:::

【2020 Application Example】 Proactive Prevention: Fall and Hazardous Area Detection to Safeguard Elderly Safety

We all know that falls are a major concern for the elderly. Once a fall occurs, it could lead to injuries or even life-threatening consequences that may be irreversible such as remaining undiscovered after a fall. To counteract this, early warning through AI technology for fall and hazardous area detection can greatly enhance the safety of the elderly.

According to international statistics, the fall incidence rate among people aged 65 and above is 30%-40%. This implies that out of ten elderly individuals, 3 to 4 might experience a fall annually. Indeed, falls are the most common cause of injury among the elderly. Additionally, detections and warnings of risky behaviors in hazardous areas, such as scalds or slipping in the bathroom, can significantly reduce injury risks for elderly individuals.

To ensure that the elderly lead a long and healthy life with minimized accidental injuries, the AI team from the Institute for Information Industry actively collaborates with long-term care centers and AI device manufacturers. Their goal is to meet the most urgent needs of the elderly, addressing areas where care centers, due to limited staff and resources, can't provide comprehensive care.

Accidents and injuries are among the top ten causes of death. The establishment of an early warning system is urgently needed.

Statistics show that among the top ten causes of death for people over 65, in both Taiwan and the United States, accident injuries such as falls are included. Post-fall, elderly individuals often experience a decline in mobility and quality of life. In addition to physical injuries like fractures and bleeding, psychological impacts can also occur, causing them to avoid going out and leading to further physical decline. Thus, preventing falls and providing immediate warnings to minimize fall-related injuries are crucial issues in elderly care.

Currently, the Institute for Information Industry's team is guiding collaborations between elderly care providers and AI device manufacturers. The focus includes developing AI technologies for elderly facial recognition, along with technologies for detecting falls and hazardous behaviors, which are now being implemented in three elderly care facilities across northern, central, and southern regions for practical validation.

Collaboration between smart surveillance manufacturers and facilities effectively enhances recognition rates

Mr. Wu Jiachen, Vice President of Chiztech, stated that their smart surveillance technologies, including fall detection, facial recognition, and electronic fencing, have been well-developed but require practical validation sites to accumulate big data. Introduced by the Institute for Information Industry, demonstrations in long-term care settings significantly improve recognition rates, greatly benefiting future applications.

Chiztech's fall detection solution

▲Chiztech's developed fall detection solution

Moreover, Mr. Guo Hongda, Vice President of Hantech Electronics, who has been involved in safety surveillance for over 30 years, pointed out that the greatest key to successful smart surveillance lies in data accumulation and smart image analysis. Establishing an AI database for various applications is crucial. For instance, detected wandering can initially indicate whether the person's movement suggests discomfort or an anomaly, allowing immediate alerts to the monitoring center. If an elderly person approaches potentially dangerous areas like a water dispenser or water heater, service personnel can be notified quickly to assist and prevent possible accidents, thus effectively facilitating early warning measures.

Hantech's fall detection solution

▲Hantech Electronics' developed fall detection solution

With the assistance of the National Federation of Taiwan Long-Term Care Association, which has about 800 members, approximately 100 small and medium-sized care institutions have expressed interest in adopting the technology. Once these facilities are fully equipped, they will become the seedbeds for advancing the AI transformation of Taiwan's eldercare sector.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

這是一張圖片。 This is a picture.
AI-Based PCBA Surface Defect Detection Improvements

With the introduction of theAOIAIWith the introduction of the system, we can improve product yield, reduce costs, and from a business perspective, increase customer trust and sales revenue Moreover, AIit has advantages that are difficult to imitate, unlike other equipment that can be bought with money, making it hard for our competitors to catch up with us Our company's current development We are committed toIOTsmart manufacturing our systems already include smart materials systems, environmental humidity control systems, anti-miscarriage systems, smart procurement computation systems, smart inventory systems, solder paste management systems, and production management systems We have asked other manufacturers about the possibility ofAIinspectingPCBAsurface defects, each hoping that we would purchase their equipment, but none were effective upon verification After discussing with IT service providers, we defined it asAOIAIa feasible operational model Tzuhong Technology has invested inAOIAIan inspection plan to checkSMTtext on components, solder joints, polarity, missing partsand usingAIto replace manual learningAOIand define the 'potentially defective' parts, enhancing productivity and reducing misjudgment rates Industry pain points Taiwan faces a severe labor shortage, especially those willing to perform visual inspections are few and typically older, increasing the frequency of missed inspections Thus, the most critical bottleneck in the pursuit of high-quality electronics has become post-production inspections Previous consumer products with undetected anomalies were acceptable within a certain ratio However, in the automotive industry today, undetected defects could lead to fatalities hence, the automotive industry has extremely high quality demands To survive in the automotive supply chain, we must address the issue of undetectable anomalies Moreover, as wages in Taiwan continue to rise, we can only endeavor toAIreplace traditional manpower with technology, otherwise, even if the anomaly leakage problem is resolved, the relatively high labor costs will still prevent competitiveness in this industry Application technology and explanation Initially,Figure 1,PCBUpon emerging,Reflowsystem, it will undergoAOIwill undergo inspection, dividing into 'suspected defective' and good products At this point, the 'suspected defective' portion accounts for20manual review for these20parts, further classifying the 'suspected defective' portion into good and defective products With We aim to leverageAItechnology, to shift from manual re-inspection of these20technology, we aim to replace manual review of 'suspected defective' products withAIand after review, the results still yield 'good' and 'suspected defective' products, but now 'suspected defective' comprises only3thus reducing the workload of Tzuhong's employees from20down to only3In theory, it isAOIIn theory, after inspection, it is further reviewed byAIbut it appears to go throughAOIonly, so we call this technologyA0IAIDetectionFigure 2。 The original AOI inspection process The operator will place the testPCBboard intoAOIthe inspection equipment, outputtingAOI information on defective products, then manually re-inspect one by one to determine if they are defective AOIAI inspection process The operator will place the testPCBboard intoAOIthe inspection equipment, outputtingAOIinformation on defective products after, then proceed byAIfirst performingAOIre-assessment of defective products, outputtingAIinformation on defective products afterward, then manually re-inspect one by one to determine if they are defective Process differences By introducing theAOIAIsystem, not only can we enhance the efficiency and yield of visual inspection personnel, we also have this timeAIexperience in system introduction, we will also incorporateAIthe use of big data into Tzuhong's existing smart manufacturing systems, further enhancing the performance of our smart manufacturing systems and reducing the pressure on employees Difference between pre and post-introduction Promotion strategy 1 Similar field diffusion allSMTmanufacturers face bottlenecks in inspections leading to shipment delays introducing this system can solve the severe labor shortage issue and enhance shipment speed and quality, allowing self-promotion to customers or through equipment dealers to cater to relevant needs 2 Cross-industry expansion plans negotiate withAOImanufacturers to directly integrateAIthe system intoAOItheir systems, enhancing their market competitiveness Profit strategy 1 In collaboration withAOImanufacturers, collect licensing fees 2 Direct sales toSMTthe manufacturing industryAIsystems 3 ProvideSMTmanufacturing industryAOIAIsystem subscription model「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-09」

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
Taking advantage of green energy business opportunities, Hua Molybdenum Industry creates all-vanadium redox flow battery energy storage system equipment, the best choice for long-term energy storage

Green energy is the future trend and will surely lead to huge business opportunities in the future Wind power has been one of the green energy sources that have attracted global attention in recent years It will become an important force in my country's renewable energy and help Taiwan's power generation reach the goal of 20 by 2025 to improve Taiwan's energy independence As the number and power of domestic wind turbines wind turbines increases year by year, it is particularly important to ensure that the power storage equipment achieves safe, long-term performance, is not easily attenuated during charging and discharging, and is sustainable, low-carbon and environmentally friendly At the same time, the wind turbine equipment itself Health inspection, maintenance and repair have also become the focus of wind farm operators In order to meet the needs of wind farm customers, the green energy business unit of Hua Mo Industry has launched long-lasting energy storage all-vanadium redox flow battery electrolyte and wind turbine AI predictive operation and maintenance, providing 100 safety, long-term efficiency and reducing customer initial manufacturing costs cost-effective power energy storage equipment, and through AI predictive operation and maintenance services to help customers reduce power generation costs by 10 and save up to 30 in maintenance and warranty costs Hua Molybdenum Industry was established in 1998 The industry started by refining vanadium, molybdenum and rare metal elements and other products, and used them in high-end steel, professional chemicals and specialty chemicals industries, and vanadium is more like a steel-making Vitamins can increase the effectiveness of steelmaking Among them, vanadium and molybdenum related products are one of the company's main projects The company sees that the all-vanadium redox flow battery, which is 100 vanadium-based, will be a very promising mainstream green energy technology in terms of long-term energy storage in the future, and before 2010 The government has actively invited legal entities such as the Industrial Research Institute to conduct research on related component materials in solid-state batteries and all-vanadium batteries In addition, the Ministry of Economic Affairs expects renewable energy to account for 20 of power generation in 2025 and reach 15GW Based on the above Considering this, Hua Molybdenum Industry decided to devote all its efforts to research and invest in the technological development of self-developed all-vanadium redox flow battery electrolyte in 2017, in order to accelerate the compliance rate of renewable energy in 2025 Hua Molybdenum pointed out that "renewable energy power is relatively unstable, and Taiwan itself lacks lithium resources In lithium battery manufacturing, almost 80-90 of battery cells must rely on foreign procurement, and there is a lack of 100 domestic self-sufficient energy storage Resources and technology "Similarly, how does Taiwan overcome the problem of having no natural vanadium resources To this end, Hua Molybdenum Industry uses original technology to use waste catalysts from petrochemical industries such as CNPC refineries or Taishuo petrochemical processes Up to 10 of the vanadium ion content can be used to extract high-value vanadium resources, thereby producing Taiwan's 100 self-made all-vanadium redox flow battery electrolyte without being affected by resources, effectively achieving resource recycling Since 2017, Hua Molybdenum Industrial has successfully created all-vanadium flow electrolyte technology, and has successfully passed product verification by the Industrial Research Institute, the Nuclear Research Institute and many international manufacturers Taiwan’s power storage energy target is to reach 15GW in 2025 Its power distribution includes 500MW in Taipower’s automatic frequency regulation system, 500MW in E-dReg and 500MW in existing or newly built solar power plants For example, electricity consumption is mainly between 4 pm and 10 pm, which is the peak period for people's daily electricity consumption For this reason, the Energy Administration specifically requires Taipower to strengthen the upgrade of energy storage equipment, which has also driven the market's interest in all-vanadium redox flow batteries Energy storage system equipment is in high demand In addition, Taiwan's current total power reserve construction and contribution has not yet reached 100MW, and the gap from the 2025 target of 15GW of power storage is still more than 15 times Using all-vanadium redox flow batteries to successfully create 100 safe, low-carbon, environmentally friendly and long-lasting energy storage system equipment Compared with the short-term power storage of lithium batteries, the biggest advantage of all-vanadium redox flow batteries is that it is globally recognized as a long-term power reserve It can store energy for a long time up to 12 hours, which means that if it is charged for 12 hours, It can release power for 12 hours Compared with the electricity measurement method of general energy storage systems, which is daily electricity consumption power in kilowatts x time in hours, for all-vanadium redox flow batteries, power and hours are different Special design, the power is also called a stack, which is composed of four materials metal, polymer mold, carbon felt and graphite plate, and the power consumption time is calculated based on the amount of electrolyte in cubes Therefore, when the power electric push x the amount of electrolyte the daily electricity consumption of our all-vanadium redox flow battery for energy storage The product features of the all-vanadium redox flow battery energy storage system equipment include four major features safety, long-term performance, not easy to decay during charging and discharging, and sustainable, low-carbon and environmentally friendly The quality of the all-vanadium flow battery is 100 safe Since the electric energy is stored in the vanadium-containing electrolyte, it can avoid any flammable accidents caused by a fully charged energy storage system In terms of battery life, compared to the short battery life of lithium batteries, all-vanadium redox flow batteries can have a battery life of more than 20-25 years through changes in price Regarding the charge and discharge performance of energy storage, unlike lithium batteries which have a certain number of charge and discharge times 5000-600 times, there is no limit to the number of charge and discharge times of all-vanadium redox flow batteries Regarding zero carbon emissions, which is highly valued globally, unlike lithium batteries which have recycling issues, the electrolyte of the all-vanadium redox flow battery can be used permanently The material components of the stack are environmentally friendly and fully recyclable to create a truly sustainable and low-cost Carbon-friendly energy storage system Onshore wind turbine AI prediction smart operation and maintenance allows customers to reduce power generation costs by 10 and save maintenance and warranty costs by up to 30 Hua Molybdenum Industry not only improves the long-term power storage efficiency of renewable energy customers through all-vanadium redox flow battery energy storage system equipment and helps customers reduce initial purchase costs, but also uses AI smart operation and maintenance empirical calculations for offshore and onshore wind turbines Field demonstrations were drawn on Taipower's onshore wind farm, and we actively accumulated our own technical experience and energy in AI predictive operation and maintenance With the support of the AI HUB project of the Industrial Bureau of the Ministry of Economic Affairs, the cooperation site will focus on the Phase I wind farm of Taipower Corporation and provide smart operation data of wind turbines for more than 6 months for analysis The AI predictive operation and maintenance system for onshore wind turbines uses machine learning The main technology provider comes from ONYX Insight, a subsidiary of British Petroleum BP The company uses AI Hub analysis software technology to analyze the wind turbines faced by Taipower Pain point analysis, including power generation loss of road-based wind turbines and damage prediction of key components of land-based wind turbines such as gearboxes, pitch bearings under abnormal vibration three-dimensional vibration frequency or abnormal temperature, etc output Through this implementation, it can effectively help Taipower reduce power generation costs by 10, increase asset value by 12, and save up to 30 in maintenance and warranty costs In the past three years, ONYX Insight has successfully predicted and operated more than 20,000 offshore or onshore wind turbines around the world, accumulating extremely high AI model accuracy It is believed that the international partnership established with ONYX Insight will effectively guide and accelerate the green energy division of Hua Molybdenum Industry in its goal and layout to become an independent technology service provider for wind turbine AI predictive operation and maintenance Works with partner ONYX insight to provide customers with an AI predictive operation and maintenance system, including wind turbine power generation loss and damage prediction of key wind turbine components Building a solid foundation for domestic wind turbine operation and maintenance, using Taiwan as a base to expand to Southeast Asian wind farms The market output value of offshore wind turbine AI predictive operation and maintenance in Taiwan will exceed NT30 billion in the future, and the energy storage market has an output value of more than 100 billion US dollars globally In the future company vision, Hua Molybdenum Industrial hopes to become An independent technical service provider for vanadium flow battery electrolyte and wind turbine AI predictive operation and maintenance The long-term goal is to establish a local supply chain of vanadium flow battery electrolytes around the world by accumulating abundant technology and performance capital to supply industry needs nearby 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI Can Make Coffee! Autonomous Coffee Roasters Relying on AI for Precise Location Setting and Cultivating Loyal Customers

Have you had your morning coffee yet Over the past decade, Taiwan has gradually formed a coffee drinking culture With the advancement of AI technology, autonomous coffee roasters can now rely on AI for precise location setting while also cultivating a loyal customer base Let's see how this is done According to the International Coffee Organization ICO, Taiwanese consume approximately 285 billion cups of coffee annually, with the coffee market in Taiwan estimated at 80 billion TWD, growing about 20 each year In recent years, the 'drinking coffee' culture in Taiwan has become synonymous with popularity, with coffee being the most frequently chosen daily beverage by 65 of the population Coffee enthusiasts, particularly the more avid ones, are willing to pay more for coffee beans that suit their tastes An increasing number of unmanned drink kiosks have also begun to appear in the Taiwanese beverage market Unmanned coffee beverage shops face difficulties in expanding quickly, primarily due to two major issues one is the appropriateness of customer flow and machine placement locations which still rely on manual analysis the second is penetrating the market of mid to high-end coffee lovers accurately AI resolves two major challenges for autonomous coffee roasters suitable placement and cultivating a loyal customer base To tackle these issues and help autonomous coffee roasters quickly break into the market, Raysharp Electronics intends to implement AI for people flow counting analysis and unfamiliar face recognition These technologies aim to calculate the crowd size at potential roaster locations and classify consumers by gender and age for more precise market analysis They also provide multiple choices for the roasting of raw coffee beans, offering a more customized service tailored to the needs and tastes of professional coffee aficionados with a pack of 'high-quality roasted beans' Since 2018, the rise of unmanned stores has been mainly due to owners wanting to reduce persistently rising rent and personnel costs However, the initial assessment of store locations still requires hourly labor expenses for manual estimation of customer flow, leading to possible miscalculations of both on-site consumers and passerby traffic These inaccuracies may prevent precise real-time analysis of customer flow, or even misguided estimations of operational efficacy after a trial run, thus missing the optimal timing for loss-preventing location retraction Raysharp Electronics introduces autonomous coffee roasters equipped with AI-based people counting analysis and facial recognition Raysharp Electronics combines AI people counting analysis and facial recognition with the coffee trend known as 'black gold', addressing the preferences of numerous coffee connoisseurs in Taiwan who enjoy personally selecting coffee beans at bulk stores and frequenting high-quality grinding cafes or chain coffee shops A new concept for the first autonomous coffee roaster offering choices based on the origin, variety, and roasting methods of coffee beans has emerged AI coffee roasters enhance customer loyalty and materials management efficiency by 20 For the advanced development of autonomous coffee roasters, Raysharp Electronics engineers have equipped the AI NVIDIA development platform on the basis of TCNNFacenet Through AI, tens of thousands of images related to gender and age are used for sample training, allowing even first-time coffee roasting customers to be easily classified using unfamiliar face recognition This gains consumer trust, enhances willingness to use, and allows for recording purchase information and future product recommendations, leading to consumer purchase behavior analysis This information helps owners tailor future material preparation based on consumer preferences for different coffee beans, reducing raw material transportation and storage issues, and improving material management efficiency by 20 Moreover, by placing these autonomous coffee roasters in high-traffic areas, owners can use cameras to capture the crowd and assess whether the machine location has an adequate customer base, quickly analyzing whether to reposition the machines, and more easily targeting the best locations for middle and high-end coffee lovers The unmanned coffee roaster features a professional roasting mode interface, providing options based on the origin and variety of coffee beans, their roasting methods light, medium, deep, and related temperature, wind speed, and timing settings If improvement needs arise during the process, engineers can adjust firmware parameters and also assist in integration with the owner's ordering system Staff members briefly describe the operation of the autonomous coffee roaster 'Black Gold' penetrates deeper into coffee shops, science parks, and commercial buildings through AI This autonomous coffee roaster targets coffee connoisseurs and can be placed in middle to high-end coffee shops to roast more customized coffee beans than those available in bulk stores Upon completing a batch of coffee beans, it immediately provides them to professional technicians within the coffee shops for grinding and manual brewing The remaining roasted beans can also be taken home for brewing and enjoyment It also adds value to coffee shops by better understanding consumer preferences for coffee beans and launching more customer-attracting drink promotions and appropriate inventory management In addition to coffee shops, the autonomous coffee roaster can also utilize AI-based people counting analysis to precisely set up near scientific parks and commercial buildings, offering high-quality coffee beans for office brewing to internal employees with high coffee consumption needs Furthermore, implementing a physical membership system can initiate coffee bean purchase promotions or periodic payment incentives, thus attracting new clients and cultivating existing customer loyalty and retention The operation interface of the smart autonomous coffee roaster「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」