:::

【2020 Solutions】 Apex Intelligence Enhances Facial Recognition Technology by Tenfold Efficiency

Facial recognition software applying deep learning and edge computing model compression technologies significantly reduces costs compared to cloud computing and has increased efficiency by more than ten times. The technology has been introduced to law enforcement agencies for suspect identification and will be used in more access control systems, membership systems, and provide diverse AI services in the future.

By integrating edge computing, facial recognition time is saved by more than ten times.

As end-user demand for AI increases, most current AI applications involve sending files to the cloud, where they are processed and analyzed by high-end processors like CPUs and GPUs. Future devices such as tablets, smartphones, surveillance cameras, and smart doorbells will feature AI applications, addressing issues of insufficient computing resources and decreased performance with edge computing and efficient deep learning algorithms.

Apex Intelligence developed AiBo facial recognition software applying deep learning and edge computing model compression technology that allows IPCams to automatically recognize every smile of children aged 0-12; through local device computation, emotion detection accuracy exceeds 98%, significantly saving more than ten times the photography and recognition time compared to cloud services. Photos can also be uploaded to the cloud to create smart albums using facial classification technology, allowing users to share albums with friends and family.

Using edge computing reduces expenditures by $4 million annually

With edge computing, there's no need to spend time sending all images back to the cloud for recognition and classification. This saves more storage space and costs, and can expand services to remote areas or locations with unstable internet. This technology has already been partnered with major domestic manufacturers, significantly reducing the average annual cloud storage, computer processing, and service costs by $4 million. The application also utilizes facial recognition for real authentication, adding an extra layer of protection for online transactions, while physical retail stores can use security system image analysis to quickly identify customers, providing more precise service quality.

Apex Intelligence's product technology can perform facial detection, identification, classification, object detection, and gaze detection. The main focus of its AI deep learning technology is on image processing, with existing products including facial unlock and smart photo albums. For example, in collaboration with UMC, it is determined whether personnel wearing safety gear enter within safety cones. This technology can be further applied in homes, family restaurants, kindergartens, and more, enhancing applications in access control systems and membership systems to provide diverse AI services.

Zhongwei Chen, founder and CEO of Apex Intelligence, also pointed out that images occupy a significant proportion in the data types of the Internet of Things. AI can extend the value of images, inspiring different creativity and generating enormous business opportunities in the future.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

這是一張圖片。 This is a picture.
AI Defect Intelligent Detection - Energy Reduction Smart Monitoring Solutions

AIIntelligent Defect Detection-Smart Monitoring Solution to Reduce Process Energy Consumption When there are over2ten thousand chip resistors on a ceramic substrate, how should one quickly detect defects The answer isUsingAIto detect。 In the era of rapid technological development, Leike proudly announces significant advances in its laser processing technology, thanks to the innovative applications of artificial intelligenceAILeike is committed to integrating advancedAItechnology into laser processing machines, and in2019year, in collaboration with partners, developed the world's first laser machining system that integratesAItechnology, and on this basis further developed in2023year the first ceramic substrate inspection machine that integratesAOIAILASERtechnology Smart Ceramic Substrate Inspection Machine Through the introduction ofAIand machine learning, along with the accumulation of big data samples, the system becomes smarter, which has led to improved product yield within one year5dramatically reducing the inspection time from originally2minutesper piece to just20secondsper piece, drastically lowering inspection costs, enabling efficient initial detection and post-laser marking to reduce waste in subsequent processes, diminishing overall carbon emissions of the site, allowing the automatic generation of detailed inspection reports for data analysis and optimization, which helps increase equipment capacity, reduce human error, enhancing the value of Leike's equipment, and strengthening the international competitiveness of the country's electromechanical industry Leike CorporationLaser TekFounded in1988year, and officially listed as a publicly traded company in2002year Since its establishment, it has become a leading global service provider and manufacturer of electronic packaging materials,SMDElectronic Packaging Materials,SMTinspection equipment, and laser systems Leike's general manager, with years of laser integration experience, observed that passive component customers can produce over20With many years of laser integration experience, he observed that the production capacity of passive component customers can exceed10billionSMDcomponents every month, but withSMDcomponents per month However, as component sizes continue to miniaturize, defect detection during production becomes increasingly challenging With thousands to millions of components on a single ceramic substrate, and as component sizes decrease and their laser processing positions become smaller, the difficulty of detection increases, making production inspection a critical process R-SMD Production Inspection Process AOIproblems of yield overkill relying onAIfor oversight, Yet,AOIthe inspection machine is a widespread and mature type, but the high accuracy on the marketAOIuses a technique that captures small images in a single shot and stitches them into a larger image Although accurate, this method requires more time for small-sizedSMDcomponents, which are more likely to be influenced by environmental factors like lighting and vibration that can cause misjudgments as a result,AOIyield rate can only be estimated by sampling, and components with poor sampling yield are not removed individually but discarded together with good ones manual re-inspection not only increases costs, but the lack of unified inspection standards ultimately results in about2-5products that are not detected as defective enter the subsequent manufacturing process monthly at least2,000thousands of such defective componentsSMDthat were not initially detected causing ongoing printing and machining inspections in subsequent processes Regardless of the waste of ink materials and energy, which increases the cost burden, this also accelerates equipment wear and shortens operational life Each stage of waste increases the site's carbon emissions, unfavorably impacting the company's carbon footprint Post-Adjustment Sample Photo Example 0402 TraditionalAOI High false positive rates in Automatic Optical Inspection AOI are a major production issue for manufacturers, particularly in the passive components industry where 'it's better to mistakenly reject a hundred than miss one'—a high standard, often leading to AOI setting extremely high parameters which makes devices overly sensitive Excessive stringency in data parameter settings can lead to high false positive rates For instance, if the dirt contamination on passive components resembles the color of the printing layers,AOI the misjudgment rate could reach 7 percent Contamination Dirt and Print Layer Color SimilarityAOIProne to Misjudgment Raytek stands apart from otherAOIsuppliers by discarding the stitching of small images or line scanning, effectively preventing data loss and discrepancies caused by hardware or environmental conditions during image processing It employs a large-array photodetector coupled with custom high-resolution lenses, using specialized imaging for composite processing Throughout this process, each pixel of the photodetector contains light information captured from various positions By combining this data, the image resolution and detail are enhanced, reaching a resolution of millions, and with multiple automatic light adjustments, a single shot can manage7070mmachieving an image resolution up to5umobtaining clear images, then throughSmart-AItechniques for analysis and selection Three Innovative Methods to Achieve Rapid InspectionSmart -AI Raytek's General Manager shares, rapidly implementingAItechnology and reducing inspection computation time, further developingSmart-AIthree major approaches Method one, initially useAOIto quickly separate good products from those with controversial defects, focusing the detection on the minority of defective identifications Method two, an automated labeling platform simplifies the training issue by using cameras to collect data from machines, automatic labeling replaces manual labeling, progressively training to improve accuracy The simpler the problem, the less data needed for training Method three,AOIandAIDual-track Advancement In the smart manufacturing process, relying solely onAOIorAIis not enough to accomplish the task alone, it must be preceded byAOIfirst marking the characteristics, distinguishing between good and defective parts, then usingAIa method for labeling and training Subsequently, by utilizing a repeating cascade effect, the detection benefits are greater as more training data accumulates,AOIreducing the ratio of errors,AIand gradually increasing the accuracy ratio Post Adjustment Object Detection and Training Through three major methods gradually building system reliability, and categorizing data for defect sorting, ultimatelyAIreturning the judgement results to the main system, utilizing laser machining to control truly defective products at the front end of the process, reducing the inflow of defective products into other stations, thus minimizing losses due to repeated tests or reprocessing Leading in smart laser equipment, chooseLASERTEKthe right one Continuously developed by the Taiwanese brand Raytek, combiningAIsmart detection and laser processing equipment to progressively build a smart monitoring solution stack from raw materials, products, testing, laser equipment, etc, aiming at reducing the energy consumption of the production process, implementing semiconductor advancements, substrates and component processing among other fields, producing equipment products capable of meeting the end-user demands under low carbon conditions, rapidly and with quality products and services expanding both domestic and international markets, enhancing the global competitiveness of localMade in TaiwanMITequipment 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
Complete checkout in 1 second, Viscovery AI image recognition assists smart retail

Artificial intelligence AI has gradually changed the way various industries operate in recent years However, most of the work is still done by humans, with AI playing a supporting role This has led to emergence of the term "AI Copilot," which stands for "AI-driven tools or assistants" that aim to assist users in completing various tasks and improve productivity and efficiency The concept of AI Copilot comes from the role of "co-pilot" During flight, the co-pilot assists the main pilot in completing various tasks to ensure flight safety and efficiency In fact, there have been signs of various "machines" beginning to play the role of "copilot" in different fields since the Industrial Revolution, assisting humans in completing heavy physical and repetitive tasks, greatly improving factory production efficiency, and driving rapid economic development Following the advancement of computing equipment and breakthroughs in machine learning, deep learning, and image recognition technologies, the concept of AI Copilot has gradually taken shape The development of AI Copilot marks the transition from "machine-assisted to AI-assisted" Early robots could only complete preset repetitive tasks, but today's AI copilot can learn and adapt to new environments and tasks, and continuously optimize its performance in practical applications This transformation not only changes human-machine interactions, but also has a profound impact on various industries The application scope of AI copilot covers various industries, including finance, healthcare, manufacturing, education, retail, etc, and are everywhere to be seen Application of AI copilot in the retail industry AI image recognition checkout In the retail industry, the application of AI copilot has begun to show concrete results Take Viscovery's AI image recognition checkout system as an example This system is a type of AI copilot model that helps store clerks speed up checkout or assists consumers in simplifying the self-service checkout process The store clerk needs to scan the product barcodes one by one in the regular checkout method If a product does not have a barcode, such as bread and meals, the clerk needs to first visually confirm the items, and then input them into the POS checkout system one by one Based on actual measurements at a chain bakery, it takes 22 seconds for an experienced clerk from "visual recognition" to "entering product information of a plate of 6 items into the checkout system" New clerks may need even more time In addition, according to a Japanese bakery operator, it takes 1 to 2 months to train employees to become familiar with products Now with AI image recognition technology, store clerks let AI handle the "product recognition" step, and AI will play the role of copilot, quickly identifying items within 1 second, speeding up checkout to save 50 of checkout time, and optimizing customers'shopping experience The time cost of training employees to identify bread can also be effectively shortened Even for products with barcodes, AI can quickly identify multiple items in one second, which is more efficient than scanning barcodes one by one The self-checkout system "assisted" by AI image recognition allows consumers to successfully complete shopping without the help of store clerks, eliminating the trouble of swiping barcodes or searching for items on the screen, which improves the shopping experience In a time when store clerks are hard to hire due to labor shortage, this also helps stores reduce operating costs AI quickly identifies multiple checkout items in just one second Source of image Viscovery Recently, startups dedicated to developing AI image recognition checkout solutions have emerged in various countries The most lightweight solution currently known is in Taiwan It can be immediately used by installing a Viscovery lens and a tablet installed with Viscovery AI image recognition software at the checkout counter to connect to the store's existing POS checkout system There are various integration methods, including plug-and-play and API solutions integrated with the store's POS system Viscovery AI image recognition system can be painlessly integrated with the store's existing POS system Source of image Viscovery Example of AI image recognition checkout Currently, the Viscovery AI image recognition system is being used in bakery chains in Taiwan, Chinese noodle shops in Singapore, micromarkets in department stores in Sendai, Japan, and Japanese bakeries and cake shops Over 7 million transactions were completed through this AI system, which identified more than 40 million items These use cases demonstrate the extensive application of the Viscovery AI image recognition system in the retail industry In the future, the company will continue to explore the various possibilities of using Vision AI in retail and catering nbsp The Viscovery AI image recognition system is already being used in bakeries, cake shops, restaurants, and convenience stores in Japan, Singapore, and Taiwan Source of image Viscovery

【解決方案】運用極現科技4D無人機雲端平台 巡檢成本降為五分之一
Utilizing Extreme Present Tech's 4D Drone Cloud Platform Reduces Inspection Costs to One-Fifth

The use of drones for intelligent inspection is becoming increasingly common, with major petrochemical and solar power plants continuing to adopt drone applications Located in Hsinchu, Extreme Present Technology earthbook has established a 4D cloud platform using its proprietary technology, offering drone, software, and data analysis platform services for intelligent inspections at solar power and petrochemical plants, reducing the total cost to just one-fifth of traditional methods involving hardware and software purchases, and cutting down the time from one month to approximately 24 hours, making it highly cost-effective For petrochemical industry operators who are constantly in a high-temperature, high-pressure dangerous environment, the safety control and inspection of plant facilities are critical 'As long as we can enhance the capabilities of facility inspection and risk identification in petrochemical sites, resource input is absolutely not an issue,' said a petrochemical industry representative with emphasis By implementing the drone 4D AI inspection cloud platform, the efficiency and safety of facility inspections among petrochemical operators can be elevated, further reducing the risk of equipment downtime Founded in March 2018, Extreme Present Tech has become a consistent winner in domestic entrepreneurship competitions, including being crowned champion in the 2019 OPEN DATA Business Innovation Practice, selected into Microsoft's startup accelerator in 2020, chosen for NVIDIA's AI startup team in 2021, and its products have been launched on the Microsoft Azure platform, earning investments from the National Development Fund and major domestic groups, thereby securing strong market validation for its technical prowess and services The founder and CEO of Extreme Present Tech, Hsu Wei-Cheng, mentioned that at the beginning of its establishment, the company took on the national space center's satellite 3D photography scheduling system and specialized in the integration of geographic information into 3D images As drone hardware technologies matured, the company shifted its operations towards the drone market and combined it with AI image recognition systems to establish a 4D cloud DaaS platform, offering services including online aerial photography ordering DaaS, 5GAIoT cloud platform SaaS, and enterpriseAPI server software, to meet the demands of drones in smart cities, facility inspection, engineering management, disaster response, pollution monitoring, and other applications, maximizing the value of drone services Smart aerial inspection regularly tracks the health status of plant equipment at a glance The quantity and area of petrochemical plants in Taiwan are immense, lacking sufficient manpower for comprehensive equipment inspections Given that petrochemical plants produce high-temperature flammable and corrosive chemicals that must be transmitted and stored through pipelines and tanks, long-term risks like pipeline ruptures and tank blockages could lead to severe occupational safety disasters, equipment downtime, and production stagnation Given the shortfalls in personnel for equipment inspections among petrochemical operators, Extreme Tech has already implemented a 4D AI drone inspection cloud platform combined with AI image recognition technology in petrochemical plant areas, providing ground-breaking evidence through the use of drones and proprietary app software services that connect on-site aerial data collection to the cloud platform, achieving fully automated and real-time aerial monitoring of petrochemical plant equipment pipelines, tanks, and ensuring precise locations and angles for each aerial operation, effectively compensating for the discrepancy in human inspection Hsu Wei-Cheng pointed out that the inspection drones used in petrochemical plants are equipped with dual lenses, one visible light and the other thermal infrared, which allow for determining pipeline obstructions through temperature conditions, enabling clients to immediately view the inspection status of the plant area from remote locations via the earthbook website, enhancing clients' inspection efficiency and accuracy The 4D aerial data platform meets diverse applications such as smart cities, transportation, engineering management, and pollution monitoring DaaS Online Order-Use Model Innovates Aerial Photography Business Model Saving 15 Costs Apart from providing a 4D aerial data platform, Extreme Present Tech also offers DaaS Drone as a Service After customers place orders on the website, Extreme Present coordinates with professionally licensed aerial photographers to provide on-site services Customers can monitor real-time operations through the platform and quickly obtain aerial data to evaluate any abnormalities, enabling timely alerts Take the solar power plant monitoring service as an example Given that solar power plant areas are large and widely distributed, located in the remote Pingtung area with the headquarters in Taipei, for inspections of the Pingtung plant, the customer just needs to use the DaaS service model, directly order online and upload a map of the Pingtung plant, obtain a quote from the company, and then entrust local Pingtung pilots to perform aerial inspections of the solar power plant During the process, the drone's route is automatically calculated by AI to plan the flight path, and the aerial data is transmitted to the client's cloud account, allowing the Taipei headquarters clients to immediately see the inspection status of the solar power plant from the earthbook website such as the condition of the solar panels, dust detection, or abnormal heat generation from solar electromagnetism, effectively helping the customer significantly reduce operational costs and efficiently complete the solar power plant inspection service Introduction of DaaS online aerial photography service in petrochemical plants According to estimates, solar power plant clients often incur high personnel costs by purchasing drones or outsourcing aerial photography With the long-term provision of aerial photography devices and the DaaS business model by Extreme Present Tech, customers can save 45 of aerial photography costs, and obtain aerial inspection reports within 24 hours post-operation, helping clients efficiently identify issues with solar panels Aiming to become the largest aerial data service company and enter the Southeast Asian market Since its establishment in 2018, Extreme Present Tech has rapidly grown in the aerial photography market with innovative thinking, actively expanding its aerial data application services Currently focused on cultivating the Taiwan market, the company aims to enter Southeast Asian nations, with Indonesia chosen as the first stop due to its high demand for infrastructure Hsu Wei-Cheng hopes that earthbook becomes the world's largest aerial data service platform Besides completing the initial round of funding from the National Development Fund and major groups, to penetrate the international market, the company continuously improves its drone data services and AI technology innovations, while also requiring the assistance of entities like the Industrial Technology Research Institute to find strategic investors that complement the company, fulfilling its goal of becoming an international aerial data corporation in phases Founder and CEO of Extreme Present Tech, Hsu Wei-Cheng「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」