:::

【2020 Application Example】 AI constructs the best coating model to reduce the inspection cost of scrap electrical steel sheets, saving NT$2 million per year

Surface treatment applications face rising costs and talent gaps

The development of metal surface treatment technology affects the quality of aerospace, automobile, machinery, home appliance, communications, and fastener products sold domestically and exported. At the same time, it plays a pivotal role in domestic smart machinery, national defense, and circular economy in the " 5+2 Industrial Innovation Plan." According to 2018 survey statistics, the output value of the metal surface treatment industry reached NT$151.5 billion, an increase of 3.6% compared to 2017.

However, metal surface treatment is a labor-intensive, energy-consuming, and pollution-intensive industry. It has long suffered from a shortage of professional and technical talent, and the tightening of environmental regulations has caused processing costs to continue to rise. As a result, the industry is facing a crisis of survival and a crisis of competition from international high-value supply chains.

Manual quality control faces market challenges, while the coating process has found new opportunities

Overseas markets currently account for 70% of the revenue of a domestic steel plate coating plant. It expanded into the automotive steel, diverse supply chain, and various special steel product markets in 2016. It is imperative to improve the quality of surface treatment through innovative technologies, in order to seize international markets.

In the continuous steel plate coating process, the price difference between finished steel plate products and defective products is about 10 times. Manual inspection is used in the current stage. During the production process, 10 m needs to be cut from each steel coil and becomes fixed inspection waste, incurring a significant amount of cost for waste materials, and also delaying production. At the same time, the instability in manual inspection quality also makes production quality unstable.

The Southern Taiwan Industry Promotion Center (STIPC) utilized the guidance capabilities it accumulated over a decade in Southern Taiwan, and matched the steel plate coating plant’s pain point with an AI optical measurement technology service provider. This reduced the cost of consumables used in steel plate inspection, and reduce errors caused by fatigue during manual inspection.

Stabilizing steel plate coating quality with optical measurement technology

In order to control the quality of the coating process, image recognition must be used to identify product yield. General measurement technology requires contact to detect the thickness of coating. Therefore, the STIPC match the plant with an AI optical measurement technology service provider to assist in the development of a non-contact optical measuring instrument, record coating data, and then compare the data to obtain the best process parameters.

Illustration of 3D non-contact measuring instrument testing

▲Illustration of 3D non-contact measuring instrument testing

Presentation of measuring instrument data

▲Presentation of measuring instrument data

Rapid scanning through AOI achieves non-contact measurement. It can quickly scan the profile and overall dimensions of the object being measured without directly making contact with the product or damaging the surface of the steel plate. It can immediately control coating thickness and quality of steel plates without increasing cost. We hope to calculate data of the process environment and design the product abnormality warning range, so that it can be used to make the process smarter.

In the future, this solution will further detect surface defects and color differences of finished steel plates to reduce the proportion of discarded material, solve the problem of the gap in professional and technical talent, and improve product yields.

Schematic diagram of non-contact measuring instrument

▲Schematic diagram of non-contact measuring instrument

Establish an AI coating model to create world-class steel plate supply standards

With the guidance of the STIPC in 2020, the steel plate coating plant accelerated the application of advanced process technology and established quantified indicators of surface treatment process quality standards, which will help domestic surface treatment companies produce high-quality electrical steel sheets, and is expected to increase the product price by 2%.

In addition, it can also assist companies in the industry obtain heat treatment certifications for high-value aerospace, electric vehicle, fastener, and aerospace products, increasing the industry’s added value through innovative thinking, and continuing to lead the metal industry forward.

Recommend Cases

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
HRT Technology Improves Production Efficiency by 20% Through AOI Detection of Defects in VCSEL Packaging

In 2017, the launch of the iPhone X made 3D sensor technology used in Face ID highly popular, which drove the development of VCSEL, a core component in the 3D sensor module In the detection of defects in incoming packaged VCSEL, the use of AI inference models can solve the industry's issue with low yield and improve reliability to 95 VCSEL technology currently can be used in many applications and various end consumer markets, including robots, mobile devices, surveillance, drones, and ARVR VCSELs are a good solution in applications that require high-speed modulation capabilities, such as cameras and biometrics VCSEL technology has a wide range ofnbsp applications, including in drones Pictured Zoyi Technology's Agricultural Drone VCSEL technology has a wide range of applications, AI technology assists in defect detection HRT Technology stated that the packaged VCSEL market is also facing strong price competition from competitors, and needs to further reduce costs and enhance product competitiveness One of the key problems is the replacement of glass lens with epoxy resin lens The production of traditional glass lenses has high yield, but the cost is higher than that of epoxy resin lenses Due to the cutting process of epoxy resin, the side wall of cutting lines can easily have rough edges, causing it to be oversized The release of stress caused by heat during the mounting process will directly cause the optical lens to break HRT Technology pointed out that the incoming inspection of VCSEL epoxy resin lenses is very important Under the constraints of packaging space, the space for fitting the package and optical lens is limited Moreover, the optical lenses will be confined to a metal frame If the dimensional tolerances are properly controlled, stress release due to heat during mounting can easily cause the optical lens to break, resulting in a yield loss of up to 10 in the VCSEL package reliability verification, resulting in an increase in production costs In order to solve the problems above, HRT Technology hopes to use AI to monitor the size and appearance defects of epoxy resin components in the VCSEL epoxy resin lens incoming stage, verifying whether their dimensions meet specifications, whether the cutting edges are smooth, and whether there are any defects in their appearance Since traditional incoming material inspection requires a rough visual inspection by humans to distinguish the quality The problem of image collection needs to be solved first to successfully collect image data Therefore, HRT Technology first developed an Automated Optical Inspection AOI device, which includes X, Y, Z three-axis motion, high-resolution cameras, and related control software to automatically record images After collecting the image data, opencv aligns the test image and a normal image to determine differences between the two images, and then pixel mapping is used to compare the pixel area to complete initial screening Manual labeling is carried out according to the image classification above, including samples that are normal, have defects in appearance, or have different shape characteristics, and then algorithm training and verification is carried out Residual neural network ResNet or other related algorithms are used for deep learning to identify the quality of lenses Implementation of AOI inspection improves production efficiency by 20 and above Comparing the differences before and after the implementation of AI image inspection, the incoming VCSEL lens inspection before implementation only involved manual inspection of the appearance The lens is packaged on the VCSEL package that has completed die bonding After passing the general light up test, the final reliability test high temperature reflow is performed Failed samples go into the rework process However, after the implementation of AOI inspection, it can screen defective lenses sooner and reduce the cost of subsequent materials input, it can also reduce the need for rework due to failure, improving yield to 95 and above in the reliability verification This is expected to help companies reduce production costs by 10 and increase production efficiency by 20 and above The difference before and after implementing AI image detection HRT Technology pointed out that this technology is an AI application developed based on tiny images It uses deep learning algorithms to identify defects in the images The trained network automatically classifies image data to predetermined categories Defect categories can be determined through reference images, so cumbersome programming is not required In the industrial machine vision environment, deep learning is mainly used for classification tasks in applications, such as inspection of industrial products or identification of parts In the future, with the development of IoT wearable devices and the trend of energy saving, the size of optoelectronic components will continue to shrink This technology can be applied to the detection of defects in the appearance of other tiny optoelectronic components in the future

【導入案例】救命急如星火 AI病危系統監測掌握黃金搶救期
Life-saving is as urgent as a spark AI critical illness system monitors and grasps the golden rescue period

60-year-old Mr Huang was admitted to the hospital due to a stroke After lying in the intensive care unit for two weeks, his condition suddenly took a turn for the worse After rescue, he was lucky enough to survive In fact, with the assistance of AI critical illness early warning technology, hospitals can detect signs and take timely and accurate medical measures 6-8 hours before a patient's heart stops, which can greatly reduce the chance of death in the hospital The deterioration of the condition is a process that evolves over time, and its subtle changes are by no means without context Previous research reports show that about 60 to 70 of inpatients who experience unexpected in-hospital cardiac arrest had symptoms 6 to 8 hours before their cardiac arrest, but only a quarter of them were recognized by clinical staff Detection and discovery, therefore, there is a need for a risk warning tool or system that can be used earlier and continuously to monitor the condition, alert medical staff to pay attention to subtle changes in the patient's condition at any time, and take timely and accurate intervention measures before the condition progresses to effectively reduce adverse events or the risk of serious adverse events Unexpected deterioration cannot be detected early Acute and severe patients often undergo unpredictable changes, and timely detection or prediction of potential acute and severe patients is an important issue The currently commonly used clinical assessment method is Modified Early Warning Score MEWS, which uses simple physiological parameter assessment including heartbeat, respiratory rate, systolic blood pressure, body temperature, urine output and state of consciousness to screen out high-risk patients, and has been proven to be predictive Patient clinical prognosis MEWS is a scoring mechanism with a single time point and a standardized formula However, the AI crisis warning system developed by Boxin Medical Electronics - Hospital Emergency and Critical Care Early Warning Index System EWS is designed to predict patient status with immediate response , collect the physiological data of patients over time for deep learning, find the best prediction model, and improve the overall accuracy Boxin Medical Electronics uses a big data analysis model to build an early warning system EWS, IoT Internet of Things and 5G communication technology, allowing medical staff to remotely monitor the physiological status of patients through communication equipment, and monitor emergency and severe cases quickly The patient's condition changes and the golden rescue period of 6-8 hours before cardiac arrest can be grasped After Boxin Medical Electronics introduces AI visual interpretation, unmanned operation can greatly reduce medical manpower The AI technology developed by Boxin Medical Electronics is the Gradient Boosting Ensemble Learning System GBELS to build an early warning system It is a learning-based EWS prediction algorithm developed by the company, which is an integrated learning Ensemble Learning and is classified as supervised learning, providing the following three functions 1 Early warning risk notification is used to analyze representative data using GBELS to provide an early risk score so that medical staff can conduct immediate clinical assessment and provide appropriate medical treatment 2 Reduce medical manpower Collect continuous physiological monitoring data, such as heartbeat, respiration, blood pressure and blood oxygen concentration, etc, to reduce the time for medical staff to write cases 3 Combine IOT logistics network and 5G communication technology to quickly transmit medical data such as monitoring parameters and imaging data, and assist medical staff to monitor changes in patients' condition remotely through communication equipment AI critical illness system monitoring to master the golden treatment period Boxin Medical Electronics stated that assessing the severity of the disease in acute and severe patients is a complex task, and patients often experience unpredictable changes Clinical medical staff often judge the condition based on their own clinical experience or intuition, which lacks science and objectivity, resulting in the inability to correctly identify and timely detect potentially acute and severe patients, resulting in or misdiagnosis leading to increased in-hospital mortality of patients The introduction of an AI early critical illness warning system can assist emergency and critical care medical staff to correctly predict the patient's condition and allow patients to receive the care they need immediately This can reduce the manpower arrangement of the emergency and critical care ward at the same time and reduce labor costs In addition, the easy-to-carry design will help the system be introduced into ambulances, home care and other places in the future, so that emergency patients can receive appropriate care earlier Other departments within the hospital can also develop new applications around this system, which can effectively accelerate the development and promotion of smart medical technology With the COVID-19 epidemic still raging in many countries around the world, this system can also help hospitals in various places to operate more effectively Caring for and monitoring the condition of critically ill patients In addition to AI critical illness warning, Boxin Medical Electronics has also developed AI image interpretation - Medical Physiological Monitor Life Cycle Compliance Testing AVS, which uses AI image interpretation technology to develop automated quality inspection of life support medical equipment The instrument solves the time-consuming problem of medical instrument testing It can reduce testing time by 70, increase the number of tests by 3 times, and effectively reduce labor costs by 50 At the same time, it is 100 compliant with regulatory requirements, and gradually solves the shortage of manpower and medical resources in the medical field , medical work overload and other issues It has now taken root in mainland China and is actively preparing for its launch in Europe It will develop towards the Japanese and American markets in the future Boxin Medical Electronics develops AI image interpretation-medical physiological monitor life cycle compliance testing AVS to solve the time-consuming problem of medical instrument testing and can reduce testing by 70 time At this stage, Boxin Medical's smart medical technology has been introduced into medical hospitals including Hsinchu MacKay, Changkei, Dongyuan General Hospital, Kaohsiung University of Technology Affiliated Hospital, Zhenxin Hospital, Hsintai Hospital, Taipei Medical University Affiliated Hospital, etc GE HealthcareInc, an internationally renowned medical materials manufacturer, and Mindray Medical, China's largest medical materials manufacturer, are both representative customers of Boxin Medical Electronics 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】汙水處理的救星 結合大數據與AI技術打開環保產業另一片天
Savior of Wastewater Treatment: Combining Big Data and AI Technology Opens Another Horizon in the Environmental Industry

As water resources deplete and environmental protection needs increase, wastewater treatment plants have increasingly adopted AI technology to assist in monitoring and warning systems Zhongxin行's integration of big data and AI technology has opened up new possibilities in the environmental industry In the future, besides boosting the technological momentum of the wastewater treatment industry, it can also be promoted to other industries to foster technological and economic development Founded in year 1980 as Zhongxin Engineering later renamed to Zhongxin行 Company Limited, it is one of the largest and most technically equipped environmental companies in the domestic operation and maintenance field Zhongxin行's achievements in the operation and maintenance of sewer systems span across Taiwan, including science parks, industrial zones, international airports, schools, collective housing, national parks, and factories Introduction of AI systems in wastewater plants Precisely reduces medication addition times and lowers the risk of penalties for water quality violations At the wastewater treatment plant in Hsinchu Science Park, Zhongxin行 introduced the 'AOMBR Carbon Source and Aeration Intelligent Enhancement Control System Development,' which accurately predicts air volume control and reduces medication times, thus lowering the risk of hefty fines Zhongxin行 points out that with the vigorous development of advanced industries and increasingly strict effluent standards, a slight misalignment in equipment control can lead to major discrepancies in water quality In recent years, many wastewater treatment facilities have incorporated automatic control functions, yet onsite conditions often deviate slightly from theoretical expectations, causing situations where good treatment technologies must continuously adapt and adjust to achieve effective effluent water quality control 'The better the quality of the effluent, the greater the pressure on the operators This is the biggest pain point for Zhongxin行,' said a senior manager candidly Regular water quality testing and equipment maintenance ensure that effluent water stays below legal standards This means that operators need to be on top of equipment and water quality conditions daily If there are sudden anomalies in influent water quality or equipment malfunctions, linked issues can lead to pollution Therefore, besides performing regular maintenance and testing, it is critical to constantly monitor the dashboard to ensure system stability, consuming both manpower and mental energy Zhongxin行's on-site operators work 24-hour shifts, constantly monitoring effluent water quality Combined with laboratory water testing and analysis, if the wastewater treatment values do not meet requirements, they face both administrative and contractual fines from environmental agencies and granting authorities, which also create significant psychological pressure on the employees Over the years, Zhongxin行 has built up a vast database of water quality information and invaluable experience passed down among employees, allowing a comprehensive understanding of the entire system's operational characteristics Moreover, by analyzing equipment or water quality data for key signals, problems in the treatment units can be pinpointed If AI technology could be adopted to replace manual inspections of wastewater sources and generate pre-warning signals for systematic assessment, it would significantly alleviate the pressure on staff Response time reduced from 8 hours to 4 hours, saving half the time By implementing 'AOMBR Carbon Source and Aeration Intelligent Enhancement Control System Development,' Zhongxin行 utilizes accumulated wastewater data along with verbal recounts of operator experiences on-site With the support of AI technology and environmental engineering principles, key parameters in the biological treatment unit such as carbon source dosages and aeration can be effectively controlled Through the AI transformation of wastewater treatment, a balance is achieved among pollutant removal, microbial growth, equipment energy conservation, and operation economization, achieving rationalized control parameters Carbon source and aeration parameter adjustment steps range from data collection, model training to prediction verification In the long run, incorporating historical data calculations, AI can operate within known boundary conditions, not only recording past water quality and equipment operational characteristics far more accurately, but also developing predictive models to find optimal solutions that offer the best results in terms of chemical use, energy saving, reduced greenhouse gas emissions, and pollutant removal According to Zhongxin行's estimates, originally due to human parameter adjustments leading to errors, controlling response time would take about 8 hours With the introduction of AI technology, not only can measurement errors be reduced, but also the control response time can be shortened to 4 hours, saving around half the time This enhancement increases the turnover rate of personnel and effectively reduces the risks of penalties due to operator errors and thus markedly reducing the pressure on employees Dashboard digital display panel illustration「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」