:::

【2020 Solutions】 All 10,000 background music tracks are AI-made: Anpu targets the global broadcasting market

"Why does the music industry need AI? What problems can AI solve?" These are the questions Zeng Zhizhong, the founder and CEO of Anpu Artificial Intelligence Co., Ltd., continuously asks himself. Since founding the company in 2018, Zeng Zhizhong has understood market positioning and customer needs clearly. Anpu uses AI composition to seize the global environmental music broadcasting market. With the system online for over a month, AI has created more than 10,000 pieces of music, serving clients across cafes, car showrooms, restaurants, and hair salons with a "legal, free" broadcasting solution, becoming the first choice for stores.

Zeng Zhizhong is a serial entrepreneur with a background in both the internet and music. He has served as the general manager of Taihe Music Group, director of music services for Microsoft and Nokia in Asia Pacific, founded AR company Emitia Technologies and streaming company Tianlida Technology, and currently operates a company called Ouster Music specializing in film and television soundtracks.

With a dual background in technology and music, Zeng Zhizhong navigates AI music to solve copyright dilemmas

With his sharp senses in technology and music, particularly amidst the ongoing AI boom, Zeng Zhizhong constantly contemplates how to turn AI composition into a profitable business. He analyzes examples such as Spotify with 100 million paid subscribers in the USA, 1 million in Taiwan's KK BOX, and the mainland China's IPO-listed QQ Music, all operating at a loss. The primary issue lies with these platforms not owning the copyrights to the music they provide, despite offering membership subscriptions. They must also pay royalties to record companies and creators, leading to 'the bigger they are, the more they lose.'

Zeng Zhizhong, with his tech and music background, aims to create opportunities for AI music

Zeng Zhizhong, with his tech and music background, hopes to carve a niche for AI-generated music

In the music industry, there are two main domains: ambient music (background music, BGM) and pop music. Pop music involves a lengthy production chain including lyric writing, composition, arrangement, singing, harmonizing, mixing, and finalization, entailing high costs and investment risks. Meanwhile, ambient music, used in malls, department stores, cafes, and restaurants, traditionally sees copyrights held by music industry associations in various countries, making acquisitions costly and time-consuming. However, producing music in-house circumvents copyright issues. Thus, composing with AI and retaining copyrights internally becomes a key to success.

According to the International Federation of the Phonographic Industry (IFPI) report, global music market revenues in 2018 grew by 9.7% to $19.1 billion, up from $17.4 billion in 2017. Streaming music revenue alone reached $8.9 billion, accounting for 47% of the global total, nearly half. Publicly broadcasted music accounted for 10-15%, marking a significant portion of the market.

Recognizing the immense potential of the market, Zeng Zhizhong then assessed the technical capabilities of AI music, candidly stating, "AI is not a cure-all." For concert performances or chart-topping pop music, human lyricists and composers are necessary to achieve desired effects, while AI composition typically handles simple, uncomplicated melodies.

Assembling a large music database coupled with proprietary AI algorithms for rapid music production

Anpu Music's AI composition system utilizes algorithms that include Markov chains, neural networks, deep learning methods, and combines the company's proprietary algorithm MDN Music Deeplearning Network, which conforms to unique musical algorithmic theories, thus breaking through traditional pop music structures and styles to create more market-aligned music compositions. The database aggregates a large amount of sheet music data from top charted tracks and renowned songs globally, initially analyzing and summarizing the characteristics and melodies of popular quality music, then employing deep learning for efficient and excellent outcomes in AI composition.

BGMRADIO public broadcasting platform hosts tens of thousands of AI-generated music tracks

▲BGMRADIO公播平台上集結上萬首AI音樂

Anpu provides a clear AI solution for the complex music copyright environment, with a material library owning a vast amount of clear-cut copyrights over 10,000 music tracks in 50 different styles, allowing users to freely choose suitable music to enjoy. Anpu's current business model is twofold: one provides a web-based platform offering 10,000 free AI-generated music tracks for online listening, and the other involves custom music services for a fee. Additionally, responding to the promotional needs of the record industry and artists, it also charges for advertisement playbacks. Another revenue model involves renting music players to users, charging an annual rental fee.

Comparing BGMRADIO's public broadcasting platform with other platforms

▲BGMRADIO公播平台與其他公播平台之比較

Zeng Zhizhong states, "Music knows no borders; good music doesn't distinguish between being created by humans or AI." With current AI algorithms and related technology being quite mature, using AI to produce music is not a difficult task. The key is identifying market pain points for business opportunities. Anpu's market spans Taiwan, Japan, Korea, Singapore, and it aims to continue expanding into China's largest market.

Having founded startups for 20 years in mainland China, Zeng Zhizhong's primary reason for starting a business back home is Taiwan's rich talent pool, especially the interdisciplinary talents. Unlike typical AI or music companies, Anpu requires a large number of amphibious talents capable of both programming and music. The company comprises two main departments: the R&D department, mostly formed from graduates from NTHU and NCTU in electrical engineering, electronic engineering, and applied music, and the music production department, where after quick AI algorithmic composition in the R&D department, highly musically educated producers refine these AI compositions into high-quality music experiences.

Anpu's team consists mostly of interdisciplinary talents with both technology and music skills

▲安譜團隊大多是科技與音樂兼具的跨域人才

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【解決方案】瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞
Defect identification rate reaches 100%, Nairi Technology is favored by major panel manufacturers

On the machine tool production line, there are some slight differences in the first step of assembly Accumulated tolerances will cause the assembly work to be repeated, which is time-consuming and labor-intensive, resulting in shipment delays that will impact the company's reputation Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutions It uses machine learning models to inherit the experience of old masters In the CNC processing machine assembly and casting process, it uses AI to analyze production line data, accurately adjust various data, and improve Production accuracy is 25 This AI production line data analysis system is called "Master 40" by Huang Changding, chairman of Naruili Technology It is the most evolved version of the master plus artificial intelligence It has been used in machine tool processing factories with remarkable results In addition, Nairi Technology used AI defect detection technology to participate in the 2021 AI Rookie Selection Competition of the Industrial Bureau of the Ministry of Economic Affairs, assisting AUO in advanced panel image defect detection, with an accuracy rate of 100, and won the award Assisted panel manufacturer AUO to solve problems with 100 accuracy in defect detectionHuang Changding further explained that during the production of general panels, edges and corners are There may be defects in the corners Although the defects are visible to the naked eye, AOI is often difficult to identify, causing the detection error rate to often exceed 30 Therefore, re-inspection must be carried out with manpower to improve the accuracy rate However, in response to the demand for a small number of diverse products and insufficient manpower, using AI detection is indeed a good method Nairui Technology, founded in 2018, has been able to win the favor of major panel manufacturers with its AI technology in just three years In fact, it has been honed in the field of CNC machine tools for a long time Tang Guowei, general manager of Narili Technology, pointed out that the top three CNC machine tool factories in Taiwan hope to introduce AI into the two production lines of assembly and casting Among them, on the assembly line, in order to maintain the accuracy of assembly, every part of the component is designed Tolerances are designed During assembly, each component is within the tolerance However, the cumulative tolerance still fails the final quality inspection and must be dismantled and reassembled This is not only time-consuming and labor-intensive, but also causes waste "After entering the production line, I realized that some masters have accumulated a lot of experience and are good at adjustment After his adjustment, the accuracy rate has improved a lot and the speed is faster" On the contrary, the new engineers did not Based on experience, it takes a long time to adjust and may not pass the quality inspection The yield rate of Master 40 system has increased significantly from 70 to 95Tang Guowei then said that the original size data set by Master during assembly All were recorded on paper After the information was written, it was stored in the warehouse and sealed No one studied the relationship between the dimensions Narili assists customers in designing the Fu 40 system Through the human-machine panel, the master can directly input the measured dimensions and related data during assembly After collecting data from different masters, AI algorithms are used to analyze the relationship between the data and create an AI model The AI model automatically notifies the operator what size to adjust to, and the quality inspection will definitely pass In this way, the yield rate will be improved It has increased significantly from 70 to more than 95 Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutionsTang Guowei added, assembling the spindle of a CNC processing machine It took four hours In the first step, the machine made measurement errors, including vibration, temperature, speed, etc that were out of range It had to be dismantled and reinstalled, which took another four hours How to adjust after disassembly depends on the experience of the master At first, the master may have done the best assembly method based on experience, but the error rate was also 30, and the assembly took several days With the assistance of AI masters, the assembly time only takes half a day, and the yield rate reaches over 95, saving a lot of time and manpower "Use the AI model of machine learning to collect the experience of all the masters and provide it for AI learning The first step is digitalization, and the second step is knowledgeization This is the transformation of the enterprise "An important key", Huang Changding believes that Narili Technology is an important partner in the transformation of traditional manufacturing from automated production to digital transformation In addition, another industry that Naili Technology focuses on is the smart car dispatching system of the leading brand of elevator manufacturers The so-called car dispatch referring to the elevator car means that if there are more than two elevators, group management is required In the past, car dispatching was based on fixed rules If the elevator was closer to the requested car, that elevator would be automatically dispatched On the one hand, it did not take into account that dispatching a car if the elevator was called too many times might make other people wait longer The previous vehicle dispatching model did not take into account the usage characteristics of the building, resulting in a lot of waste For example, in an office building, there are peak hours in the morning, lunch break, and afternoon after work AI smart car dispatch can be flexibly adjusted according to off-peak and peak hours, increasing the efficiency of car dispatch, reducing waiting time, and reducing wasted electricity Introducing elevator smart dispatch to improve transportation efficiency and have environmental protection functionsHuang Changding added that just like the previous traffic lights at intersections, the system has already The number of seconds to stop and pass on highways, sub-trunks and small streets is programmed Smart traffic lights are now used to flexibly adjust waiting times to make road sections prone to congestion smoother Using AI to learn usage scenarios and introducing a smart dispatch system into elevators will improve transportation efficiency and make it more environmentally friendly In addition to introducing smart elevator dispatching, Nairili also introduced AI into the smart production and shipment scheduling system of elevator factories Elevator factories often cannot accurately estimate the customer's elevator delivery date For example, office buildings or stores must be completed to a certain extent before the elevator can be installed on the construction site If affected by unexpected factors such as delays in the customer's construction period, the elevator factory will often be idle or the schedule will be difficult to arrange Tang Guowei pointed out that generally those who understand the progress of client projects may be from business or engineering, but overall, the accuracy rate of shipments is only about 60, which means that 40 of them will not be shipped as scheduled Therefore, if the shipping schedule can be accurately estimated, the production line can be freed up for emergency orders or other product production needs The AI smart scheduling system will analyze past shipment data, about 20-30 parameters such as climate, distance between the factory and the construction site, and customer credit, and put them into the AI algorithm to accurately predict whether shipments can be made as scheduled goods Huang Changding also specifically stated that the machine learning of Naili Technology is not ordinary machine learning, but also incorporates various calculation methods such as traditional image processing technology and statistics Only by being very familiar with the domain knowledge can we make good products AI models are also where the company’s competitiveness lies He emphasized that the data that general SaaS platforms can process is very limited, and the accuracy rate has increased from 70 to 75 at most Naili’s strength lies in AI algorithms and machine learning, and it must be coupled with in-depth industry knowledge to produce output Good AI model Narili Technology started with the AI project, gradually deepened the technology, chose to start with the more difficult tasks, and accumulated rules of thumb It is expected to develop SaaS services this year 2022, based on customer needs starting point, gradually gaining a foothold and becoming an important partner in smart manufacturing The picture left shows the general manager of Naruili Technology Tang Guowei and Chairman Huang Changding right「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
Make Meeting Records Efficient and Time-Saving with DeepWave's Smart Meeting Ink AI

Meeting Ink Enterprise Edition is now being launched Studies show that around 50 of content is forgotten within two hours after a meeting if not tracked and reviewed immediately multiple reports and transmissions can result in losing over one-third of key information Precise meeting records are crucial for organizations with strict operational protocols and public sectors However, with extensive meeting demands, recording can lead to losses in meeting outcomes and increase team burdens Spotting this market pain point, Taiwanese AI startup DeepWave has introduced 'Meeting Ink'—a new solution for meeting records that integrates voice, text, and automated AI technologies Meeting Ink supports voice-to-text transcription, speaker recognition, verbatim translation, and automated meeting summary highlights, offering flexible services for consumers and enterprises This year, it has added real-time verbatim scripting and translation, creating a new paradigm in meeting management AI Technology Solves Meeting Recording Pain Points in One Go Since its launch at the end of 2023, 'Meeting Ink' has become a high-efficiency and accurate meeting record management solution on the market DeepWave combines its proprietary technology, third-party tools, and Microsoft Azure's voice recognition technology to create the best voice-to-text experience Furthermore, this includes speaker recognition and segmenting, multiple language translation, and meeting summary functionalities across various scenarios To achieve broader applications, Meeting Ink also provides real-time application solutions, making it suitable not just for regular meetings but also for events, forums, and educational sessions Currently, Meeting Ink supports both app and web platforms, offering enterprise customization options to expand its applications further Excellent Voice Recognition Technology and Optimal User Experience Meeting Ink stands out in the market due to its precise voice recognition technology and user-centered application design Relying on DeepWave's proprietary technology, Meeting Ink can convert audio signals into text representing each speaker, distinguishing each participant's voice to ensure information is clearly differentiated Additionally, meeting content can be further summarized according to the speaker and, with DeepWave's optimized system, generate exclusive summary templates for various scenes and roles Whether for executive meetings, academic forums, personal interviews, or learning sessions, Meeting Ink produces tailored summaries for different contexts, bringing higher efficiency and flexibility to meeting recording experiences Precisely Targeting Enterprise Needs, Providing Comprehensive Enterprise Applications Anticipating the shifting market demands, DeepWave has launched a customized service plan tailored for B2B frameworks, further optimizing Meeting Ink's application on the enterprise side Enterprise clients can use the professional edition and enjoy exclusive customized summary modules tailored to specific industry needs DeepWave commits to regularly updating AI modules to ensure the most advanced technological support Additionally, Meeting Ink's enterprise service plan emphasizes data security, account permission management, unlimited storage space, and multi-device compatibility supporting all recording scenarios Offered at the lowest market rates, this provides an economical and efficient solution for enterprises, allowing them to focus on core tasks and enhancing overall meeting efficiency Embracing the Pulse of the AI Era, Leading Market Applications According to a 2023 market report, the global market for AI application tools is expected to grow from nearly 7 billion to 50 billion over the next decade, with business and learning tools playing key roles Facing the rapid progression of AI technology, DeepWave leverages its technical prowess and innovative capacity to penetrate international markets with Meeting Ink, continually bringing revolutionary changes to meeting records for both businesses and individuals Going forward, DeepWave will continuously optimize Meeting Ink, committed to promoting the close integration of AI technology with everyday work and learning scenarios, creating more convenient and efficient working environments for users 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-11-15」

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
Watertight smart industrial safety inspection Linker Vision’s image analysis AI platform sets a new record of inspection time reduced from 100 minutes to 3 seconds

With the rise of smart manufacturing, there is a demand for industrial safety inspections in high-risk industries such as chemical, energy, and electrical industries Take pipeline inspection in the chemical industry as an example It relies heavily on manual regular inspection and monitoring, and lacks intelligent monitoring by a professional AI team This is not only time-consuming and labor-intensive, but may also cause accidental risks to employees in various industrial safety environments The image analysis AI platform developed by Xinyun Linke not only improves employee personal safety and reduces risk factors, but also significantly reduces the time for human visual inspection of pipeline abnormalities from an average of 100 minutes to 3 seconds Paul Shieh, founder and chairman of Linker Vision Co, Ltd Linker Vision, said, "The overall technological development and progress in the United States comes from entrepreneurship Linker Vision's original intention to start a business in Taiwan has been I hope that through my past experience in entrepreneurship in the United States, I can introduce the American entrepreneurial spirit and culture to Taiwan's budding entrepreneurial fertile ground and truly implement it "American entrepreneurial culture encourages employees to value ownership and emphasizes that employees regard themselves as owners of the company Be a part of the company, with a work attitude and spirit that would be better than mine The company's achievements are your own achievements, breaking the original employer-employee relationship The company will reward outstanding employees with stocks, share the glory together, and establish a partnership with employees Partnership On the other hand, Taiwan still has room for efforts in entrepreneurial culture and management, and it retains the traditional thinking of employers and employees It is expected that Xinyun Linke's establishment of American entrepreneurial culture and values in Taiwan will serve as a starting point to drive more domestic new companies to follow suit, and then Only by upgrading the business constitution of new software AI entrepreneurs can they break out of the cocoon and go global Facing the market, most international players focus on developing AI models and algorithms They are less willing to invest in data-centered Data-Centric AI services They think that processing large amounts of 2D or 3D data is quite time-consuming It’s also energy-consuming Seeing the gap in AI technology and encouraged by Microsoft, Xinyunlinke decided to fully invest in Data-Centric's AI technology layout and deep roots many years ago, and specialize in technical energy in data processing, filtering and accuracy Therefore, Become an important partnership with Microsoft for AI technology supply In addition, due to the gap in industrial demand, domestic large factories, whose strength is chemical manufacturing, still rely heavily on manpower for inspection of pipelines in the factory, which is time-consuming and labor-intensive However, in order to cater to the AI industry, the owner reorganized the IT department originally engaged in database management and control into an AI team However, due to the owner's lack of professional experience in AI software technology, AI models and related domain know-how, the owner introduced AI implementation Industrial safety monitoring in the chemical industry is even more challenging The world's first AI automatic labeling technology surpasses manual labeling and can visually identify objects with an accuracy of over 95 In terms of AI technology power, Xinyunlinke has launched the world's first dual-core innovative technology of automatic labeling Auto-labeling and automatic machine learning to create an efficient and stable image analysis AI platform to provide customers with the best Advanced and complete AI solutions In terms of automatic annotation, this AI technology can overcome the most difficult challenge in deep learning, which is to provide customers with the highest quality training data Taking self-driving cars as an example, how to enable one self-driving car to effectively identify another car is the importance of labeling In the past labeling methods, we first needed to collect digital images of millions of vehicles, roads, signs, and pedestrians, and spent a lot of manpower Manually labeling one image at a time was time-consuming, labor-intensive, high in labor cost, and inefficient Through automatic labeling AI technology, combined with automatic machine learning to automatically label digital images, AI can exclude human error labeling and then throw the correct data into the vehicle's brain for vehicle identification Compared with manual labeling accuracy of only 60, the accuracy of automatically labeling and identifying objects with AI can be as high as over 95 It can also reduce manual labeling time by more than 80 and save at least 80 of labor costs AI automatically marks AI behavior recognition for high-altitude operations In the automatic machine learning part, Xinyunlinke established an AI visual model with continuous learning capabilities to adapt to data changes By optimizing the overall development process, from AI data ingestion and filtering Data Selection to AI labeling AI Labeling , model training and verification, deployment and monitoring, so that AI computer vision can continue to learn more quickly and easily Automatic machine learning can currently be applied to different business cases such as object identification and counting, personnel entry and exit security detection, product defect detection, people flow identification, product shortages on shelves, etc Looking at domestic companies such as TSMC, Formosa Plastics and Hon Hai towards intelligent AI management and purchasing a large number of cameras to meet the image recognition needs of industrial safety surveillance, coupled with the introduction caused by the unfamiliarity of existing customer organizations with AI applications Thresholds and preliminary preparations for image recognition include complicated workflows such as data screening and annotation To this end, Xinyunlinke has been committed to accelerating the development of AI computer vision applications in recent years, providing client-to-end services, and can flexibly deploy according to customer needs Complete automated AI solution services in the cloud, on-premises, or cloud on-premises Xie Yuanbao said that the AI automation technology process provides data selection Data Selection AI technology through domain-type pictures given by customers, helping customers automatically filter out precise such as 10,000 transactions from a large amount of data such as 1 million transactions Data, and by using the AI algorithm technology of Auto-Labeling to replace manual labeling, it can effectively save customers a lot of labor costs and achieve efficient data labeling processing In addition, the AI technology of automated machine learning can help clients customize automatic AI model training or repeated training when the factory environment changes, providing more accurate AI models and allowing customers to operate autonomously Through the above-mentioned key features and advantages of the automated AI technology provided by Xinyunlinke, we believe that it can definitely meet the needs of customers for an automated end-to-end AI independent learning platform, and at the same time, it can significantly save customers the cost of AI team establishment In terms of technological competitiveness, in addition to providing the chemical industry with AI image analysis applications in smart industrial safety, Xie Yuanbao said that Xinyunlinke can also extend the process application of automatic annotation and automated machine learning to different industrial landing services, such as Various fields such as self-driving cars, smart warehousing self-propelled robots and self-driving buses in future smart cities are all in line with the spirit of automated mobility of Mobility as a Service We look forward to the role played by Xinyunlinke The process of image annotation in different industries accelerates the efficiency of developing image recognition services in different fields We believe that by providing client-to-end AI solutions and a complete set of automated AI image analysis pre-operation processes from Data Selection AI technology, Auto-Labeling AI technology, and automated machine learning AI technology, we can greatly satisfy our customers The demand for AI autonomous learning platform Image analysis AI platform sets a new record for smart industrial safety inspections from 100 minutes to 3 seconds Seeing the high demand for industrial safety supervision in high-risk industries such as the chemical industry in recent years, Xinyunlinke launched the "Vision AI Platform", which uses AI image recognition technology Its main functions include real-time AI streaming It has four major functions detection, event notification, defining customer-specific AI models and continuous learning In the real-time AI stream detection part, the Vision AI system can use the customer's factory camera combined with the AI module to perform real-time stream detection of AI image events It can help customers manage various operations and factory environments and keep track of them anytime and anywhere Various work situations in terms of event notification, the Vision AI platform can provide a web version or APP or LINE instant messaging software to provide customers with video records of the events at that time, so that the team does not miss any events, maintains daily production capacity and reduces accidents in defining customers In terms of exclusive AI models, a variety of basic AI models are available, including 8 detection scenarios electronic fences, personal safety equipment, construction safety equipment, construction operations, personnel counting, screen availability, smoke detection, pipeline corrosion and damage , illegal stacking for use in different industries, customers can build exclusive AI models without spending time writing programs in the continuous learning part, the Vision AI system can provide customers with the performance and accuracy of AI models, and have the ability to adapt as the environment changes Continuous learning ability Vision AI has a simple user interface and intuitive operation For cross-field industries, this platform has automated and flexible AI capabilities Customers can build self-defined AI models without spending time writing programs, and Vision AI gives AI models the ability to continuously learn and improve, allowing customers to save the labor cost of building an AI team In addition, the platform can significantly reduce the manpower allocation for routine inspections required for operational safety management, improve employee safety in the working environment, and reduce on-site accidentsrisk factors at various work sites In the platform operation mode, customers can reduce the risk of manual monitoring operations through remote operations, ensuring normal work operations and uninterrupted production operations They can also review high-risk operating situations and collect data to assist in the planning and correction of operating processes In addition, in order to ensure that customers comply with government regulations, Vision AI can help customers control the equipment and safety regulations required in different workplaces at any time through the platform's event notification and management detection The image analysis AI platform is used in cross-field AI image recognition technology Generally, for industrial safety inspections in the chemical industry, most rely on the naked eye of personnel to regularly inspect pipeline abnormalities It takes an average of 100 minutes to scan an area each time, which is time-consuming and laborious, and the pipeline location is difficult to visually observe, which may cause Employees are exposed to accidental risks in various work safety environments In order to reduce the pain points of industrial safety inspections in the chemical industry, Xinyunlinke assists well-known domestic chemical industry players by using an automated image analysis AI platform, combined with customized virtual electronic fences, and using in-plant cameras to configure AI pipeline leakage modules , the AI automatic inspection method can effectively reduce the abnormal detection time to less than 3 seconds In addition, cameras deployed in the factory can automatically record inspection schedules to achieve full-time monitoring, allowing customers to instantly discover and fully control pipelines, minimizing risks In addition, the automated image analysis AI platform can help customers apply fire warnings in factories It is conservatively estimated that the return on investment can be less than 9 months to pay back the investment The longer the platform is used, the higher the cost-effectiveness Build an automatic learning image analysis AI platform for Mobility as a Service in various fields Xie Yuanbao observed that the biggest challenge facing the entrepreneurial culture of software companies in Taiwan is that young new entrepreneurs or employees in Taiwan do not understand the entrepreneurial model and lack the awareness to regard themselves as part of the company owners This has caused It is a pity that your future is unclear or you have a past-experience mentality that prevents you from staying competent in a new start-up company for a long time I believe that the essence of true entrepreneurship lies in every employee rolling up their sleeves and working hard, so that they can truly enjoy the fruits of entrepreneurial profits Otherwise, for young entrepreneurs or employees who often change tracks, it will be like a rolling stone that gathers no moss , I am unable to take a deep root on the road of entrepreneurship, and I lose my ability to solidly accumulate financial independence Regarding the business promotion challenges of Xinyun Linke, Xie Yuanbao said with emotion that because the Taiwan market does not have a deep understanding of AI software applications, it relies more on open source AI visual analysis or machine learning and other resources on the market, but in fact These AI technology resources are limited in their ability to support customers' AI model needs, resulting in uneven quality of AI visual analysis software in the market Therefore, the impact is more indirect on Xinyunlinke's ability to truly provide customers with professional and data-centric AI image analysis services, and it also reduces the company's original business value in customer reference In terms of technical research and development challenges, the visual analysis AI platform cannot rely solely on AI model experts It must gather talents in various fields such as cloud, machine learning, data science, front-end and back-end and other professional team combinations to make the platform operate successfully Xie Yuanbao said that he believes that only through the automatic learning of the visual analysis AI platform, automatic fast and accurate data processing capabilities, and providing customers with complete AI solution services in the cloud, cloud ground Hybrid to pure ground, can we truly Convince customers and stand out from the competition Looking to the future, Xie Yuanbao hopes that Xinyunlin Technology can build an image analysis AI platform for Mobility as a Service to automatically learn in various fields such as self-driving cars, smart warehousing robots, and unmanned buses in smart cities At the same time, I am also grateful to the support of the Industrial Bureau of the Ministry of Economic Affairs for the smooth landing of Xinyunlin Technology in Taiwan and the opportunity to recruit talents from all walks of life to work together In the short-term layout, the company will actively cooperate with domestic players such as Hon Hai and TSMC to implement image analysis AI technology in fields such as self-driving cars, smart industrial safety, and smart warehousing robots In the medium to long term, Xinyunlinke will target the United States, Europe, Japan and other countries as its global market layout, establish investment and cooperation partnerships with major international companies such as Microsoft, and replicate its successful experience and promote it internationally Xinyunlinke official website Xie Yuanbao, founder and chairman of Xinyunlinke 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」