:::

【2024 Application Example】 Using Plant Growth Chambers as an Example - Standardizing Electronic Device Procedures Based on Imaging

In recent years, global climate change and environmental issues have become increasingly severe, causing major impacts on agricultural production. Traditional agriculture heavily relies on weather conditions, facing challenges such as unstable crop quality, plummeting yields, and difficult pest control. Particularly in Taiwan, agricultural biotech companies and farmers have suffered continuous losses, creating an urgent need for innovative solutions. Meanwhile, Taiwan's plant factory industry faces many challenges: high equipment and labor costs, an incomplete industrial chain diminishing international competitiveness, and a lack of cooperation among enterprises, all of which limit industry development. Additionally, COVID-19the pandemic has highlighted the importance of remote monitoring and management. Traditional manual inspections and data collection methods no longer meet the needs of modern agricultural production. These issues collectively underline the urgent need for smart agricultural solutions, driving companies like Taiwan's HaiBoTe to develop innovative projects integrating IoT, cloud computing, and artificial intelligence technologies.

 

HaiBoTe Cloud Data Integration and Analysis Platform
HaiBoTe Cloud Data Integration and Analysis Platform

 

Facing these challenges, the agricultural sector urgently needs a system that can precisely control growth environments, improve resource efficiency, enable remote monitoring, and facilitate intelligent management. Existing plant factory equipment often requires complete replacement, with poor compatibility with older equipment, and sensors and camera systems may require different interfaces, making them inconvenient to use. Therefore, there is a need for a flexible solution that can integrate various equipment and technologies, providing real-time monitoring and data analysis, and automatically adjusting environmental parameters based on plant growth conditions. This demand exists not only in Taiwan but is also a global trend in the development of smart agriculture. By incorporating artificial intelligence, more scientific evaluation standards can be established, optimizing production processes, improving yield and quality, while reducing energy consumption and environmental impact. Additionally, such smart solutions can attract more young people to participate in agricultural production, promoting industry upgrading and sustainable development. Overall, the demand for smart agricultural solutions stems from the urgent requirements to address climate change, enhance production efficiency, reduce costs, and achieve precise management, and this is exactly the problem companies like Taiwan's HaiBoTe are striving to solve.

 

 

Taiwan's plant factory operators are facing a series of severe challenges, which are gradually eroding their competitiveness and survival space. Firstly, the high cost of equipment and operations is their biggest burden. Each electricity bill feels like a heavy blow, forcing them to balance between ensuring product quality and controlling costs. Secondly, the unpredictability brought by climate change has become their nightmare. Sudden extreme weather events can destroy their carefully nurtured crops in a short time, causing massive economic losses. What's worse, they find themselves increasingly at a disadvantage in international market competition. In contrast, large overseas plant factories, with their advanced automation technology and well-organized supply chains, can produce stable-quality agricultural products at lower costs, putting unprecedented pressure on Taiwan's operators.

On the technical level, they also face numerous challenges. Compatibility issues between new and old equipment often put them in a bind, encountering various technical obstacles when trying to integrate different systems. Lack of precise data analysis and forecasting capabilities also makes it difficult for them to make production decisions and accurately determine the best growth conditions for each crop. Existing monitoring systems provide data that is often disorganized, difficult to interpret and apply. Human resource challenges are also severe, with young people generally lacking interest in agricultural work, making it difficult for them to recruit employees with modern agricultural skills. Even existing employees often feel exhausted from tedious manual operations and monitoring tasks. These problems are intertwined, creating a complex dilemma that leaves plant factory operators confused and anxious. They urgently need a comprehensive solution that can enhance factory operational efficiency, reduce costs, and improve product competitiveness, helping them overcome difficulties and regain their footing in the fierce market competition.

 

 
 

 

In facing the various challenges of plant factory operators, Taiwan's HaiBoTe company has demonstrated exceptional technical innovation and a flexible customer-oriented development strategy. They deeply understand that the solution must be able to seamlessly integrate existing equipment while providing highly intelligent management functions. To this end, HaiBoTe's R&D team adopted a modular design approach to develop a system that can be flexibly configuredIoT(IoT) system. The core of this system is a smart control hub that can communicate with various sensors and actuators. During development, HaiBoTe worked closely with customers, deeply understanding their specific needs and operational environments. They even dispatched engineers onsite to observe the daily operations of the plant factories, ensuring that the developed system actually solves practical problems. This in-depth cooperation not only helped HaiBoTe optimize their product design but also established a close relationship with customers, laying the foundation for subsequent continuous improvements.

HaiBoTe's innovation is not just reflected in hardware design but also in their developed intelligent software system. This system integrates advanced machine learning algorithms, capable of precise forecasts and optimal control of plant growth conditions based on large amounts of historical data and real-time monitoring information. To help customers overcome technical barriers, HaiBoTe designed an intuitive and easy-to-use user interface, which even non-technical operators can master easily. Additionally, they provide comprehensive training and tech support services, ensuring customers can fully utilize all functions of the system. When facing challenges, HaiBoTe's technical team can quickly identify problems through remote diagnostics and provide solutions. In one incident, during a serious equipment failure emergency faced by a customer, HaiBoTe's engineers guided the customer through system remote access, successfully instructing them on repairs and avoiding potential massive losses. This full-range service not only solves customers' immediate difficulties but also strengthens their confidence in intelligent management, driving the entire industry toward more efficient and sustainable development.

 

HaiBoTe's developed smart agriculture solution not only brought revolutionary changes to plant factories but also painted an encouraging picture for the future of the entire agricultural industry. The excellence of this system is evident in several aspects: firstly, it achieves precise control of the plant growth environment, significantly improving crop yield and quality stability. Through advanced artificial intelligence algorithms, the system can forecast and adjust optimum growth conditions based on historical data and real-time monitoring information, ensuring each plant grows in the ideal environment. Secondly, it significantly reduces energy consumption and operational costs, improving resource efficiency. The intelligent management system optimizes water, electricity, and nutrient supply, reducing waste and lowering manpower costs. Additionally, the system's modular design and strong compatibility allow it to seamlessly integrate various new and old equipment, providing a flexible solution for gradual upgrades of plant factories. Most importantly, the system injects a sense of technology and modernity into agricultural production, helping to attract the younger generation to the field and injecting new vitality into the industry.

Looking ahead, HaiBoTe's smart agriculture system has broad application prospects and expansion potential. In addition to plant factories, this system can also be applied to traditional greenhouse cultivation, urban agriculture, and even home gardening. In the field of aquaculture, similar technology can be used to monitor and optimize the breeding environments for fish or shrimp. In the food processing industry, similar intelligent monitoring and forecasting systems can be used to optimize production processes and enhance food safety. Even in the pharmaceutical industry, this type of precise environmental management system could be applied to drug research and production processes. To further promote this system, HaiBoTe could adopt a multifaceted strategy. Firstly, they could collaborate with agricultural colleges and research institutions to establish demonstration bases, allowing more people to experience the benefits of smart agriculture firsthand. Secondly, they could develop customized solutions tailored to different scales and types of agricultural production, expanding the applicability of their products. Furthermore, they could raise awareness and acceptance of smart agriculture within the industry by hosting forums, online seminars, and sharing success stories. Lastly, they could explore collaborations with government departments to integrate this system into policies supporting the modernization and sustainable development of agriculture, thereby promoting the widespread adoption of smart agriculture on a larger scale. Through these efforts, HaiBoTe not only can expand its market share but also make a significant contribution to the sustainable development of global agriculture, truly realizing the vision of technology empowering agriculture.

 

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-12-09」

Recommend Cases

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
Transforming into a Large-Scale AIoT Technology Playground: The Spectacular Makeover of the National Museum of Marine Science & Technology

Taiwan is a maritime nation When you visit the Badozi Fishing Port or Tidal Park in Keelung, do you also explore the mysteries of the ocean world at the 48-hectare National Museum of Marine Science amp Technology To get more people closer to marine technology, Keelung's Marine Museum has introduced technological services, transforming the venue into a large technology playground that delights both children and adults, fully utilizing the 'learning through play' approach After a lengthy planning process, Northern Taiwan's largest marine science museum in Keelung opened in January 2014 The museum focuses on marine education and technology, boasting Taiwan's largest IMAX 3D ocean theater The unique themes and modern viewing facilities should make it a well-known landmark in Keelung However, the original exhibition planning was static and highly specialized, lacking sufficient interaction with the public Visitors who have attended the museum also reported that the exhibits were limited and quite boring, leading to poor overall consumer experience ratings The top three dissatisfactions with the museum were weak connections to surrounding attractions, unengaging display content, and lack of exhibit material According to statistics from the Marine Museum, the ratio of local to visiting guests is approximately 64, with most foreign visitors coming from the north transportation is primarily by car and bus common types of visits include family, parent-child, and friends and the stay duration is generally 1 to 2 hours Upon deeper investigation, the top three visitor complaints were weak linkages to surrounding attractions, unengaging display content, and insufficient number of exhibits The museum analyzed potential reasons, including some displays being too specialized, making it difficult for the public to understand, and a lack of interactive elements, making the exhibition boring and the visit hurriedly brief Analysis of visitor profiles revealed that since half of the museum's visitors are locals, and accessing the museum is not so easy for out-of-towners who must travel by car or public transport, the design of the venue and exhibitions must incorporate more interactivity and intrigue to encourage locals to return and extend the duration of visitors' stays while using technological services to highlight the museum's unique features Through a recommendation from the Information Software Association, part of the Ministry of Economic Affairs' Industrial Bureau AI team, the Marine Museum commissioned Jugu Technology to resolve the issue of uninspiring venue attractions Preliminary interviews by Jugu Technology revealed that many visitors were attracted by the architectural design of the museum, notices posted on nearby walls, flags, or events being held the most interesting feature for visitors was the 3D ocean theater, indicating that content presented through audio-video and physical scenic methods was more engaging Seven major AI technologies lead to a boost in regional tourism at the Marine Museum Through the introduction of technology services, Jugu Technology designed the 48-hectare site with seven major services AI voice tours, treasure hunt puzzle games, AI exhibit interactive revitalization, AI space exhibition interactive experience, AI crowd control, Face AI interactive experience, and AI voice customer service system By utilizing AIoT and cloud technology, they made the exhibition more interesting, not only solving the issue of boring static viewings for children but also doubling the learning efficiency and dramatically improving public perception of the Marine Museum, thus increasing visitor intent and boosting regional tourism The National Museum of Marine Science and Technology introduced seven major technological application services including AI voice guide Jugu Technology aimed to improve the space optimization of the Marine Museum, using the special exhibition of coastal birds in northern Taiwan as a prototype, integrating 'face', 'limb', 'crowd' as three main axes to enhance functionality and assist in improving the museum's application of AI Practically, the Marine Museum and Jugu Technology selected the on-site special exhibits to avoid any installation of water and electricity works or pipelines in active exhibits, thereby maintaining the quality of the viewing experience Instead, they selected exhibits that were not yet open to introduce a series of technological services tailored to the unique characteristics of the exhibits In the coastal bird special exhibition inside the Marine Museum, initial construction discussions with the curators utilized Bella X1 for a welcoming interactive introduction at the exhibition entrance This was followed by an AI-powered smart guide in both Chinese and English using X1 for narration, coupled with a fun treasure hunting stamp-collecting activity - APP X1, allowing visitors to participate in challenges Subsequently, bird species within the bird exhibition were brought to life interactively using X1, and AR scenarios X1 were introduced into the exhibition space to add elements of fun and entertainment Finally, Face AI was used to interactively test facial expressions and score smiles The gorgeously transformed Marine Museum will become the best travel destination for families with children ImageMarine Museum FB Page The AIoT services introduced by the Marine Museum could be extended to various exhibition-type museums and even static art galleries in the future, tailored to the unique characteristics of different venues They could also be promoted through government projects and related plans, aiding in rural revitalization, making visits more than just sightseeing in rural areas, and breaking free from stereotypes associated with different venues The applications of these services are broad「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
Massive Digital Engineering AOI Intelligent Robotic Arm Inspection System Significantly Improves Defect Detection Accuracy

Taiwan is known as a manufacturing powerhouse, yet quality defect detection has always been a chronic sore point in production lines While AOI equipment is available to assist, most use fixed machinery which are limited by angles, resulting in less precise diagnostics and high false positive rates Massive Digital Engineering introduced an AOI intelligent robotic arm detection system that effectively reduces false positives and increases the accuracy of defect detection Generally, the yield rate of products affects the costs for enterprises and the return rate for customers The quality defect detection process in the manufacturing industry often necessitates a substantial amount of quality inspection labor Although there is AOI equipment to assist, these tools are mostly fixed detection machines Fixed cameras are easily limited by angles, resulting in less precise diagnostics and high false positive rates Thus, personnel need to re-screen and inspect afterwards, often manually visual inspection misses defects on average about 5, and can be as high as 20 Three major pain points in manufacturing quality detection Robotic Arm AOI with dynamic multi-angle inspection helps to solve these issues According to the practical understanding by Massive Digital Engineering, there are three main pain points in detecting product quality within the manufacturing industry Pain point one, manual inspection of product quality is prone to errors Currently, the manufacturing industry largely relies on human labor to inspect product appearance, but human judgment often entails errors, such as surface scratches, color differences, solder appearance, etc The error rate in defect judgment is high, and can only be inspected at the finished product stage, often leading to whole batch rejections and high costs in labor and production Pain point two, inability to quantify and record data from quality inspections Traditional manual inspections do not maintain inspection data, which makes it difficult to assign responsibility when quality disputes occur Moreover, high-end contract manufacturing orders from overseas brands often require traceability and corresponding defect records, which traditional human inspection methods struggle to meet Pain point three, limitations of traditional AOI visual inspection systems Current manufacturing uses AOI visual inspection systems, which due to the limitations of visual software technology, employ fixed cameras, fixed lighting, and single-angle operations This method may handle flat or linear-shaped products like rectangular or square items at a single inspection point However, it is more challenging to implement for products with complex shapes eg, irregular automotive parts, requiring multi-point and multi-degree inspections Massive Digital Engineering developed an AOI intelligent robotic arm detection system, effectively improving the accuracy of defect detection To address the pain points in quality inspection in manufacturing, Massive Digital Engineering initiated the concept of developing a multi-angle, movable inspection device, starting with the combination of two representative technologies in factory automation - robotic arms and machine vision By integrating robotic arms with AOI for dynamic multi-angle AI real-time quality inspection, the limitations of fixed inspection systems are addressed, and visual inspection techniques are enhanced by leveraging artificial intelligence, further elevating the sampling of images from flat to multi-dimensional and multi-angular Selected the automotive industry as the real-world testing ground to quickly respond to customer needs The AOI intelligent robotic arm detection system, utilizing AI technology including unsupervised learning, supervised learning, and semi-supervised learning, allows operators to use unsupervised deep learning techniques to learn about good products even when initial samples are incomplete or there are no defective samples, applying it in the visual inspection of automatic welding of car trusses This can solve issues of limited angles with fixed machinery before implementation, less precise diagnostics, and high false positive rates Automotive components are high in unit price and demand a stricter defect detection accuracy In industries that have adopted AI services, the automotive manufacturing sector was chosen as the real-world testing ground Massive Digital Engineering states that the automotive industry mainly consists of related component manufacturers and components typically have a higher unit price, hence requiring more in terms of quality inspection and yield rates, and demanding stricter accuracy Therefore, the automotive sector was chosen as the area for introduction By using a robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection, not only can the defect quality error rate of automotive components be improved, but the fixed-point AOI optical inspection can be enhanced to meet the measurement needs of most industries and finally, establishing a third-party system platform to build an integrated monitoring system platform, enabling immediate response and action when issues arise This system allows for recording and storing important data of products leaving the factory, serving as a basis for future digital production lines and virtual production At the same time, in the event of defects, it can immediately connect to Massive's MES monitoring system, quickly responding to the relevant manufacturing decision-making department, subsequently utilizing ERP systems for project management and reviews, effectively improving production efficiency and reducing production costs Helps to reduce communication costs and aims to become an industry standard In terms of industry integration, it provides a foundational standard for data continuity among upstream and downstream businesses, reducing communication costs within the supply chain Through certification of the contract manufacturers and brand owners, there is a chance to become the industry standard configuration Through the data database established by this project, operators can further optimize their supply chain management solutions using big data analysis Data Analysis, based on data, establish forecast planning, and utilizing technology to link upstream and downstream data of the supply chain, accurately controlling product quality In the future, when interfacing with European, American, and Japanese markets, which demand highly fine-tuned orders, operators can respond and integrate the industry supply chain Supply Chain more swiftly Ultimately, through the benchmark demonstration industry's field verification, such as with the automotive component manufacturing industry used as the benchmark demonstration field, by implementing the robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection system project, the supply chain connection between automotive contract manufacturers and OEMs can be optimized, becoming the industry standard Further seeking more AI teams to join the cross-industry development on the field collaboration platform, driving the overall ecosystem combining AI innovation with field application Self-driving vehicle developed by Massive Digital Engineering「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
Testing Seat Contact Components AI Intelligent Flaw Detection

With rapid development in 5G, AIOT, automotive electronics, and other downstream sectors, the entire supply chain is expected to benefit from this consumer market As product demand momentum gradually increases, increasing production efficiency and reducing operational costs become the most important issues In order to meet the needs of customers for various packaging types, Yingwei Technology has been committed to developing highly customized test seats However, a resulting pain point is the inability to mass-produce and fully automate operations with machines some tasks still rely on manual execution In this project, the probe part of the test seat was outsourced in 2021, and under current and future large-scale demands, work hours, costs, supply, and quality are issues Yingwei faces The company achieves a defect detection rate of 9995, which seems high, but with an average inspector able to inspect 10,000 needles per day, there would still be 5 defective needles On a test seat that is only 3 cm wide with approximately 1,000 needles, just one defective needle could potentially lead to faulty testing at the customer end As the current operational mode relies on manual visual inspection, external factors such as fatigue or oversight of personnel, and subjective judgment by inspectors may lead to the outflow of defective products, which necessitates strict quality control of contact components We once sought to utilize optical inspections Rule-based for controlling the quality of appearances, but the metallic material of the contact components leads to light scattering, background noise interference, background scratches, and material issues that could result in misjudgments Therefore, we decided to look for AI technology service providers to solve our detection difficulties Developments of Dedicated AOI Line Scan Equipment To meet the needs for inspecting thousands to tens of thousands of probes within our company's IC test seats, traditional surface imaging and individual needle imaging would be too slow to achieve rapid inspection and labor-saving goals In response, the service provider proposed a trial with an AOI dedicated line scan module solution Utilizing a width of 63mm on the X-axis for reciprocal scanning of all probes on the test seat, the tests allowed for the simultaneous scanning of 8-9 probes, significantly enhancing the future detection efficiency of AOI machines This project will proceed with the aforementioned innovative Proof of Concept POC, focusing on the development of the line scanning equipment and performing imaging, learning, and training on both normal and abnormal probes provided by our company, with initial AI model training aimed at preliminary approval This project's customized line-scan imaging module Ideal future imaging result illustration A Single AI Technology Solution for MeasurementDetection Needs Unified use of AI DL CNN learning methods, instead of the current Rule-based system which necessitates defining each defect individually, to meet the needs for abrasion measurement and appearance defect detection of malfunctionsforeign objects When the same machine uses both measurement and detection technologies, not only does it increase costs, but it also affects the detection speed Hence, the service provider recommends the use of a line scan device for imaging Its resolution is sufficient for AI to simultaneously determine appearance defects and assess the condition of needle tip abrasion, as detailed below Line scan pixel imaging displaying needle tip abrasion conditions This AI detection technology meets both measurement and inspection needs for Yingwei, not only bringing more benefits to future probe testing but also introducing an innovative axis in AI technology Change the method of human inspection, enhance work efficiency and product quality After combining both hardware line scan and software AI model training approaches, we successfully ventured into new AOI detection applications Following the AI implementation POC, including the development and validation of a customized line scan module and an initial AI model, the plan is to officially develop the AOI machine next year and integrate it into the IC test seat production line Future Prospects Probe manufacturers upstream and downstream IC factory users both have needs for the AOI inspection machine upstream can ensure probe quality before leaving the factory, while downstream users can use this machine to regularly inspect the condition of numerous IC test seats in hand Given the future demands, the AOI machine is poised to have a significant positive impact on the IC testing industry in the foreseeable future 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」