Source: Action Bagel Co., Ltd.

AutoML is a program that can automate the time-consuming and repetitive work in machine learning model development. This allows small and medium-sized enterprises that relatively lack AI talents to create their own customized machine learning models. In recent years, major international companies have rushed into this market, including Cloud AutoML released by Google in 2018, and AutoPilot launched by cloud computing leader AWS in 2019. AutoML has become a standard feature of mainstream learning services, from web-based interfaces to free Program development and workflow visual management, etc., service development is becoming more and more diversified.

MoBagel is a professional team composed of top data scientists, engineers, and product project managers. The team members come from prestigious universities around the world, including Stanford, Berkeley, Oxford, and National Taiwan University in the United States. They also have experience in Selected to participate in Silicon Valley's well-known accelerator 500 Startup, selected to participate in Japan's SoftBank Innovation Program, and also won a name in Nokia's Open Innovation Challenge.

Mobile Bagel Decanter AI platform shortens the analysis project from two months to two days

Mobile specializes in data science and machine learning technology. In 2016, it developed the automated machine learning analysis tool Decanter AI. So far, it has helped more than 100 companies introduce AI into important decisions, and the analysis project has been shortened from two months to Two days. The fields served include retail, telecommunications, manufacturing, finance and other industries.

Lin Yushen, deputy general manager of Action Bagel Co., Ltd., said that Decanter AI makes AI as simple and efficient as Excel, which can improve enterprise data analysis productivity. Users do not need to have in-depth professional knowledge and experience. Through a simple super-operating interface, they can perform automated machine learning for data analysis and prediction.

There are three simple steps to use Decanter AI: Step 1. Organize the data into csv format; Step 2. Upload to DecanterAI to set prediction goals; Step 3. Decanter AI automatically models and obtains prediction results. The deployment method can be in the public cloud or in the private cloud of the enterprise. After the internal data is uploaded, it can be modeled and used.

DecanterAI uses three steps, Simple and convenient

▲DecanterAI uses three steps, simple and convenient

The advantage of AutoML is that it can automatically train a large number of models, adjust parameters, produce the best model, and quickly deploy and import it. After the new coronavirus (COVID-19) epidemic, all walks of life are facing new market changes and must Transform digitally with fast and convenient digital tools.

In recent years, Action Bagel has continued to promote the optimization of the DecanterAI platform and establish industrial data modeling and analysis capabilities, and has produced substantial results. For example, Chunghwa Telecom uses its platform to conduct blind tests on code-carrying customers and perform data analysis to effectively reduce user churn rates and improve customer retention rates. As a leading domestic food manufacturer, due to the expiration date of drinks and the production and sales of the cold chain, it must be fully integrated to reduce inventory and loss problems. After importing the DecanterAI platform, in addition to accurately predicting market demand, it can also accurately predict market demand based on expiration date data. Analyzing production and distribution quantities can also help reduce warehousing and logistics costs.

AutoML industry has diverse and extensive applications and great potential for future development

Action Bagel believes that AutoML has a wide range of industrial applications, including employee turnover prediction, production demand prediction and revenue performance prediction that are troubled by the manufacturing industry; store passenger flow prediction, product replenishment prediction, membership prediction in the smart retail industry Promotional forecasting; customer churn forecasting and potential customer list forecasting in the telecommunications industry; accurate financial marketing, credit card fraud detection and insurance application quick review in the financial industry; and even real estate price forecasting, power outage disaster forecasting, etc. are all helpful. To solve the operating difficulties of the industry and create new business models.

AutoML industrial applications are diverse. Covering manufacturing, retail, finance and other industries. Source: Action Bagel Co., Ltd.

▲AutoML has diverse industrial applications, covering manufacturing, retail, finance and other industries. Source: Action Bagel Co., Ltd.

How much time and preparation does it take to import AutoML? Lin Yushen said that in actual practice, the introduction process of automated machine learning enterprises includes four major stages:

1. Preparation period: Collaborate with enterprises to discuss business pain points, help define analysis propositions, and provide professional data science advice and optimal solutions, lasting about two weeks.

2. Verification period: Use a small-scale pilot project to quickly verify the analysis results to ensure proposition setting, data quality, analysis process, prediction technology, etc., as the basis for subsequent practical application and amplification. It takes three weeks.

3. Introduction period: Support cloud or local product deployment according to enterprise needs. Provide operation and maintenance teaching, Help Center, data analysis consulting, corporate training courses and other product introduction services, which will take more than one month.

4. Application period: Analysis/data teams can execute various AI projects through the product's common interface and implement them quickly. The prediction engine can be connected through the API to develop application modules according to practical scenarios. This is the final stage of application and is time-consuming and can take up to several months.

However, Action Bagel conducts a system integration project process with its SI partners. The SI partners discuss business propositions and provide data sets, and then conduct data health checks and Baseline models. Based on this, Action Bagel provides data diagnosis reports. After confirming the pilot project proposition and producing a demand planning document, the project execution phase begins, with model establishment, optimization and analysis reports provided. System integration with SI industry players, on the one hand, optimizes module development, and on the other hand, uses APIs to connect data sources and output prediction results, import them into the enterprise's field, and effectively solve the propositions faced by enterprises in digital transformation.

Looking forward to the future, Decanter AI platform will continue to develop various AI innovative application services, and cooperate with the upstream, midstream and downstream industries such as enterprise resource planning (ERP), customer relationship management (CRM), business analysis (BI) and e-commerce platforms ( EC) and other partners maximize the benefits of the ecosystem through co-creation, sharing and altruism.

(This article is derived from the selected content of "AI Engineering Online Small Gathering")

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

這是一張圖片。 This is a picture.
Smart Construction Site Security Platform

In construction site operations, implementing safety protection measures and establishing related processes are essential for controlling workplace safety Every business owner strives to minimize industrial safety risks To reduce the probability of workplace accidents, it is particularly important to inspect personal protective equipment PPE and safety measures The Yongyi Smart Construction Site Security Platform utilizes an AI-embedded system, not only to detect whether workers are properly wearing helmets, but also to manage access control at construction site entrances and verify worker identity The Smart Construction Site Security Platform is also a part of the government's push for the Smart Construction Label Initiative 'Smart Site Management' is one of the three main items under the 'Maintenance Management' indicator, highlighting the importance of 'Smart Site Management' This solution includes access management, surveillance management, safety management, and environmental monitoring as aspects of its AIOT solution Feature Highlights 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-11-09」

【解決方案】台灣軟體科技實力媲美國際 Golface智慧服務促高球轉型
Taiwan's Software Technology on Par with International Standards: Golface's Intelligent Services Transform Golf

Compared to Japan, where 90 of golf courses operate without caddies and use an automated service model, golf course management in Taiwan still heavily relies on human labor Facing a labor shortage of up to 70, adopting a site and membership management platform to provide intelligent golf services may be a transformation worth considering for golf course operators 'Taiwan's software technology is comparable to international standards and definitely has the capability to compete in the global market,' says Tsung-Che Liao, co-founder and CEO of Golface, established in 2014 with the vision to leverage technology at its core, aiming to create Taiwan's first golf entertainment platform With over 9 years vested in cultivating intelligent golf services, Liao is well-versed in the nuances of golf course services He has considerable domain knowledge and has launched a comprehensive intelligent golf solution The world's first networked smart golf cart hits the road automation of golf courses is no longer just a dream In mid-May, Golface's newly developed ARES Smart Golf Cat, the world's first networked smart golf cart, officially became operational Equipped with a dedicated vehicle computer mainframe, dual network systems, AI-based visual recognition cameras, and high-precision GPS tracking, golf courses can now confidently allow golfers to drive themselves The system enables real-time monitoring of any driving violations, and the presence of digital consumption traces allows for insurance coverage The procedure is as follows golfers book the cart via a reservation platform, receive a QR code, pay through the platform, and unlock the cart with the QR code at the golf course The golf cart can then be driven onto the course The course management platform can monitor and restrict the areas through which the cart can travel, ensuring it does not leave the paths Upon completion, the cart is returned through a tablet in the cart In instances of any infractions, penalties are applied directly through the user's account, and for severe violations, future access to the carts may be prohibited This achieves the goal of 'automation' ARES Smart Golf Cat is the world's first networked smart golf cart, officially in service since May 2022 'As labor costs continue to rise, recruiting and training caddies are becoming common pain points in the market While Taiwan's courses still employ caddies, there's a 70 labor shortage,' Tsung-Che Liao added This smart golf cart tablet, combined with a mobile app, has become the ultimate smart caddy Golface is striving to complete the last piece of the 'automated golf course' puzzle Amassing digital consumption trails for advanced client segmentation services Starting with consumer needs, Golface has sequentially launched services like the golf cart tablet, mobile app, golf reservation platform, instructional videos Golface TV, golf tourism, and smart carts The smart cart has been operational since May 2022, currently featuring four units with plans for mass production in the latter half of 2022 Although the cart currently requires manual operation by golfers, remote operation is anticipated early in 2023, with autonomous driving expected in the third phase Via the cart tablet and management system, staff can understand the status of the course through on-screen visual representations, showing each cart's real-time and relative location, departure times, and duration of service per hole, which aids course managers in monitoring on-course consumption effectively, thus reducing traffic jams and customer complaints 'Previously, we relied on staff's mental imagery now, we can employ imagery to visualize real-time situations on the course This makes it possible for those who don't understand golf to work in this field,' emphasized Tsung-Che Liao While course control has traditionally been handled by experienced professional players, the shortage of skilled professionals makes hiring even more challenging Therefore, replacing manpower with digital tools yields twice the result with half the effort The golf cart tablet has entered the Japanese golf market, installed at Fukuoka Century Golf Club Golface's golf cart tablet has been introduced to 14 domestic courses, and has now officially entered the Japanese market, favored by Fukuoka Century Golf Club, where tablets have been installed in carts providing automatic voice announcements for hitting strategies, distance measurements, and visual charts displaying hitting data During the COVID-19 pandemic, with borders closed, Golface utilized OTA technology to provide software updates and troubleshooting, ensuring uninterrupted services, which was highly appreciated by the Japanese golf courses Tsung-Che Liao remarks that Taiwan's software technology is not inferior to other countries like Japan, but more support from golf courses is needed to help transform the industry intelligently 'To assist in the transformation of golf courses, the first step is digitalization,' Liao pointed out By helping courses accumulate data and understand customer service cycles and hitting rhythms, it enables courses to avoid congestion and serve more customers To date, Golface has accumulated data on over 20,000 teams, 35 million scorecards, and over 10 million records This data helps enhance management performance, segment customer layers, reduce complaints, and plan marketing strategies for off-peak periods Golface co-founder and CEO Tsung-Che Liao has spent 9 years deepening intelligent golf services, aiming to build Taiwan's first golf entertainment platform「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】AI電眼取代人眼 慧演智能運用AI幫製造業做品管
Using AI vision to replace human vision, Claireye Intelligence uses AI to help the manufacturing industry with quality control

In response to customer demand on a wide variety of products in small quantities in the manufacturing industry, there is an urgent need to find AI solutions from the cloud to terminals Claireye Intelligence provides a solution that integrates software and hardware - BailAI image inspection solution to assist traditional manufacturing industries in improving process efficiency and product quality, thereby achieving the initial goal of transformation After the government declared 2017 to be Taiwan's "First Year of AI," AI startups have sprung up in Taiwan Established in 2018, Claireye Intelligence targets smart manufacturing and provides a platform for AI image analysis and process optimization, using the power of deep learning to detect product defects and abnormalities in the assembly process It assists companies in building infrastructure from terminals to the cloud, which enables automated monitoring of factory production to improve process efficiency and quality Focusing on AI image inspection based on its familiarity with the production line quality control process Shirley Liu, founder and CEO of Claireye Intelligence, is a young entrepreneur She entered the manufacturing industry after graduating from college and held a quality control position in the plastic injection process of hard disk parts "She was already on the production line at the time, and is familiar with the production line process of production machinery" She later switched career paths to marketing and planning, and then worked as an AI product manager When the time came, Shirley Liu decided to start a business, focusing on AI image recognition in the manufacturing industry "The difficulty for enterprises is the lack of an AI development team Even if an enterprise has an AI team, development projects will take a lot of time, at least 6-12 months" said Shirley Liu, who is well versed in the market's pain points The problem that needs to be solved by platforms is to provide services that allow traditional manufacturing industries to build their own AI models without needing employees with a programming background, and to remotely assist production lines with troubleshooting and subsequent system maintenance, helping companies save development time and labor costs BailAI image inspection platform usage scenarios Facing the large number of competitors that provide AI image recognition in the market, what are the technical advantages of Claireye Intelligence Shirley Liu said that many companies currently have AOI equipment, but the bottleneck in the application of AOI is that it can only be used for defect inspection in fast production of large quantities, and parameters need to be adjusted after each inspection or production Based on her understanding of the industry, most SMEs are limited by their financial resources due to AOI equipment often costing over NT1 million, but they also want to use automated inspection This is where Claireye Intelligence comes in Shirley Liu went on to say that it is impossible for traditional manufacturing industries to maintain a technical team that includes AI engineers, data engineers, cloud architects, and terminal architects Claireye Intelligence specializes in software and hardware integration Enterprises can use the BailAI image inspection platform to easily solve inspection problems on the production line In other words, customers only need to provide images or samples for Claireye Intelligence to carry out model training, model deployment, and system integration, and they can easily use AI technology to optimize and monitor production line processes Participated in the AI New Talent Selection and achieved a recognition rate of over 90 in assembly behavioral image recognition For example, a certain connector manufacturer only has 1-2 AI engineers in its technical team The main problem that needs to be solved is that most operators are on the production line, while quality control and senior managers are not on site, and the company wants to understand the actual situation of the production line through remote monitoring Claireye Intelligence uses industrial cameras to capture production line images, and transmits AI image analysis to the remote end Supervisors and quality control personnel can observe if there are any errors in the production line assembly, such as whether the connectors and lines are connected properly, through the monitor Claireye Intelligence's AI image inspection operates on Microsoft's Azure cloud platform, and also utilizes terminal equipment, such as NVIDIA's edge computing equipment placed around the inspection station, to assist traditional manufacturing industries with improving production line efficiency and detecting problems early through an integrated solution from the cloud to terminals Claireye Intelligencersquos customers currently include aviation, electronic peripherals, connectors, and metal industries Assembly process solution for human behavior recognition in assembly lines achieves an accuracy of over 90 In order to demonstrate the depth of technology, Claireye Intelligence participated in the 2021 AI New Talents Selection of the Industrial Development Bureau, Ministry of Economic Affairs, and provided Lite-On Technology with the "assembly process solution for human behavior recognition in assembly lines" The solution determines effective working hours and ineffective working hours of operators on the production line through cameras and AI image recognition It recognizes hand posture and position through images to determine the operator's assembly behavior, achieving an accuracy of over 90 Shirley Liu added that the assembly process of electronic components is complex, mostly carried out manually, and cannot be replaced by robotic arms Claireye Intelligence used cameras to film the assembly process of operators at Lite-On's assembly station The algorithm is then trained and corrected based on the video, and the final trained model can directly determine whether there are any errors in the assembly process to improve the overall process Project development time is expected to be shortened to 1 month by using the BailAI image inspection platform Since its establishment more than three years ago, Claireye Intelligence has accumulated a considerable amount of project experience and hopes to commercialize the project experience Shirley Liu pointed out that the trial version of BailAI image inspection will be completed this year 2022 Customers can choose industrial cameras or video cameras based on the detail of the object being inspected It can even use X-rays to capture images, and then the images are automatically marked by the platform Claireye Intelligence will provide customers with AI application models suitable for the field Inferences can also be made in the cloud or terminals for launch in the manufacturing industry The metals industry, metal casings of industrial computers, connectors, electronic peripherals, and mechanical parts can all use the platform for defect detection and object identification Claireye Intelligence will continue to improve its technical capabilities, accumulate customer experience to complete commercialization, and also accelerate the implementation of AI inspection applications In the mid-term, it will build terminal and cloud infrastructure and shorten the development time of enterprise AI projects from 6-12 months to 1 month, reducing usage time and lowering the threshold for enterprises The long-term goal is to target the Southeast Asian market where Taiwanese businesses are gathered, expand software and hardware integrated AI solutions to overseas markets, and expand the scale of operations