:::

【2020 Solutions】 All 10,000 background music tracks are AI-made: Anpu targets the global broadcasting market

"Why does the music industry need AI? What problems can AI solve?" These are the questions Zeng Zhizhong, the founder and CEO of Anpu Artificial Intelligence Co., Ltd., continuously asks himself. Since founding the company in 2018, Zeng Zhizhong has understood market positioning and customer needs clearly. Anpu uses AI composition to seize the global environmental music broadcasting market. With the system online for over a month, AI has created more than 10,000 pieces of music, serving clients across cafes, car showrooms, restaurants, and hair salons with a "legal, free" broadcasting solution, becoming the first choice for stores.

Zeng Zhizhong is a serial entrepreneur with a background in both the internet and music. He has served as the general manager of Taihe Music Group, director of music services for Microsoft and Nokia in Asia Pacific, founded AR company Emitia Technologies and streaming company Tianlida Technology, and currently operates a company called Ouster Music specializing in film and television soundtracks.

With a dual background in technology and music, Zeng Zhizhong navigates AI music to solve copyright dilemmas

With his sharp senses in technology and music, particularly amidst the ongoing AI boom, Zeng Zhizhong constantly contemplates how to turn AI composition into a profitable business. He analyzes examples such as Spotify with 100 million paid subscribers in the USA, 1 million in Taiwan's KK BOX, and the mainland China's IPO-listed QQ Music, all operating at a loss. The primary issue lies with these platforms not owning the copyrights to the music they provide, despite offering membership subscriptions. They must also pay royalties to record companies and creators, leading to 'the bigger they are, the more they lose.'

Zeng Zhizhong, with his tech and music background, aims to create opportunities for AI music

Zeng Zhizhong, with his tech and music background, hopes to carve a niche for AI-generated music

In the music industry, there are two main domains: ambient music (background music, BGM) and pop music. Pop music involves a lengthy production chain including lyric writing, composition, arrangement, singing, harmonizing, mixing, and finalization, entailing high costs and investment risks. Meanwhile, ambient music, used in malls, department stores, cafes, and restaurants, traditionally sees copyrights held by music industry associations in various countries, making acquisitions costly and time-consuming. However, producing music in-house circumvents copyright issues. Thus, composing with AI and retaining copyrights internally becomes a key to success.

According to the International Federation of the Phonographic Industry (IFPI) report, global music market revenues in 2018 grew by 9.7% to $19.1 billion, up from $17.4 billion in 2017. Streaming music revenue alone reached $8.9 billion, accounting for 47% of the global total, nearly half. Publicly broadcasted music accounted for 10-15%, marking a significant portion of the market.

Recognizing the immense potential of the market, Zeng Zhizhong then assessed the technical capabilities of AI music, candidly stating, "AI is not a cure-all." For concert performances or chart-topping pop music, human lyricists and composers are necessary to achieve desired effects, while AI composition typically handles simple, uncomplicated melodies.

Assembling a large music database coupled with proprietary AI algorithms for rapid music production

Anpu Music's AI composition system utilizes algorithms that include Markov chains, neural networks, deep learning methods, and combines the company's proprietary algorithm MDN Music Deeplearning Network, which conforms to unique musical algorithmic theories, thus breaking through traditional pop music structures and styles to create more market-aligned music compositions. The database aggregates a large amount of sheet music data from top charted tracks and renowned songs globally, initially analyzing and summarizing the characteristics and melodies of popular quality music, then employing deep learning for efficient and excellent outcomes in AI composition.

BGMRADIO public broadcasting platform hosts tens of thousands of AI-generated music tracks

▲BGMRADIO公播平台上集結上萬首AI音樂

Anpu provides a clear AI solution for the complex music copyright environment, with a material library owning a vast amount of clear-cut copyrights over 10,000 music tracks in 50 different styles, allowing users to freely choose suitable music to enjoy. Anpu's current business model is twofold: one provides a web-based platform offering 10,000 free AI-generated music tracks for online listening, and the other involves custom music services for a fee. Additionally, responding to the promotional needs of the record industry and artists, it also charges for advertisement playbacks. Another revenue model involves renting music players to users, charging an annual rental fee.

Comparing BGMRADIO's public broadcasting platform with other platforms

▲BGMRADIO公播平台與其他公播平台之比較

Zeng Zhizhong states, "Music knows no borders; good music doesn't distinguish between being created by humans or AI." With current AI algorithms and related technology being quite mature, using AI to produce music is not a difficult task. The key is identifying market pain points for business opportunities. Anpu's market spans Taiwan, Japan, Korea, Singapore, and it aims to continue expanding into China's largest market.

Having founded startups for 20 years in mainland China, Zeng Zhizhong's primary reason for starting a business back home is Taiwan's rich talent pool, especially the interdisciplinary talents. Unlike typical AI or music companies, Anpu requires a large number of amphibious talents capable of both programming and music. The company comprises two main departments: the R&D department, mostly formed from graduates from NTHU and NCTU in electrical engineering, electronic engineering, and applied music, and the music production department, where after quick AI algorithmic composition in the R&D department, highly musically educated producers refine these AI compositions into high-quality music experiences.

Anpu's team consists mostly of interdisciplinary talents with both technology and music skills

▲安譜團隊大多是科技與音樂兼具的跨域人才

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

這是一張圖片。 This is a picture.
AI Defect Intelligent Detection - Energy Reduction Smart Monitoring Solutions

AIIntelligent Defect Detection-Smart Monitoring Solution to Reduce Process Energy Consumption When there are over2ten thousand chip resistors on a ceramic substrate, how should one quickly detect defects The answer isUsingAIto detect。 In the era of rapid technological development, Leike proudly announces significant advances in its laser processing technology, thanks to the innovative applications of artificial intelligenceAILeike is committed to integrating advancedAItechnology into laser processing machines, and in2019year, in collaboration with partners, developed the world's first laser machining system that integratesAItechnology, and on this basis further developed in2023year the first ceramic substrate inspection machine that integratesAOIAILASERtechnology Smart Ceramic Substrate Inspection Machine Through the introduction ofAIand machine learning, along with the accumulation of big data samples, the system becomes smarter, which has led to improved product yield within one year5dramatically reducing the inspection time from originally2minutesper piece to just20secondsper piece, drastically lowering inspection costs, enabling efficient initial detection and post-laser marking to reduce waste in subsequent processes, diminishing overall carbon emissions of the site, allowing the automatic generation of detailed inspection reports for data analysis and optimization, which helps increase equipment capacity, reduce human error, enhancing the value of Leike's equipment, and strengthening the international competitiveness of the country's electromechanical industry Leike CorporationLaser TekFounded in1988year, and officially listed as a publicly traded company in2002year Since its establishment, it has become a leading global service provider and manufacturer of electronic packaging materials,SMDElectronic Packaging Materials,SMTinspection equipment, and laser systems Leike's general manager, with years of laser integration experience, observed that passive component customers can produce over20With many years of laser integration experience, he observed that the production capacity of passive component customers can exceed10billionSMDcomponents every month, but withSMDcomponents per month However, as component sizes continue to miniaturize, defect detection during production becomes increasingly challenging With thousands to millions of components on a single ceramic substrate, and as component sizes decrease and their laser processing positions become smaller, the difficulty of detection increases, making production inspection a critical process R-SMD Production Inspection Process AOIproblems of yield overkill relying onAIfor oversight, Yet,AOIthe inspection machine is a widespread and mature type, but the high accuracy on the marketAOIuses a technique that captures small images in a single shot and stitches them into a larger image Although accurate, this method requires more time for small-sizedSMDcomponents, which are more likely to be influenced by environmental factors like lighting and vibration that can cause misjudgments as a result,AOIyield rate can only be estimated by sampling, and components with poor sampling yield are not removed individually but discarded together with good ones manual re-inspection not only increases costs, but the lack of unified inspection standards ultimately results in about2-5products that are not detected as defective enter the subsequent manufacturing process monthly at least2,000thousands of such defective componentsSMDthat were not initially detected causing ongoing printing and machining inspections in subsequent processes Regardless of the waste of ink materials and energy, which increases the cost burden, this also accelerates equipment wear and shortens operational life Each stage of waste increases the site's carbon emissions, unfavorably impacting the company's carbon footprint Post-Adjustment Sample Photo Example 0402 TraditionalAOI High false positive rates in Automatic Optical Inspection AOI are a major production issue for manufacturers, particularly in the passive components industry where 'it's better to mistakenly reject a hundred than miss one'—a high standard, often leading to AOI setting extremely high parameters which makes devices overly sensitive Excessive stringency in data parameter settings can lead to high false positive rates For instance, if the dirt contamination on passive components resembles the color of the printing layers,AOI the misjudgment rate could reach 7 percent Contamination Dirt and Print Layer Color SimilarityAOIProne to Misjudgment Raytek stands apart from otherAOIsuppliers by discarding the stitching of small images or line scanning, effectively preventing data loss and discrepancies caused by hardware or environmental conditions during image processing It employs a large-array photodetector coupled with custom high-resolution lenses, using specialized imaging for composite processing Throughout this process, each pixel of the photodetector contains light information captured from various positions By combining this data, the image resolution and detail are enhanced, reaching a resolution of millions, and with multiple automatic light adjustments, a single shot can manage7070mmachieving an image resolution up to5umobtaining clear images, then throughSmart-AItechniques for analysis and selection Three Innovative Methods to Achieve Rapid InspectionSmart -AI Raytek's General Manager shares, rapidly implementingAItechnology and reducing inspection computation time, further developingSmart-AIthree major approaches Method one, initially useAOIto quickly separate good products from those with controversial defects, focusing the detection on the minority of defective identifications Method two, an automated labeling platform simplifies the training issue by using cameras to collect data from machines, automatic labeling replaces manual labeling, progressively training to improve accuracy The simpler the problem, the less data needed for training Method three,AOIandAIDual-track Advancement In the smart manufacturing process, relying solely onAOIorAIis not enough to accomplish the task alone, it must be preceded byAOIfirst marking the characteristics, distinguishing between good and defective parts, then usingAIa method for labeling and training Subsequently, by utilizing a repeating cascade effect, the detection benefits are greater as more training data accumulates,AOIreducing the ratio of errors,AIand gradually increasing the accuracy ratio Post Adjustment Object Detection and Training Through three major methods gradually building system reliability, and categorizing data for defect sorting, ultimatelyAIreturning the judgement results to the main system, utilizing laser machining to control truly defective products at the front end of the process, reducing the inflow of defective products into other stations, thus minimizing losses due to repeated tests or reprocessing Leading in smart laser equipment, chooseLASERTEKthe right one Continuously developed by the Taiwanese brand Raytek, combiningAIsmart detection and laser processing equipment to progressively build a smart monitoring solution stack from raw materials, products, testing, laser equipment, etc, aiming at reducing the energy consumption of the production process, implementing semiconductor advancements, substrates and component processing among other fields, producing equipment products capable of meeting the end-user demands under low carbon conditions, rapidly and with quality products and services expanding both domestic and international markets, enhancing the global competitiveness of localMade in TaiwanMITequipment 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【解決方案】AI電眼取代人眼 慧演智能運用AI幫製造業做品管
Using AI vision to replace human vision, Claireye Intelligence uses AI to help the manufacturing industry with quality control

In response to customer demand on a wide variety of products in small quantities in the manufacturing industry, there is an urgent need to find AI solutions from the cloud to terminals Claireye Intelligence provides a solution that integrates software and hardware - BailAI image inspection solution to assist traditional manufacturing industries in improving process efficiency and product quality, thereby achieving the initial goal of transformation After the government declared 2017 to be Taiwan's "First Year of AI," AI startups have sprung up in Taiwan Established in 2018, Claireye Intelligence targets smart manufacturing and provides a platform for AI image analysis and process optimization, using the power of deep learning to detect product defects and abnormalities in the assembly process It assists companies in building infrastructure from terminals to the cloud, which enables automated monitoring of factory production to improve process efficiency and quality Focusing on AI image inspection based on its familiarity with the production line quality control process Shirley Liu, founder and CEO of Claireye Intelligence, is a young entrepreneur She entered the manufacturing industry after graduating from college and held a quality control position in the plastic injection process of hard disk parts "She was already on the production line at the time, and is familiar with the production line process of production machinery" She later switched career paths to marketing and planning, and then worked as an AI product manager When the time came, Shirley Liu decided to start a business, focusing on AI image recognition in the manufacturing industry "The difficulty for enterprises is the lack of an AI development team Even if an enterprise has an AI team, development projects will take a lot of time, at least 6-12 months" said Shirley Liu, who is well versed in the market's pain points The problem that needs to be solved by platforms is to provide services that allow traditional manufacturing industries to build their own AI models without needing employees with a programming background, and to remotely assist production lines with troubleshooting and subsequent system maintenance, helping companies save development time and labor costs BailAI image inspection platform usage scenarios Facing the large number of competitors that provide AI image recognition in the market, what are the technical advantages of Claireye Intelligence Shirley Liu said that many companies currently have AOI equipment, but the bottleneck in the application of AOI is that it can only be used for defect inspection in fast production of large quantities, and parameters need to be adjusted after each inspection or production Based on her understanding of the industry, most SMEs are limited by their financial resources due to AOI equipment often costing over NT1 million, but they also want to use automated inspection This is where Claireye Intelligence comes in Shirley Liu went on to say that it is impossible for traditional manufacturing industries to maintain a technical team that includes AI engineers, data engineers, cloud architects, and terminal architects Claireye Intelligence specializes in software and hardware integration Enterprises can use the BailAI image inspection platform to easily solve inspection problems on the production line In other words, customers only need to provide images or samples for Claireye Intelligence to carry out model training, model deployment, and system integration, and they can easily use AI technology to optimize and monitor production line processes Participated in the AI New Talent Selection and achieved a recognition rate of over 90 in assembly behavioral image recognition For example, a certain connector manufacturer only has 1-2 AI engineers in its technical team The main problem that needs to be solved is that most operators are on the production line, while quality control and senior managers are not on site, and the company wants to understand the actual situation of the production line through remote monitoring Claireye Intelligence uses industrial cameras to capture production line images, and transmits AI image analysis to the remote end Supervisors and quality control personnel can observe if there are any errors in the production line assembly, such as whether the connectors and lines are connected properly, through the monitor Claireye Intelligence's AI image inspection operates on Microsoft's Azure cloud platform, and also utilizes terminal equipment, such as NVIDIA's edge computing equipment placed around the inspection station, to assist traditional manufacturing industries with improving production line efficiency and detecting problems early through an integrated solution from the cloud to terminals Claireye Intelligencersquos customers currently include aviation, electronic peripherals, connectors, and metal industries Assembly process solution for human behavior recognition in assembly lines achieves an accuracy of over 90 In order to demonstrate the depth of technology, Claireye Intelligence participated in the 2021 AI New Talents Selection of the Industrial Development Bureau, Ministry of Economic Affairs, and provided Lite-On Technology with the "assembly process solution for human behavior recognition in assembly lines" The solution determines effective working hours and ineffective working hours of operators on the production line through cameras and AI image recognition It recognizes hand posture and position through images to determine the operator's assembly behavior, achieving an accuracy of over 90 Shirley Liu added that the assembly process of electronic components is complex, mostly carried out manually, and cannot be replaced by robotic arms Claireye Intelligence used cameras to film the assembly process of operators at Lite-On's assembly station The algorithm is then trained and corrected based on the video, and the final trained model can directly determine whether there are any errors in the assembly process to improve the overall process Project development time is expected to be shortened to 1 month by using the BailAI image inspection platform Since its establishment more than three years ago, Claireye Intelligence has accumulated a considerable amount of project experience and hopes to commercialize the project experience Shirley Liu pointed out that the trial version of BailAI image inspection will be completed this year 2022 Customers can choose industrial cameras or video cameras based on the detail of the object being inspected It can even use X-rays to capture images, and then the images are automatically marked by the platform Claireye Intelligence will provide customers with AI application models suitable for the field Inferences can also be made in the cloud or terminals for launch in the manufacturing industry The metals industry, metal casings of industrial computers, connectors, electronic peripherals, and mechanical parts can all use the platform for defect detection and object identification Claireye Intelligence will continue to improve its technical capabilities, accumulate customer experience to complete commercialization, and also accelerate the implementation of AI inspection applications In the mid-term, it will build terminal and cloud infrastructure and shorten the development time of enterprise AI projects from 6-12 months to 1 month, reducing usage time and lowering the threshold for enterprises The long-term goal is to target the Southeast Asian market where Taiwanese businesses are gathered, expand software and hardware integrated AI solutions to overseas markets, and expand the scale of operations

這是一張圖片。 This is a picture.
AI Smart Health Prevention Plan

Herji Ltd held an interactive teaching session with AI storybooks at the 'Taiwan Early Childhood Development and Remedial Association Taitung Office', allowing children, teachers, and parents to engage in immersive educational experiences AI-generated children's educational storybook materials AI Learning Platform In recent years, changes in the social structure of Taiwan, combined with experiences in hospital emergency departments, have often led us to overlook the depressive symptoms exhibited by adolescents, resulting in tragic incidents of self-harm or even suicide among children A significant part of children's depression stems from their academic performance, with parents worrying about their children's future competitiveness, thus placing a lot of pressure on children who perform poorly academically In a family with two children with the same genetic background and provided with the same resources for growth, we often find that the second child's academic performance is not up to par, with poor grades, an inability to concentrate in class, and even lacking the patience and perseverance to finish reading a comic book or playing a video game We have been exploring why these differences occur and discovered that these issues often arise from undiagnosed learning disabilities during early childhood Due to environmental factors, children with delayed learning abilities are often not acknowledged by over 80 of parents who are reluctant to seek treatment for their children, primarily fearing that their child will be labeled as delayed As a result, the child's learning ability is hindered from an early age, with their academic struggles increasing as they enter primary and secondary school, leading to greater academic lag, frustration from parents, struggles from the child, and increased family disputes If tutoring does not yield effective results, expenditure without achieving positive outcomes often leads to further family conflicts, creating a vicious cycle that accumulates a lot of negative emotions in children during their developmental process, which in turn affects various factors impacting their health In reality, the main reasons behind a child's poor academic performance, inability to learn, lack of interest in learning new things, or even developing health-impacting psychological conditions, actually stem from accumulated learning delays during early childhood The period before the age of six is considered the golden window for treating learning delays If these can be identified and addressed during this time, there is a chance that the child's learning abilities can be greatly improved10The industry's current pain points are as follows 1Lack of methodologies for assessing learning abilitiesLack of databases for sample comparisons in the market 2Traditional parental misconceptionsFear of labeling and treatment delays for mild to moderate cases 3Lack of therapeutic materials and toolsShortage of therapeutic storybooks and series courses This project will develop a national talent development support system, utilizing AI Technological development of a system for assessing children's learning abilities that supports parents in safeguarding their children's health from the start of learning ability testing, offering early detection and treatment In the future, all Taiwanese children, regardless of background, will be able to establish a healthy foundation in early childhood, growing up to become valuable assets for national development 2、 As proposed in this planAIApplications and explanations 'Child Language Ability'AI'Analysis Model' This model quantitatively analyzes 'the condition of children's use of Mandarin' when 'expressing an event' Scenario Preschool teachers guide children in narrating storybook contentAITools analyze the sentences used by children to describe storybook content, applying statistical algorithms for quantitative analysis Analysis indicators include 'sentence type' and 'lexical items' Analysis aspects include correctness of sentence structures, diversity of vocabulary, quantity of vocabulary used, and accuracy of vocabulary usage Application Comparative analysis between an individual child and peers' language abilities can offer more detailed language skills teaching by preschool teachers Techniques used Chinese word segmentation, Chinese POS tagging, Chinese syntactic rules analysis algorithm, and quantitative analysis algorithms Tools usedChinese word segmentation tools, POS tagging toolsChinese POS Tagging Tool 3、 Expected Industrial Value Establish a learning ability assessment and support system, through therapeutic storybooks and courses Collaborate with kindergartens to develop learning ability bases, preventing children from being stuck at the starting point Alongside parents, protect children's health starting with learning ability testing, backed by a robust database, allowing parents to identify early any delays in learning, helping children regain their learning abilities 4、 Expected Industrial Benefits Economic Benefit and Future Spread and Impetus By supporting children with delayed learning abilities, enhancing their learning prowess through this project, these children serve as the future of our nation and can thus significantly contribute to national talent development Furthermore, the purpose of establishing a learning ability development base is to help reunite children with their parents, increasing their interaction time, allowing the children to move beyond mere one-dimensional interactions 3C This facilitates two-way interactions between the child and parents, potentially impacting children who may have been otherwise delayed in developing their capabilities due to environmental factors 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-11-15」