:::

【2021 Application Example】 Factory Helper Chatbot Reduces Machine Downtime to One Day

Jinfeng Machinery Industry, the fourth largest punch press manufacturer globally, has developed an app that connects with LINE, WeChat, and IM emergency communication software. Regardless of the number of machines, integrated through a single platform, the production and equipment status can be monitored in real time via mobile phones and tablets.

Established nearly seventy years ago, Jinfeng Machinery is one of the unsung heroes behind Taiwan's early 'living room as factories' approach, with household subcontracting tasks such as spoon and button metal pressing handled by Jinfeng's machines. With the advent of Industry 4.0 technologies, this 'hidden company' based under Bagua Mountain in Changhua had to adopt AI robots to swiftly address malfunctions and reduce wait times.

Real-time monitoring AI robots have become essential assistants on the factory line

GM of Jinfeng Machinery Industry, Tseng Sheng-ming famously said: 'Always consider the next step for our customers.' With an annual revenue of over 7.5 billion New Taiwan Dollars, a single day of factory downtime equates to a loss of over 20 million dollars. At the forefront of Industry 4.0, Jinfeng uses various sensors to remotely monitor the operational status of machines and record data. Through network-connected gateways that integrate peripheral equipment, monitoring data is transmitted to databases to quickly detect and reduce the risk of downtime. Cloud-based, 24/7, 365-day repair registration and constant monitoring are aimed at achieving the goal of an unmanned factory.

金豐機器工業總經理曾盛明的名言是:「永遠為客戶設想下一步」,年營業額逾新台幣75 億元的金豐,工廠停工一天等於損失2,000 多萬元,走在工業 4.0 的浪頭上,金豐透過各式感測器遠程掌握機台運作狀態並記錄數據,運用網路連接閘道器整合周邊設備,將監測數據傳送至數據庫,快速檢知降低停機風險,雲端線上全年365 天、每天24 小時報修等隨時監控,以實現無人化工廠的目標。

To speed up the resolution of machine malfunctions, Jinfeng Machinery Industry introduced a customer service chatbot developed by Asia-Pacific Smart Machine Company, featuring multi-round dialogue capabilities. Combined with a knowledge graph in the punching field, operators simply need to inquire through the proxy robot to quickly obtain troubleshooting solutions and repair quotes, eliminating the need to wait for Jinfeng technicians to handle issues on-site. This approach has reduced downtime to within one day, cutting the time spent on factory malfunction resolutions by up to 50%.

Accelerated security screening processes can significantly save up to 30% of manpower

By applying AI technology for machine understanding, Asia-Pacific Smart Machine facilitates immediate and accurate problem classification through inquiries by customers and front-line staff. Online responses to operational issues and needs are synchronized, scheduling repair personnel and materials to quickly resolve faults and effectively reduce downtime losses. In the field of tool machines, Open Talk can integrate with Industry 4.0 tool machines for machine control and real-time data queries. Engineers no longer need to use smartphones or tablets; they can simply use voice commands to control machines and make inquiries through installed speakers or robots, promptly notifying maintenance when issues arise, keeping repair time within one day. Moreover, the technology provided by Asia-Pacific Smart allows for automatic detection of which production line is problematic, type of issue, and management of the situation, speeding up the repair process and potentially saving up to 30% of manpower.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】救命急如星火 AI病危系統監測掌握黃金搶救期
Life-saving is as urgent as a spark AI critical illness system monitors and grasps the golden rescue period

60-year-old Mr Huang was admitted to the hospital due to a stroke After lying in the intensive care unit for two weeks, his condition suddenly took a turn for the worse After rescue, he was lucky enough to survive In fact, with the assistance of AI critical illness early warning technology, hospitals can detect signs and take timely and accurate medical measures 6-8 hours before a patient's heart stops, which can greatly reduce the chance of death in the hospital The deterioration of the condition is a process that evolves over time, and its subtle changes are by no means without context Previous research reports show that about 60 to 70 of inpatients who experience unexpected in-hospital cardiac arrest had symptoms 6 to 8 hours before their cardiac arrest, but only a quarter of them were recognized by clinical staff Detection and discovery, therefore, there is a need for a risk warning tool or system that can be used earlier and continuously to monitor the condition, alert medical staff to pay attention to subtle changes in the patient's condition at any time, and take timely and accurate intervention measures before the condition progresses to effectively reduce adverse events or the risk of serious adverse events Unexpected deterioration cannot be detected early Acute and severe patients often undergo unpredictable changes, and timely detection or prediction of potential acute and severe patients is an important issue The currently commonly used clinical assessment method is Modified Early Warning Score MEWS, which uses simple physiological parameter assessment including heartbeat, respiratory rate, systolic blood pressure, body temperature, urine output and state of consciousness to screen out high-risk patients, and has been proven to be predictive Patient clinical prognosis MEWS is a scoring mechanism with a single time point and a standardized formula However, the AI crisis warning system developed by Boxin Medical Electronics - Hospital Emergency and Critical Care Early Warning Index System EWS is designed to predict patient status with immediate response , collect the physiological data of patients over time for deep learning, find the best prediction model, and improve the overall accuracy Boxin Medical Electronics uses a big data analysis model to build an early warning system EWS, IoT Internet of Things and 5G communication technology, allowing medical staff to remotely monitor the physiological status of patients through communication equipment, and monitor emergency and severe cases quickly The patient's condition changes and the golden rescue period of 6-8 hours before cardiac arrest can be grasped After Boxin Medical Electronics introduces AI visual interpretation, unmanned operation can greatly reduce medical manpower The AI technology developed by Boxin Medical Electronics is the Gradient Boosting Ensemble Learning System GBELS to build an early warning system It is a learning-based EWS prediction algorithm developed by the company, which is an integrated learning Ensemble Learning and is classified as supervised learning, providing the following three functions 1 Early warning risk notification is used to analyze representative data using GBELS to provide an early risk score so that medical staff can conduct immediate clinical assessment and provide appropriate medical treatment 2 Reduce medical manpower Collect continuous physiological monitoring data, such as heartbeat, respiration, blood pressure and blood oxygen concentration, etc, to reduce the time for medical staff to write cases 3 Combine IOT logistics network and 5G communication technology to quickly transmit medical data such as monitoring parameters and imaging data, and assist medical staff to monitor changes in patients' condition remotely through communication equipment AI critical illness system monitoring to master the golden treatment period Boxin Medical Electronics stated that assessing the severity of the disease in acute and severe patients is a complex task, and patients often experience unpredictable changes Clinical medical staff often judge the condition based on their own clinical experience or intuition, which lacks science and objectivity, resulting in the inability to correctly identify and timely detect potentially acute and severe patients, resulting in or misdiagnosis leading to increased in-hospital mortality of patients The introduction of an AI early critical illness warning system can assist emergency and critical care medical staff to correctly predict the patient's condition and allow patients to receive the care they need immediately This can reduce the manpower arrangement of the emergency and critical care ward at the same time and reduce labor costs In addition, the easy-to-carry design will help the system be introduced into ambulances, home care and other places in the future, so that emergency patients can receive appropriate care earlier Other departments within the hospital can also develop new applications around this system, which can effectively accelerate the development and promotion of smart medical technology With the COVID-19 epidemic still raging in many countries around the world, this system can also help hospitals in various places to operate more effectively Caring for and monitoring the condition of critically ill patients In addition to AI critical illness warning, Boxin Medical Electronics has also developed AI image interpretation - Medical Physiological Monitor Life Cycle Compliance Testing AVS, which uses AI image interpretation technology to develop automated quality inspection of life support medical equipment The instrument solves the time-consuming problem of medical instrument testing It can reduce testing time by 70, increase the number of tests by 3 times, and effectively reduce labor costs by 50 At the same time, it is 100 compliant with regulatory requirements, and gradually solves the shortage of manpower and medical resources in the medical field , medical work overload and other issues It has now taken root in mainland China and is actively preparing for its launch in Europe It will develop towards the Japanese and American markets in the future Boxin Medical Electronics develops AI image interpretation-medical physiological monitor life cycle compliance testing AVS to solve the time-consuming problem of medical instrument testing and can reduce testing by 70 time At this stage, Boxin Medical's smart medical technology has been introduced into medical hospitals including Hsinchu MacKay, Changkei, Dongyuan General Hospital, Kaohsiung University of Technology Affiliated Hospital, Zhenxin Hospital, Hsintai Hospital, Taipei Medical University Affiliated Hospital, etc GE HealthcareInc, an internationally renowned medical materials manufacturer, and Mindray Medical, China's largest medical materials manufacturer, are both representative customers of Boxin Medical Electronics 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
Hamastar Technology Builds an AI Model Management Platform to Accelerate the Application of AI

Riding the AI hype train, financial service providers are using their solid foundation in the industry to not only transform themselves, but also assist their customers with transformation Hamastar Technology, which has been established for over two decades, has been developing AI technology and assisting industry customers with the implementation of AI in recent years Hamastar Technology believes that to implement a complete AI project, in addition to AI theoretical knowledge, data analysis, and model training capabilities, it is also necessary to develop APIs for data, establish databases, develop front-end RWD web pages, and even consider layout design and user experience based on customer needs These tasks create technical barriers for AI startups Even from the perspective of companies that have reached a certain scale, it is hard to accumulate technical experience and accelerate business growth due repeatedly investing manpower developing similar functions in each project Institutional customers still require high level of customization for AI Using the requirements of government Agency A implemented by Hamastar Technology as an example, users must control false information from specific channels The platform needs to provide data ingestion functions for training models and predictions, and can complete natural language processing NLP text classification model training and use When the model discovers false information, it needs to immediately notify responsible personnel through messaging software The need of Agency B is to use an AI model to automatically classify petitions and immediately provide information on past cases as reference for the petitioner or officer Although the project models are similar data ingestion, model prediction, warning notification, the required functions still need to be separately developed for individual projects, and existing programs and models cannot be reused to speed up the implementation of subsequent projects After in-depth discussion, Hamastar Technology found that pain points of enterprises implementing AI projects include high implementation costs and lengthy project schedules It is difficult for a single enterprise to simultaneously have data scientists, analysts, engineers, and designers Current projects are all focused on solving the needs of specific fields, and it is difficult to reuse the AI models in other fields of application At the same time, the tools are concentrated in AI projects and cannot provide customers with total solutions In other words, due to the "limited manpower," "restricted fields," and "insufficient tools" of AI service providers, the implementation of AI technology projects requires high costs or lengthy timelines These are common problems that companies urgently need to solve Therefore, if there is an AI model application service management platform, it will be able to solve the above difficulties and not only reduce costs, but also accelerate project implementation and provide customers with one-stop solutions AI model application service management platform assists in quickly completing projects Therefore, with the support of the AI project of the Industrial Development Bureau, Ministry of Economic Affairs, Hamastar Technology carried out the "AI Model Application Service Management Platform AISP RampD Project" and engaged in the RampD of AISP products The purpose is for AI service providers to complete the AI projects with twice the result using only half the effort The AISP provides one-stop AI solutions AI service providers can quickly assemble required functions, such as data API, model management, and model prediction result monitoring subscription through existing module functions of the AISP It also provides commonly used graphical tools to help companies quickly design interactive charts or dashboards required by users, effectively reducing the labor costs required to execute projects, shortening the solution POC or implementation time, and accelerating the implementation and diffusion of industry AI In terms of product business model, in the short term, the company will extensively invite IT service providers with expertise in the field of AI to work together, and use platform services to solve the AI implementation problems faced by requesting units in various field, gradually building trust in the platform brand In the mid-term, the company hopes to gradually expand the market based on its past success, and form strategic alliances with multiple IT service providers to solve more and wider problems in specialized fields and provide more solutions for units to choose from The platform combines field experts to jointly expand overseas markets In the long term, after establishing AI strategic alliances in various specialized fields, the platform will have a large number of AI solution experts for specialized fields After accumulating a large amount of successful project experience, Hamastar Technology hopes that the AISP will be able to work with experts companies to expand into the international market Harmastar Technology Co, Ltd was formed in 2000 by recruiting numerous senior professional managers and technical experts in related fields It is committed to software technology RampD and services, and aims to develop into an international software company, actively creating opportunities for international cooperation in the industry Under the excellent leadership of its first president, the company has rapidly grown into a major software company in Taiwan

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data