:::

【2020 Application Example】 Small and Medium Enterprises AI Competency Evaluation System, Significantly Reducing the Cost of Competency Implementation for Businesses!

IBM's supercomputer Watson can predict when employees are likely to resign, with an accuracy rate of 95%, saving IBM up to $300 million a year in retaining employees. Moreover, through cloud computing services and modernization, IBM has streamlined 30% of personnel costs, allowing the remaining employees to earn higher salaries and engage in more valuable work.

So, in Taiwan, how can we ensure that 'employees who stay can receive higher salaries and perform more valuable work'? The key lies in the 'competence setting' for each position. According to the 'iCAP Competency Development Application Platform' established by the Ministry of Labor's Workforce Development Agency, every position has its main responsibilities, work tasks, behavioral indicators, work outputs, knowledge, skills, and attitudes. Only by establishing 'competency' for each position can enterprises effectively apply this in employee recruitment, education and training, and performance management. Without this, not knowing what employees should do is like groping in the dark, which can pose risks to business operations.

Competency Benchmark Example

▲Competency Benchmark Example

Currently, on the 'iCAP Competency Development Application Platform', there are 872 established competency benchmarks, including 553 items completed by various ministries. This includes 253 items from the Ministry of Labor and 66 items from the Ministry of Education. If companies want to establish their own 'competency benchmarks', they need to search for reference materials on the 'iCAP Competency Development Application Platform'. Suppose a company wants to recruit 'sales' personnel but doesn't know what 'sales personnel' should do; they should first search for 'sales personnel' as shown in the figure below.

Searching for 'sales' on the 'iCAP Competency Development Application Platform'

▲Searching for 'sales' on the 'iCAP Competency Development Application Platform'

You can find that there are 18 types of sales personnel. At this point, the company needs to go through each one, check, read, and organize into the 'competency benchmarks' they need; however, if we search what should be a common position in any company, 'general affairs', the result is unexpectedly zero items.

Searching for 'general affairs' on the 'iCAP Competency Development Application Platform'

▲Searching for 'general affairs' on the 'iCAP Competency Development Application Platform'

As seen above, although the 'iCAP Competency Development Application Platform' established by the Ministry of Labor's Workforce Development Agency can solve some of the 'competency benchmarks' for positions, the division of labor within each company is different, and some positions might not be found on the 'iCAP Competency Development Application Platform'. Secondly, in small and medium enterprises, there are often 'multi-skilled workers', meaning many job responsibilities are on a single employee. For example, in small enterprises with less than 30 people, usually, accounting, general affairs, and HR are handled by the same person. If you want to establish competency benchmarks for this person, you have to search separately for 'accounting', 'general affairs', and 'HR', and then integrate these three types of job competencies, which is often time-consuming and ineffective.

This 'Small and Medium Enterprises AI Competency Evaluation System' aims to let 'people fully utilize their capabilities', by introducing AI to more accurately establish basic competency standards for employees, and to track their competency performance at any time.

Competency models are all generated and adjusted manually, which is time-consuming

A domestic exporter of screws, nuts, fasteners, etc., had all its competency models generated and adjusted manually. The execution process was time-consuming and insufficient to meet company needs due to personnel changes, such as: previously, Qiao Mai Enterprise had specialized 'production control personnel', but after this personnel resigned, this job had to be done by other employees, meaning other employees' competency models needed to be adjusted immediately. Or if the company needed to set up a development department due to future development, but previously no one had relevant experience, not only did they not know how to select from within, but also did not understand how to describe on a recruitment website to find the talent they really wanted.

Besides, the CEO of this company has always been troubled by internal performance management. Due to the lack of precise standards and systems to measure employee performance, the results of each performance assessment did not accurately reflect the true performance of the employees, forming assessment blind spots and unable to identify truly deserving employees. Thus, it is hoped that with the AI competency evaluation system, the necessary competencies for the development department can be immediately clarified, as well as how recruitment and performance appraisals should be conducted, so as to effectively solve the pain of unclear responsibilities and inaccurate assessments within the company. Thus, its benefits are significant!

AI Competency System Establishment X Deep Learning

This 4-month HR field competency system project has a clear execution direction, but the introduction of explanatory models such as Seq2Seq, Deep Keyphrase Generation, Tf-IDF keyword extraction algorithms, and PageRank are new attempts in the HR field. During the process, open-source big data architecture is used for natural language processing to complete Word2Vector and index, and inverted index to establish keyword weight and relevance. Due to the inability to process like image data with continuous numbers, it is necessary to simplify the feature values with related keywords such as skills, knowledge, and job categories. Basic steps are briefly described as follows:

1. Establish a Propagation model using Google's long-used LTR mixed Pointwise recommendation engine (2 months)

2. Establish a Back Propagation model (2 months), adjust the hyperparameters of the loss function

3. Adjust the hyperparameters of the CF model

4. Establish a human-machine collaboration mechanism to obtain more data to feed the Model 5. Repeat the above steps

During the development process of the competency model, Lianhe Trend Co., Ltd. and Weiguang International Information Co., Ltd. held multiple discussions, believing that there are interconnections between competencies. After establishing the knowledge graph, further upload the competency scale to the Neo4j graph database for processing complex relational data structures with excellent performance. Currently, 500 competency scales have been uploaded to the Neo4j relationship analysis platform.

Using python for wor2vector natural language analysis

▲Using python for wor2vector natural language analysis

In addition to describing a position with a tensor after word2vector, finding out the appearance of this position's knowledge graph, according to this knowledge graph, one can understand the relevance between different positions and the similarity performance of their dimensions. Finally, this knowledge graph is used to establish the company's 'competency model' and train it with deep learning.

AI Competency Evaluation System Interface

▲AI Competency Evaluation System Interface

In the future, in addition to establishing their own competency models, companies can also be opened to end-users. Individuals can analyze their own competency performance to understand their possibilities for job change and their market value, as well as identify skills needing enhancement. If companies respond to this knowledge graph, they can develop cross-industry products in the future.

1. Short-term: Analyze the competency scales (iCAP, iPAS) published by the government with natural language and keyword models, and cooperate with unsupervised learning to establish 'Native Competency Base Unit Models'.

2. Medium-term: Tailor-made exclusive competency models for enterprises. Based on the existing 'Native Competency Base Unit Models', experts use supervised learning to train the individual company's 'Distributed Derivative Competency Models'.

3. Long-term: Establish 'Reinforcement Learning' models, incorporating employee career cognition and planning.

Competency model recommendations, comparable to professional human resource consultants

Through the dynamic learning of the competency knowledge graph through unsupervised learning, individual companies' competency models are quickly established. Internal human resources personnel or external professional HR consultants can then use the generated competency models to assess and apply aspects of talent recruitment, competency inventory, performance management, and education and training. The system will automatically suggest competencies to be strengthened according to the company's existing job structure, including related knowledge, skills, and attitudes. Through the continuous introduction and training of data, the system learns the employer's actual view of the model for that profession and feeds back to the cloud competency scale, completing the dynamic learning of the knowledge graph through transfer learning. In the future, it can be comparable to professional HR consultants, thereby rapidly assisting many cross-disciplinary or technologically diverse companies in training employee competencies.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
Maintaining the reputation of the “Kingdom of Yachts” - Kha Shing Enterprise introduces the first domestic FRP ultrasonic smart inspection of composite materials

The Kaohsiung-based Kha Shing Enterprise Co, Ltd was established over 40 years ago, and is Taiwan's largest customized yacht company with customers all over America, Europe, Asia, and Australia, earning Taiwan the reputation of the "Kingdom of Yachts" Current FRP hull inspection still relies on traditional methods, such as visual inspection and knocking sounds, which is time-consuming and labor-intensive Kha Shing has applied PAUT array ultrasonic inspection to hull FRP composite materials for the first time, and combined it with AI to interpret ultrasound images, develop complete intelligent solutions, and create emerging markets for inspection companies Kha Shing Enterprise Co, Ltd was formerly Kha Shing Wood Industry Co, Ltd, and was a factory specializing in wood import in Kaohsiung Linhai Industrial Park when it was first established It began to design, manufacture, and sell yachts in 1977 After the second-generation successor of the company, President Kung Chun-Hao entered the company, he made a breakthrough in the previous manufacturing model that relied mainly on the skills of master craftsmen, introduced digital manufacturing to accelerate shipbuilding, and began to make larger yachts, ranking in the top 20 manufacturers worldwide among manufacturers of large yachts over 24 feet It also set a record of delivering 94 yachts within one year, earning Taiwan the reputation of "Kingdom of Yachts" Defect detection ensures yacht quality, using AI to replace humans to achieve higher efficiency Defect detection is very important to ensuring yacht quality At present, the yacht industry still uses very traditional defect detection methods The hull structure is usually made by hand lay-up or the vacuum infusion process, using visual inspection or knocking and the frequency of the sound to determine defects It requires time-consuming manual inspection If there are any defects, they must be reworked and repaired, and a gel coat subsequently sprayed The hull must be constructed in sections to facilitate inspection For large yachts over 24 meters long, construction in sections is very time-consuming and labor-intensive To shorten the time of the yacht manufacturing process, Kha Shing Enterprise will first carry out the gel coating process for the hull, and then perform the hand lay-on process The hull manufacturing process has two types of composite material test specimen structures In terms of 54-foot yacht hulls, the hull contains gel coat, core material, fiber and resin, and the total thickness is about 32cmplusmn01cm, which is twice the total thickness of FRP hull without core material of about 16cmplusmn01cm Defects such as incomplete impregnation of glass fiber or residual air bubbles between glass fiber and resin occasionally occur during the manufacturing process The types of defects include insufficient resin, voids, and delamination Once defects occur, the supply of hull materials will be insufficient and yacht delivery will be delayed Schematic diagram of types of FRP hull In order to solve this problem, Kha Shing Enterprise has engaged in technical cooperated with the metal materials industry and the AI technology industry, combining the ultrasonic inspection expertise of the metal materials industry with AI technologies developed by the AI technology industry in recent years to help solve issues of Kha Shing Enterprise with defect detection The method uses PAUT on the composite material structure of yachts, conducts FRP ultrasonic evaluation to determine the thickness of the yacht hull and material properties, and evaluates the ultrasonic probe frequency applicable to the hull structure based on professional ultrasonic experience After testing, a frequency of 5MHz and a probe width of 45mm can successfully find the location and size of defects in the simulated defect test specimen The three parties jointly found defect detection solutions from array ultrasonic evaluation, AI technology model development, and actual application in yachts The image inspected is an ultrasound image The image displays different colors based on the ultrasonic feedback signal An AI model that automatically identifies defective parts is established through the YOLO algorithm If the amount of abnormal data collected is insufficient for training, the CNN-based Autoencoder algorithm is used to collect normal image data for training and construct an AI model for abnormality detection The object detection YOLO model is trained by inputting image data marked as having defects, while the abnormality detection model is trained by inputting image data without defects Simulated defective specimen corresponding to PAUT results Defect detection by and AI system can shorten the construction period by 15 months and speed up determination by 50 After the development of this AI system is completed, it will be validated on actual 54-foot yachts of Kha Shing Enterprise, and can effectively resolve issues with defects The application of AI technology in ultrasonic inspection for intelligent determination is expected to accelerate determination by approximately 50, and will also shortens the construction period by 15 months, effectively improving the speed and quality of the yacht manufacturing process As Taiwan develops larger and more refined yachts, it will create opportunities for industry optimization and transformation, as well as opportunities for the development of key technologies The application of an AI ultrasonic inspection solution for composite materials is the first of its kind in the yacht industry, and is expected to attract more yacht manufacturers with inspection needs The AI ultrasonic inspection solution for composite materials has three major competitive advantages 1 Professional inspection experience and digital database to facilitate process management and analysis 2 Automatic AI determination and identification quickly identifies defects and provides immediate feedback to process engineers 3 High-efficiency process inspection provides defect repair recommendations, reduces damage rate, and improves the strength and quality of composite materials The application of AI technology can optimize the yacht manufacturing process, reduce manual inspection, create added value through the application of AI in Taiwanrsquos yacht industry, increase international purchase orders, and allow Taiwan yachts to continue to enjoy a good reputation in the world Furthermore, this business model has also spread to fields of application related to composite materials, increasing cross-sector market usage It is estimated to contribute approximately NT14 to NT2 billion in economic benefits to Taiwan's equipment maintenance and non-destructive testing market

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
Hamastar Technology Builds an AI Model Management Platform to Accelerate the Application of AI

Riding the AI hype train, financial service providers are using their solid foundation in the industry to not only transform themselves, but also assist their customers with transformation Hamastar Technology, which has been established for over two decades, has been developing AI technology and assisting industry customers with the implementation of AI in recent years Hamastar Technology believes that to implement a complete AI project, in addition to AI theoretical knowledge, data analysis, and model training capabilities, it is also necessary to develop APIs for data, establish databases, develop front-end RWD web pages, and even consider layout design and user experience based on customer needs These tasks create technical barriers for AI startups Even from the perspective of companies that have reached a certain scale, it is hard to accumulate technical experience and accelerate business growth due repeatedly investing manpower developing similar functions in each project Institutional customers still require high level of customization for AI Using the requirements of government Agency A implemented by Hamastar Technology as an example, users must control false information from specific channels The platform needs to provide data ingestion functions for training models and predictions, and can complete natural language processing NLP text classification model training and use When the model discovers false information, it needs to immediately notify responsible personnel through messaging software The need of Agency B is to use an AI model to automatically classify petitions and immediately provide information on past cases as reference for the petitioner or officer Although the project models are similar data ingestion, model prediction, warning notification, the required functions still need to be separately developed for individual projects, and existing programs and models cannot be reused to speed up the implementation of subsequent projects After in-depth discussion, Hamastar Technology found that pain points of enterprises implementing AI projects include high implementation costs and lengthy project schedules It is difficult for a single enterprise to simultaneously have data scientists, analysts, engineers, and designers Current projects are all focused on solving the needs of specific fields, and it is difficult to reuse the AI models in other fields of application At the same time, the tools are concentrated in AI projects and cannot provide customers with total solutions In other words, due to the "limited manpower," "restricted fields," and "insufficient tools" of AI service providers, the implementation of AI technology projects requires high costs or lengthy timelines These are common problems that companies urgently need to solve Therefore, if there is an AI model application service management platform, it will be able to solve the above difficulties and not only reduce costs, but also accelerate project implementation and provide customers with one-stop solutions AI model application service management platform assists in quickly completing projects Therefore, with the support of the AI project of the Industrial Development Bureau, Ministry of Economic Affairs, Hamastar Technology carried out the "AI Model Application Service Management Platform AISP RampD Project" and engaged in the RampD of AISP products The purpose is for AI service providers to complete the AI projects with twice the result using only half the effort The AISP provides one-stop AI solutions AI service providers can quickly assemble required functions, such as data API, model management, and model prediction result monitoring subscription through existing module functions of the AISP It also provides commonly used graphical tools to help companies quickly design interactive charts or dashboards required by users, effectively reducing the labor costs required to execute projects, shortening the solution POC or implementation time, and accelerating the implementation and diffusion of industry AI In terms of product business model, in the short term, the company will extensively invite IT service providers with expertise in the field of AI to work together, and use platform services to solve the AI implementation problems faced by requesting units in various field, gradually building trust in the platform brand In the mid-term, the company hopes to gradually expand the market based on its past success, and form strategic alliances with multiple IT service providers to solve more and wider problems in specialized fields and provide more solutions for units to choose from The platform combines field experts to jointly expand overseas markets In the long term, after establishing AI strategic alliances in various specialized fields, the platform will have a large number of AI solution experts for specialized fields After accumulating a large amount of successful project experience, Hamastar Technology hopes that the AISP will be able to work with experts companies to expand into the international market Harmastar Technology Co, Ltd was formed in 2000 by recruiting numerous senior professional managers and technical experts in related fields It is committed to software technology RampD and services, and aims to develop into an international software company, actively creating opportunities for international cooperation in the industry Under the excellent leadership of its first president, the company has rapidly grown into a major software company in Taiwan

這是一張圖片。 This is a picture.
Using Plant Growth Chambers as an Example - Standardizing Electronic Device Procedures Based on Imaging

In recent years, global climate change and environmental issues have become increasingly severe, causing major impacts on agricultural production Traditional agriculture heavily relies on weather conditions, facing challenges such as unstable crop quality, plummeting yields, and difficult pest control Particularly in Taiwan, agricultural biotech companies and farmers have suffered continuous losses, creating an urgent need for innovative solutions Meanwhile, Taiwan's plant factory industry faces many challenges high equipment and labor costs, an incomplete industrial chain diminishing international competitiveness, and a lack of cooperation among enterprises, all of which limit industry development Additionally, COVID-19the pandemic has highlighted the importance of remote monitoring and management Traditional manual inspections and data collection methods no longer meet the needs of modern agricultural production These issues collectively underline the urgent need for smart agricultural solutions, driving companies like Taiwan's HaiBoTe to develop innovative projects integrating IoT, cloud computing, and artificial intelligence technologies HaiBoTe Cloud Data Integration and Analysis Platform Facing these challenges, the agricultural sector urgently needs a system that can precisely control growth environments, improve resource efficiency, enable remote monitoring, and facilitate intelligent management Existing plant factory equipment often requires complete replacement, with poor compatibility with older equipment, and sensors and camera systems may require different interfaces, making them inconvenient to use Therefore, there is a need for a flexible solution that can integrate various equipment and technologies, providing real-time monitoring and data analysis, and automatically adjusting environmental parameters based on plant growth conditions This demand exists not only in Taiwan but is also a global trend in the development of smart agriculture By incorporating artificial intelligence, more scientific evaluation standards can be established, optimizing production processes, improving yield and quality, while reducing energy consumption and environmental impact Additionally, such smart solutions can attract more young people to participate in agricultural production, promoting industry upgrading and sustainable development Overall, the demand for smart agricultural solutions stems from the urgent requirements to address climate change, enhance production efficiency, reduce costs, and achieve precise management, and this is exactly the problem companies like Taiwan's HaiBoTe are striving to solve Taiwan's plant factory operators are facing a series of severe challenges, which are gradually eroding their competitiveness and survival space Firstly, the high cost of equipment and operations is their biggest burden Each electricity bill feels like a heavy blow, forcing them to balance between ensuring product quality and controlling costs Secondly, the unpredictability brought by climate change has become their nightmare Sudden extreme weather events can destroy their carefully nurtured crops in a short time, causing massive economic losses What's worse, they find themselves increasingly at a disadvantage in international market competition In contrast, large overseas plant factories, with their advanced automation technology and well-organized supply chains, can produce stable-quality agricultural products at lower costs, putting unprecedented pressure on Taiwan's operators On the technical level, they also face numerous challenges Compatibility issues between new and old equipment often put them in a bind, encountering various technical obstacles when trying to integrate different systems Lack of precise data analysis and forecasting capabilities also makes it difficult for them to make production decisions and accurately determine the best growth conditions for each crop Existing monitoring systems provide data that is often disorganized, difficult to interpret and apply Human resource challenges are also severe, with young people generally lacking interest in agricultural work, making it difficult for them to recruit employees with modern agricultural skills Even existing employees often feel exhausted from tedious manual operations and monitoring tasks These problems are intertwined, creating a complex dilemma that leaves plant factory operators confused and anxious They urgently need a comprehensive solution that can enhance factory operational efficiency, reduce costs, and improve product competitiveness, helping them overcome difficulties and regain their footing in the fierce market competition In facing the various challenges of plant factory operators, Taiwan's HaiBoTe company has demonstrated exceptional technical innovation and a flexible customer-oriented development strategy They deeply understand that the solution must be able to seamlessly integrate existing equipment while providing highly intelligent management functions To this end, HaiBoTe's RD team adopted a modular design approach to develop a system that can be flexibly configuredIoTIoT system The core of this system is a smart control hub that can communicate with various sensors and actuators During development, HaiBoTe worked closely with customers, deeply understanding their specific needs and operational environments They even dispatched engineers onsite to observe the daily operations of the plant factories, ensuring that the developed system actually solves practical problems This in-depth cooperation not only helped HaiBoTe optimize their product design but also established a close relationship with customers, laying the foundation for subsequent continuous improvements HaiBoTe's innovation is not just reflected in hardware design but also in their developed intelligent software system This system integrates advanced machine learning algorithms, capable of precise forecasts and optimal control of plant growth conditions based on large amounts of historical data and real-time monitoring information To help customers overcome technical barriers, HaiBoTe designed an intuitive and easy-to-use user interface, which even non-technical operators can master easily Additionally, they provide comprehensive training and tech support services, ensuring customers can fully utilize all functions of the system When facing challenges, HaiBoTe's technical team can quickly identify problems through remote diagnostics and provide solutions In one incident, during a serious equipment failure emergency faced by a customer, HaiBoTe's engineers guided the customer through system remote access, successfully instructing them on repairs and avoiding potential massive losses This full-range service not only solves customers' immediate difficulties but also strengthens their confidence in intelligent management, driving the entire industry toward more efficient and sustainable development HaiBoTe's developed smart agriculture solution not only brought revolutionary changes to plant factories but also painted an encouraging picture for the future of the entire agricultural industry The excellence of this system is evident in several aspects firstly, it achieves precise control of the plant growth environment, significantly improving crop yield and quality stability Through advanced artificial intelligence algorithms, the system can forecast and adjust optimum growth conditions based on historical data and real-time monitoring information, ensuring each plant grows in the ideal environment Secondly, it significantly reduces energy consumption and operational costs, improving resource efficiency The intelligent management system optimizes water, electricity, and nutrient supply, reducing waste and lowering manpower costs Additionally, the system's modular design and strong compatibility allow it to seamlessly integrate various new and old equipment, providing a flexible solution for gradual upgrades of plant factories Most importantly, the system injects a sense of technology and modernity into agricultural production, helping to attract the younger generation to the field and injecting new vitality into the industry Looking ahead, HaiBoTe's smart agriculture system has broad application prospects and expansion potential In addition to plant factories, this system can also be applied to traditional greenhouse cultivation, urban agriculture, and even home gardening In the field of aquaculture, similar technology can be used to monitor and optimize the breeding environments for fish or shrimp In the food processing industry, similar intelligent monitoring and forecasting systems can be used to optimize production processes and enhance food safety Even in the pharmaceutical industry, this type of precise environmental management system could be applied to drug research and production processes To further promote this system, HaiBoTe could adopt a multifaceted strategy Firstly, they could collaborate with agricultural colleges and research institutions to establish demonstration bases, allowing more people to experience the benefits of smart agriculture firsthand Secondly, they could develop customized solutions tailored to different scales and types of agricultural production, expanding the applicability of their products Furthermore, they could raise awareness and acceptance of smart agriculture within the industry by hosting forums, online seminars, and sharing success stories Lastly, they could explore collaborations with government departments to integrate this system into policies supporting the modernization and sustainable development of agriculture, thereby promoting the widespread adoption of smart agriculture on a larger scale Through these efforts, HaiBoTe not only can expand its market share but also make a significant contribution to the sustainable development of global agriculture, truly realizing the vision of technology empowering agriculture 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-09」