:::

【2020 Solutions】 AI Press Releases in 20 Minutes - SparkAmplify Bridges Brands and Media for Accurate Exposure

What should small and medium-sized businesses or startups that want to export their products do when they lack PR resources, media exposure, and journalist contacts? SparkAmplify, a company that builds global market platforms using big data, has created a precise media marketing platform SaaS that aggregates data from over 80,000 global media journalists. With AI technology, it analyzes data and generates press releases within 20 minutes, matching them with accurately targeted international journalists to greatly increase exposure and achieve marketing goals internationally.

SparkAmplify's main service is a brand-media matching marketing SaaS platform. Since its launch in 2018, it has continually analyzed international media trends and has already analyzed over 3 million international media reports, helping more than 1,200 companies from 25 countries achieve precise media exposure. It has partnerships with major events such as CES and Computex, as well as famous incubation accelerators like TechStars, BootUp, Taiwan's TSS, Garage+.

"Media are searching for news, companies are searching for media." By applying AI data, a balance has been found. Jian-Qun Li, founder of SparkAmplify, explains, "From observing the demands of both suppliers and consumers in the media marketing market, there's a rigid demand for a platform that matches 'brands with journalists' based on both parties’ needs." Thus, SparkAmplify utilizes machine learning Logistic Regression algorithms to filter specific categories of news text and uses the LDA topic discovery algorithm to identify the hottest news trends, rolling out the 'AI Exploration of Media Trends' service.

Generate AI Press Releases in 20 Minutes to Find Suitable Media

This system service only requires three major steps to disseminate the products or services of brands, small and medium-sized enterprises, and startups on the international market through international media coverage.

● Step One, Material Preparation: SparkAmplify sets up a dedicated brand page where brand managers prepare and upload complete materials including company profile, product names, service features, images, related product diagrams, etc.
● 步驟二、品牌故事撰寫:透過專家系統及運用機器學習Logistic Regression邏輯回歸演算法,將特定類別的新聞文本篩選出來,並透過主題探勘演算法LDA,找出最熱門新聞趨勢,系統會自動按結構、格式、片詞、文法、關鍵字等等,在短短20分鐘內自動生成AI新聞稿,再加以人工優化。 
● 步驟三、精準推薦:將公司及產品介紹、新聞稿等,媒合國際媒體共8萬名記者,將對的主題推薦到對的記者身上,主動提供記者報導素材,以增加媒體露出及曝光機率。

AI Exploration of Media Trends Service Assists Brand Companies in Achieving Precise International Exposure

▲AI探勘媒體趨勢服務協助品牌公司精準國際曝光

Jian-Qun Li points out that traditional methods of gaining media exposure include holding press conferences or distributing press releases widely. However, at international exhibitions, brand owners and small and medium-sized business leaders might not have sufficient PR resources. Additionally, understanding industry trends and journalists' reporting preferences poses a significant challenge. Aside from the challenges of data collection, extracting meaningful insights and trends can often be ineffective, time-consuming, and labor-intensive. The 'AI Media Trend Exploration' technology can effectively and accurately collect data, use text mining and machine learning to unearth underlying information, and, by executing periodically, keep track of market changes to products.

鎖定科技新聞領域 協助品牌業者精準曝光

善於資料分析的李健群,運用媒體大數據的分析技術,打造以機器學習進行分析的行銷系統平台,專攻歐美市場數據行銷決策與社群行銷,幫助行銷能力不足的的新創團隊,或有想要獲得國際媒體青睞的品牌業主,能以大數據分析找尋適合投放的媒體。

在AI技術的應用上,安普樂發使用NER(命名實體識別技術,Named Entity Recognition)技術來增加不同的屬性。例如人、組織、產品等,最後再透過知識圖譜(Knowledge Graph)建立屬性之間的關係,才能迅速達成預估目標。

由於新聞領域五花八門,包括財經、科技、政治、社會、運動、娛樂、美食、時尚設計等,資料數量眾多,但受限於儲存等資源,無法一一掌握,安普樂發將重點擺在科技新聞領域,與CES、Computex等大型國際科技展緊密結合,提供參展商在公關媒體上操作的資源,爭取國外媒體曝光機會,負責找對的媒體將品牌效益傳達、延伸出去。

三步驟完成媒體精準投放流程

▲三步驟完成媒體精準投放流程

SparkAmplify 商業模式主要為訂閱制,每月收取399美元,透過簡單步驟即可輕鬆完成品牌與媒體的對接服務。至於除了英語之外,未來是否會推出中文服務?李健群表示,要跨到落地的語系需要重新建立一套模型,中文又比英文要複雜許多,處理過程要刪除非常多的雜訊。然而,因應中文化的需求日益殷切,未來在資源配置足夠的情況下,有機會也會推出中文服務。

SparkAmplify 團隊

▲SparkAmplify 團隊

SparkAmplify 創辦人李健群

▲SparkAmplify 創辦人李健群

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【解決方案】瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞
Defect identification rate reaches 100%, Nairi Technology is favored by major panel manufacturers

On the machine tool production line, there are some slight differences in the first step of assembly Accumulated tolerances will cause the assembly work to be repeated, which is time-consuming and labor-intensive, resulting in shipment delays that will impact the company's reputation Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutions It uses machine learning models to inherit the experience of old masters In the CNC processing machine assembly and casting process, it uses AI to analyze production line data, accurately adjust various data, and improve Production accuracy is 25 This AI production line data analysis system is called "Master 40" by Huang Changding, chairman of Naruili Technology It is the most evolved version of the master plus artificial intelligence It has been used in machine tool processing factories with remarkable results In addition, Nairi Technology used AI defect detection technology to participate in the 2021 AI Rookie Selection Competition of the Industrial Bureau of the Ministry of Economic Affairs, assisting AUO in advanced panel image defect detection, with an accuracy rate of 100, and won the award Assisted panel manufacturer AUO to solve problems with 100 accuracy in defect detectionHuang Changding further explained that during the production of general panels, edges and corners are There may be defects in the corners Although the defects are visible to the naked eye, AOI is often difficult to identify, causing the detection error rate to often exceed 30 Therefore, re-inspection must be carried out with manpower to improve the accuracy rate However, in response to the demand for a small number of diverse products and insufficient manpower, using AI detection is indeed a good method Nairui Technology, founded in 2018, has been able to win the favor of major panel manufacturers with its AI technology in just three years In fact, it has been honed in the field of CNC machine tools for a long time Tang Guowei, general manager of Narili Technology, pointed out that the top three CNC machine tool factories in Taiwan hope to introduce AI into the two production lines of assembly and casting Among them, on the assembly line, in order to maintain the accuracy of assembly, every part of the component is designed Tolerances are designed During assembly, each component is within the tolerance However, the cumulative tolerance still fails the final quality inspection and must be dismantled and reassembled This is not only time-consuming and labor-intensive, but also causes waste "After entering the production line, I realized that some masters have accumulated a lot of experience and are good at adjustment After his adjustment, the accuracy rate has improved a lot and the speed is faster" On the contrary, the new engineers did not Based on experience, it takes a long time to adjust and may not pass the quality inspection The yield rate of Master 40 system has increased significantly from 70 to 95Tang Guowei then said that the original size data set by Master during assembly All were recorded on paper After the information was written, it was stored in the warehouse and sealed No one studied the relationship between the dimensions Narili assists customers in designing the Fu 40 system Through the human-machine panel, the master can directly input the measured dimensions and related data during assembly After collecting data from different masters, AI algorithms are used to analyze the relationship between the data and create an AI model The AI model automatically notifies the operator what size to adjust to, and the quality inspection will definitely pass In this way, the yield rate will be improved It has increased significantly from 70 to more than 95 Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutionsTang Guowei added, assembling the spindle of a CNC processing machine It took four hours In the first step, the machine made measurement errors, including vibration, temperature, speed, etc that were out of range It had to be dismantled and reinstalled, which took another four hours How to adjust after disassembly depends on the experience of the master At first, the master may have done the best assembly method based on experience, but the error rate was also 30, and the assembly took several days With the assistance of AI masters, the assembly time only takes half a day, and the yield rate reaches over 95, saving a lot of time and manpower "Use the AI model of machine learning to collect the experience of all the masters and provide it for AI learning The first step is digitalization, and the second step is knowledgeization This is the transformation of the enterprise "An important key", Huang Changding believes that Narili Technology is an important partner in the transformation of traditional manufacturing from automated production to digital transformation In addition, another industry that Naili Technology focuses on is the smart car dispatching system of the leading brand of elevator manufacturers The so-called car dispatch referring to the elevator car means that if there are more than two elevators, group management is required In the past, car dispatching was based on fixed rules If the elevator was closer to the requested car, that elevator would be automatically dispatched On the one hand, it did not take into account that dispatching a car if the elevator was called too many times might make other people wait longer The previous vehicle dispatching model did not take into account the usage characteristics of the building, resulting in a lot of waste For example, in an office building, there are peak hours in the morning, lunch break, and afternoon after work AI smart car dispatch can be flexibly adjusted according to off-peak and peak hours, increasing the efficiency of car dispatch, reducing waiting time, and reducing wasted electricity Introducing elevator smart dispatch to improve transportation efficiency and have environmental protection functionsHuang Changding added that just like the previous traffic lights at intersections, the system has already The number of seconds to stop and pass on highways, sub-trunks and small streets is programmed Smart traffic lights are now used to flexibly adjust waiting times to make road sections prone to congestion smoother Using AI to learn usage scenarios and introducing a smart dispatch system into elevators will improve transportation efficiency and make it more environmentally friendly In addition to introducing smart elevator dispatching, Nairili also introduced AI into the smart production and shipment scheduling system of elevator factories Elevator factories often cannot accurately estimate the customer's elevator delivery date For example, office buildings or stores must be completed to a certain extent before the elevator can be installed on the construction site If affected by unexpected factors such as delays in the customer's construction period, the elevator factory will often be idle or the schedule will be difficult to arrange Tang Guowei pointed out that generally those who understand the progress of client projects may be from business or engineering, but overall, the accuracy rate of shipments is only about 60, which means that 40 of them will not be shipped as scheduled Therefore, if the shipping schedule can be accurately estimated, the production line can be freed up for emergency orders or other product production needs The AI smart scheduling system will analyze past shipment data, about 20-30 parameters such as climate, distance between the factory and the construction site, and customer credit, and put them into the AI algorithm to accurately predict whether shipments can be made as scheduled goods Huang Changding also specifically stated that the machine learning of Naili Technology is not ordinary machine learning, but also incorporates various calculation methods such as traditional image processing technology and statistics Only by being very familiar with the domain knowledge can we make good products AI models are also where the company’s competitiveness lies He emphasized that the data that general SaaS platforms can process is very limited, and the accuracy rate has increased from 70 to 75 at most Naili’s strength lies in AI algorithms and machine learning, and it must be coupled with in-depth industry knowledge to produce output Good AI model Narili Technology started with the AI project, gradually deepened the technology, chose to start with the more difficult tasks, and accumulated rules of thumb It is expected to develop SaaS services this year 2022, based on customer needs starting point, gradually gaining a foothold and becoming an important partner in smart manufacturing The picture left shows the general manager of Naruili Technology Tang Guowei and Chairman Huang Changding right「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
Complete checkout in 1 second, Viscovery AI image recognition assists smart retail

Artificial intelligence AI has gradually changed the way various industries operate in recent years However, most of the work is still done by humans, with AI playing a supporting role This has led to emergence of the term "AI Copilot," which stands for "AI-driven tools or assistants" that aim to assist users in completing various tasks and improve productivity and efficiency The concept of AI Copilot comes from the role of "co-pilot" During flight, the co-pilot assists the main pilot in completing various tasks to ensure flight safety and efficiency In fact, there have been signs of various "machines" beginning to play the role of "copilot" in different fields since the Industrial Revolution, assisting humans in completing heavy physical and repetitive tasks, greatly improving factory production efficiency, and driving rapid economic development Following the advancement of computing equipment and breakthroughs in machine learning, deep learning, and image recognition technologies, the concept of AI Copilot has gradually taken shape The development of AI Copilot marks the transition from "machine-assisted to AI-assisted" Early robots could only complete preset repetitive tasks, but today's AI copilot can learn and adapt to new environments and tasks, and continuously optimize its performance in practical applications This transformation not only changes human-machine interactions, but also has a profound impact on various industries The application scope of AI copilot covers various industries, including finance, healthcare, manufacturing, education, retail, etc, and are everywhere to be seen Application of AI copilot in the retail industry AI image recognition checkout In the retail industry, the application of AI copilot has begun to show concrete results Take Viscovery's AI image recognition checkout system as an example This system is a type of AI copilot model that helps store clerks speed up checkout or assists consumers in simplifying the self-service checkout process The store clerk needs to scan the product barcodes one by one in the regular checkout method If a product does not have a barcode, such as bread and meals, the clerk needs to first visually confirm the items, and then input them into the POS checkout system one by one Based on actual measurements at a chain bakery, it takes 22 seconds for an experienced clerk from "visual recognition" to "entering product information of a plate of 6 items into the checkout system" New clerks may need even more time In addition, according to a Japanese bakery operator, it takes 1 to 2 months to train employees to become familiar with products Now with AI image recognition technology, store clerks let AI handle the "product recognition" step, and AI will play the role of copilot, quickly identifying items within 1 second, speeding up checkout to save 50 of checkout time, and optimizing customers'shopping experience The time cost of training employees to identify bread can also be effectively shortened Even for products with barcodes, AI can quickly identify multiple items in one second, which is more efficient than scanning barcodes one by one The self-checkout system "assisted" by AI image recognition allows consumers to successfully complete shopping without the help of store clerks, eliminating the trouble of swiping barcodes or searching for items on the screen, which improves the shopping experience In a time when store clerks are hard to hire due to labor shortage, this also helps stores reduce operating costs AI quickly identifies multiple checkout items in just one second Source of image Viscovery Recently, startups dedicated to developing AI image recognition checkout solutions have emerged in various countries The most lightweight solution currently known is in Taiwan It can be immediately used by installing a Viscovery lens and a tablet installed with Viscovery AI image recognition software at the checkout counter to connect to the store's existing POS checkout system There are various integration methods, including plug-and-play and API solutions integrated with the store's POS system Viscovery AI image recognition system can be painlessly integrated with the store's existing POS system Source of image Viscovery Example of AI image recognition checkout Currently, the Viscovery AI image recognition system is being used in bakery chains in Taiwan, Chinese noodle shops in Singapore, micromarkets in department stores in Sendai, Japan, and Japanese bakeries and cake shops Over 7 million transactions were completed through this AI system, which identified more than 40 million items These use cases demonstrate the extensive application of the Viscovery AI image recognition system in the retail industry In the future, the company will continue to explore the various possibilities of using Vision AI in retail and catering nbsp The Viscovery AI image recognition system is already being used in bakeries, cake shops, restaurants, and convenience stores in Japan, Singapore, and Taiwan Source of image Viscovery

【解決方案】AI電眼取代人眼 慧演智能運用AI幫製造業做品管
Using AI vision to replace human vision, Claireye Intelligence uses AI to help the manufacturing industry with quality control

In response to customer demand on a wide variety of products in small quantities in the manufacturing industry, there is an urgent need to find AI solutions from the cloud to terminals Claireye Intelligence provides a solution that integrates software and hardware - BailAI image inspection solution to assist traditional manufacturing industries in improving process efficiency and product quality, thereby achieving the initial goal of transformation After the government declared 2017 to be Taiwan's "First Year of AI," AI startups have sprung up in Taiwan Established in 2018, Claireye Intelligence targets smart manufacturing and provides a platform for AI image analysis and process optimization, using the power of deep learning to detect product defects and abnormalities in the assembly process It assists companies in building infrastructure from terminals to the cloud, which enables automated monitoring of factory production to improve process efficiency and quality Focusing on AI image inspection based on its familiarity with the production line quality control process Shirley Liu, founder and CEO of Claireye Intelligence, is a young entrepreneur She entered the manufacturing industry after graduating from college and held a quality control position in the plastic injection process of hard disk parts "She was already on the production line at the time, and is familiar with the production line process of production machinery" She later switched career paths to marketing and planning, and then worked as an AI product manager When the time came, Shirley Liu decided to start a business, focusing on AI image recognition in the manufacturing industry "The difficulty for enterprises is the lack of an AI development team Even if an enterprise has an AI team, development projects will take a lot of time, at least 6-12 months" said Shirley Liu, who is well versed in the market's pain points The problem that needs to be solved by platforms is to provide services that allow traditional manufacturing industries to build their own AI models without needing employees with a programming background, and to remotely assist production lines with troubleshooting and subsequent system maintenance, helping companies save development time and labor costs BailAI image inspection platform usage scenarios Facing the large number of competitors that provide AI image recognition in the market, what are the technical advantages of Claireye Intelligence Shirley Liu said that many companies currently have AOI equipment, but the bottleneck in the application of AOI is that it can only be used for defect inspection in fast production of large quantities, and parameters need to be adjusted after each inspection or production Based on her understanding of the industry, most SMEs are limited by their financial resources due to AOI equipment often costing over NT1 million, but they also want to use automated inspection This is where Claireye Intelligence comes in Shirley Liu went on to say that it is impossible for traditional manufacturing industries to maintain a technical team that includes AI engineers, data engineers, cloud architects, and terminal architects Claireye Intelligence specializes in software and hardware integration Enterprises can use the BailAI image inspection platform to easily solve inspection problems on the production line In other words, customers only need to provide images or samples for Claireye Intelligence to carry out model training, model deployment, and system integration, and they can easily use AI technology to optimize and monitor production line processes Participated in the AI New Talent Selection and achieved a recognition rate of over 90 in assembly behavioral image recognition For example, a certain connector manufacturer only has 1-2 AI engineers in its technical team The main problem that needs to be solved is that most operators are on the production line, while quality control and senior managers are not on site, and the company wants to understand the actual situation of the production line through remote monitoring Claireye Intelligence uses industrial cameras to capture production line images, and transmits AI image analysis to the remote end Supervisors and quality control personnel can observe if there are any errors in the production line assembly, such as whether the connectors and lines are connected properly, through the monitor Claireye Intelligence's AI image inspection operates on Microsoft's Azure cloud platform, and also utilizes terminal equipment, such as NVIDIA's edge computing equipment placed around the inspection station, to assist traditional manufacturing industries with improving production line efficiency and detecting problems early through an integrated solution from the cloud to terminals Claireye Intelligencersquos customers currently include aviation, electronic peripherals, connectors, and metal industries Assembly process solution for human behavior recognition in assembly lines achieves an accuracy of over 90 In order to demonstrate the depth of technology, Claireye Intelligence participated in the 2021 AI New Talents Selection of the Industrial Development Bureau, Ministry of Economic Affairs, and provided Lite-On Technology with the "assembly process solution for human behavior recognition in assembly lines" The solution determines effective working hours and ineffective working hours of operators on the production line through cameras and AI image recognition It recognizes hand posture and position through images to determine the operator's assembly behavior, achieving an accuracy of over 90 Shirley Liu added that the assembly process of electronic components is complex, mostly carried out manually, and cannot be replaced by robotic arms Claireye Intelligence used cameras to film the assembly process of operators at Lite-On's assembly station The algorithm is then trained and corrected based on the video, and the final trained model can directly determine whether there are any errors in the assembly process to improve the overall process Project development time is expected to be shortened to 1 month by using the BailAI image inspection platform Since its establishment more than three years ago, Claireye Intelligence has accumulated a considerable amount of project experience and hopes to commercialize the project experience Shirley Liu pointed out that the trial version of BailAI image inspection will be completed this year 2022 Customers can choose industrial cameras or video cameras based on the detail of the object being inspected It can even use X-rays to capture images, and then the images are automatically marked by the platform Claireye Intelligence will provide customers with AI application models suitable for the field Inferences can also be made in the cloud or terminals for launch in the manufacturing industry The metals industry, metal casings of industrial computers, connectors, electronic peripherals, and mechanical parts can all use the platform for defect detection and object identification Claireye Intelligence will continue to improve its technical capabilities, accumulate customer experience to complete commercialization, and also accelerate the implementation of AI inspection applications In the mid-term, it will build terminal and cloud infrastructure and shorten the development time of enterprise AI projects from 6-12 months to 1 month, reducing usage time and lowering the threshold for enterprises The long-term goal is to target the Southeast Asian market where Taiwanese businesses are gathered, expand software and hardware integrated AI solutions to overseas markets, and expand the scale of operations