:::

【2024 Application Example】 Using Plant Growth Chambers as an Example - Standardizing Electronic Device Procedures Based on Imaging

In recent years, global climate change and environmental issues have become increasingly severe, causing major impacts on agricultural production. Traditional agriculture heavily relies on weather conditions, facing challenges such as unstable crop quality, plummeting yields, and difficult pest control. Particularly in Taiwan, agricultural biotech companies and farmers have suffered continuous losses, creating an urgent need for innovative solutions. Meanwhile, Taiwan's plant factory industry faces many challenges: high equipment and labor costs, an incomplete industrial chain diminishing international competitiveness, and a lack of cooperation among enterprises, all of which limit industry development. Additionally, COVID-19the pandemic has highlighted the importance of remote monitoring and management. Traditional manual inspections and data collection methods no longer meet the needs of modern agricultural production. These issues collectively underline the urgent need for smart agricultural solutions, driving companies like Taiwan's HaiBoTe to develop innovative projects integrating IoT, cloud computing, and artificial intelligence technologies.

 

HaiBoTe Cloud Data Integration and Analysis Platform
HaiBoTe Cloud Data Integration and Analysis Platform

 

Facing these challenges, the agricultural sector urgently needs a system that can precisely control growth environments, improve resource efficiency, enable remote monitoring, and facilitate intelligent management. Existing plant factory equipment often requires complete replacement, with poor compatibility with older equipment, and sensors and camera systems may require different interfaces, making them inconvenient to use. Therefore, there is a need for a flexible solution that can integrate various equipment and technologies, providing real-time monitoring and data analysis, and automatically adjusting environmental parameters based on plant growth conditions. This demand exists not only in Taiwan but is also a global trend in the development of smart agriculture. By incorporating artificial intelligence, more scientific evaluation standards can be established, optimizing production processes, improving yield and quality, while reducing energy consumption and environmental impact. Additionally, such smart solutions can attract more young people to participate in agricultural production, promoting industry upgrading and sustainable development. Overall, the demand for smart agricultural solutions stems from the urgent requirements to address climate change, enhance production efficiency, reduce costs, and achieve precise management, and this is exactly the problem companies like Taiwan's HaiBoTe are striving to solve.

 

 

Taiwan's plant factory operators are facing a series of severe challenges, which are gradually eroding their competitiveness and survival space. Firstly, the high cost of equipment and operations is their biggest burden. Each electricity bill feels like a heavy blow, forcing them to balance between ensuring product quality and controlling costs. Secondly, the unpredictability brought by climate change has become their nightmare. Sudden extreme weather events can destroy their carefully nurtured crops in a short time, causing massive economic losses. What's worse, they find themselves increasingly at a disadvantage in international market competition. In contrast, large overseas plant factories, with their advanced automation technology and well-organized supply chains, can produce stable-quality agricultural products at lower costs, putting unprecedented pressure on Taiwan's operators.

On the technical level, they also face numerous challenges. Compatibility issues between new and old equipment often put them in a bind, encountering various technical obstacles when trying to integrate different systems. Lack of precise data analysis and forecasting capabilities also makes it difficult for them to make production decisions and accurately determine the best growth conditions for each crop. Existing monitoring systems provide data that is often disorganized, difficult to interpret and apply. Human resource challenges are also severe, with young people generally lacking interest in agricultural work, making it difficult for them to recruit employees with modern agricultural skills. Even existing employees often feel exhausted from tedious manual operations and monitoring tasks. These problems are intertwined, creating a complex dilemma that leaves plant factory operators confused and anxious. They urgently need a comprehensive solution that can enhance factory operational efficiency, reduce costs, and improve product competitiveness, helping them overcome difficulties and regain their footing in the fierce market competition.

 

 
 

 

In facing the various challenges of plant factory operators, Taiwan's HaiBoTe company has demonstrated exceptional technical innovation and a flexible customer-oriented development strategy. They deeply understand that the solution must be able to seamlessly integrate existing equipment while providing highly intelligent management functions. To this end, HaiBoTe's R&D team adopted a modular design approach to develop a system that can be flexibly configuredIoT(IoT) system. The core of this system is a smart control hub that can communicate with various sensors and actuators. During development, HaiBoTe worked closely with customers, deeply understanding their specific needs and operational environments. They even dispatched engineers onsite to observe the daily operations of the plant factories, ensuring that the developed system actually solves practical problems. This in-depth cooperation not only helped HaiBoTe optimize their product design but also established a close relationship with customers, laying the foundation for subsequent continuous improvements.

HaiBoTe's innovation is not just reflected in hardware design but also in their developed intelligent software system. This system integrates advanced machine learning algorithms, capable of precise forecasts and optimal control of plant growth conditions based on large amounts of historical data and real-time monitoring information. To help customers overcome technical barriers, HaiBoTe designed an intuitive and easy-to-use user interface, which even non-technical operators can master easily. Additionally, they provide comprehensive training and tech support services, ensuring customers can fully utilize all functions of the system. When facing challenges, HaiBoTe's technical team can quickly identify problems through remote diagnostics and provide solutions. In one incident, during a serious equipment failure emergency faced by a customer, HaiBoTe's engineers guided the customer through system remote access, successfully instructing them on repairs and avoiding potential massive losses. This full-range service not only solves customers' immediate difficulties but also strengthens their confidence in intelligent management, driving the entire industry toward more efficient and sustainable development.

 

HaiBoTe's developed smart agriculture solution not only brought revolutionary changes to plant factories but also painted an encouraging picture for the future of the entire agricultural industry. The excellence of this system is evident in several aspects: firstly, it achieves precise control of the plant growth environment, significantly improving crop yield and quality stability. Through advanced artificial intelligence algorithms, the system can forecast and adjust optimum growth conditions based on historical data and real-time monitoring information, ensuring each plant grows in the ideal environment. Secondly, it significantly reduces energy consumption and operational costs, improving resource efficiency. The intelligent management system optimizes water, electricity, and nutrient supply, reducing waste and lowering manpower costs. Additionally, the system's modular design and strong compatibility allow it to seamlessly integrate various new and old equipment, providing a flexible solution for gradual upgrades of plant factories. Most importantly, the system injects a sense of technology and modernity into agricultural production, helping to attract the younger generation to the field and injecting new vitality into the industry.

Looking ahead, HaiBoTe's smart agriculture system has broad application prospects and expansion potential. In addition to plant factories, this system can also be applied to traditional greenhouse cultivation, urban agriculture, and even home gardening. In the field of aquaculture, similar technology can be used to monitor and optimize the breeding environments for fish or shrimp. In the food processing industry, similar intelligent monitoring and forecasting systems can be used to optimize production processes and enhance food safety. Even in the pharmaceutical industry, this type of precise environmental management system could be applied to drug research and production processes. To further promote this system, HaiBoTe could adopt a multifaceted strategy. Firstly, they could collaborate with agricultural colleges and research institutions to establish demonstration bases, allowing more people to experience the benefits of smart agriculture firsthand. Secondly, they could develop customized solutions tailored to different scales and types of agricultural production, expanding the applicability of their products. Furthermore, they could raise awareness and acceptance of smart agriculture within the industry by hosting forums, online seminars, and sharing success stories. Lastly, they could explore collaborations with government departments to integrate this system into policies supporting the modernization and sustainable development of agriculture, thereby promoting the widespread adoption of smart agriculture on a larger scale. Through these efforts, HaiBoTe not only can expand its market share but also make a significant contribution to the sustainable development of global agriculture, truly realizing the vision of technology empowering agriculture.

 

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-12-09」

Recommend Cases

這是一張圖片。 This is a picture.
Testing Seat Contact Components AI Intelligent Flaw Detection

With rapid development in 5G, AIOT, automotive electronics, and other downstream sectors, the entire supply chain is expected to benefit from this consumer market As product demand momentum gradually increases, increasing production efficiency and reducing operational costs become the most important issues In order to meet the needs of customers for various packaging types, Yingwei Technology has been committed to developing highly customized test seats However, a resulting pain point is the inability to mass-produce and fully automate operations with machines some tasks still rely on manual execution In this project, the probe part of the test seat was outsourced in 2021, and under current and future large-scale demands, work hours, costs, supply, and quality are issues Yingwei faces The company achieves a defect detection rate of 9995, which seems high, but with an average inspector able to inspect 10,000 needles per day, there would still be 5 defective needles On a test seat that is only 3 cm wide with approximately 1,000 needles, just one defective needle could potentially lead to faulty testing at the customer end As the current operational mode relies on manual visual inspection, external factors such as fatigue or oversight of personnel, and subjective judgment by inspectors may lead to the outflow of defective products, which necessitates strict quality control of contact components We once sought to utilize optical inspections Rule-based for controlling the quality of appearances, but the metallic material of the contact components leads to light scattering, background noise interference, background scratches, and material issues that could result in misjudgments Therefore, we decided to look for AI technology service providers to solve our detection difficulties Developments of Dedicated AOI Line Scan Equipment To meet the needs for inspecting thousands to tens of thousands of probes within our company's IC test seats, traditional surface imaging and individual needle imaging would be too slow to achieve rapid inspection and labor-saving goals In response, the service provider proposed a trial with an AOI dedicated line scan module solution Utilizing a width of 63mm on the X-axis for reciprocal scanning of all probes on the test seat, the tests allowed for the simultaneous scanning of 8-9 probes, significantly enhancing the future detection efficiency of AOI machines This project will proceed with the aforementioned innovative Proof of Concept POC, focusing on the development of the line scanning equipment and performing imaging, learning, and training on both normal and abnormal probes provided by our company, with initial AI model training aimed at preliminary approval This project's customized line-scan imaging module Ideal future imaging result illustration A Single AI Technology Solution for MeasurementDetection Needs Unified use of AI DL CNN learning methods, instead of the current Rule-based system which necessitates defining each defect individually, to meet the needs for abrasion measurement and appearance defect detection of malfunctionsforeign objects When the same machine uses both measurement and detection technologies, not only does it increase costs, but it also affects the detection speed Hence, the service provider recommends the use of a line scan device for imaging Its resolution is sufficient for AI to simultaneously determine appearance defects and assess the condition of needle tip abrasion, as detailed below Line scan pixel imaging displaying needle tip abrasion conditions This AI detection technology meets both measurement and inspection needs for Yingwei, not only bringing more benefits to future probe testing but also introducing an innovative axis in AI technology Change the method of human inspection, enhance work efficiency and product quality After combining both hardware line scan and software AI model training approaches, we successfully ventured into new AOI detection applications Following the AI implementation POC, including the development and validation of a customized line scan module and an initial AI model, the plan is to officially develop the AOI machine next year and integrate it into the IC test seat production line Future Prospects Probe manufacturers upstream and downstream IC factory users both have needs for the AOI inspection machine upstream can ensure probe quality before leaving the factory, while downstream users can use this machine to regularly inspect the condition of numerous IC test seats in hand Given the future demands, the AOI machine is poised to have a significant positive impact on the IC testing industry in the foreseeable future 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

這是一張圖片。 This is a picture.
[2023 Case Study] AI Steps into Philanthropy: Stylish Tech at Food Banks

Taiwan Food Bank AssociationHereinafter referred to as 'the Association'With the mission of providing food aid, poverty relief, reducing food waste, and building a hunger-free network, there are locations across Taiwan that gather donations from wholesalers, intermediaries, retailers, manufacturers, and even generous individuals These sites also rescue food that would otherwise be discarded, properly allocate and distribute it to needy households, thus aiding local vulnerable families55Food banks at various locations collect daily donations from wholesale stores, intermediaries, retailers, manufacturers, and even benevolent individuals from all over Taiwan These places also rescue about-to-be-discarded edible materials, properly sort them, and distribute to needy households, assisting local vulnerable populations However, each location requires significant human and volunteer resources to manage daily operations using traditional methods of communication with non-profit organizations and donors After receiving donations, these resources are then allocated to needy families or individuals There is a potential issue of uneven distribution of resources due to a lack of digitalization and integrated information management in these processes Warehouse and Transportation Centers and Mini Food Banks Distributing Resources to the Disadvantaged The location under validation by the Kaohsiung Charitable Organizations Association,Hereinafter referred to as 'Kaohsiung Charity' In109year6month24Officially inaugurated Taiwan's first 'Food Bank-Warehouse and Transportation Center' at a location measuring200square meters, enhancing the efficiency of food resource redistribution, proper storage, and management So far, nearly two hundred tons of vegetables and fruits have been saved, serving over a hundred organizations and benefiting over5thousand vulnerable households, and continues to serve19mini food banks, with planned completion across multiple districts in Kaohsiung, distributing food resources to over10ten thousand vulnerable families Kaohsiung Charity 'Food Bank-Warehouse and Transportation Center' in the Dasha Community Photo Source Kaohsiung Charitable Organizations Association Challenges in Labor and Food Resource Management Facing the needs of a large number of economically disadvantaged families, the management of the 'Food Bank-Warehouse and Transportation Center' is particularly critical During procurement, tasks such as sorting, purging, and bookkeeping must be performed, while during shipment, food resource needs suggested by social workers must be followed These activities rely on manual judgment and accumulated experience Many volunteers involved are elderly and have limited physical strength, making warehouse tasks physically demanding and recruitment challenging If a large batch of food resources arrives, space and manpower are consumed in sorting and inventory management, raising concerns about the effective use of resources and turnover rate This highlights the challenge of scaling up food bank services while lacking corresponding labor and material management systems At the same time, food bank resources come from various donations, thus they vary greatly in type, shelf life, standards, and quantity Volunteers at mini food banks, mostly also elderly, must handle multiple responsibilities such as case services, food resource management,resource allocation, and resource development Sometimes they must also explain and accept immediate, large quantities of specific resources, such as adults receiving baby formula 'Food Bank-Warehouse and Transportation Center' Resource Inventory Relies Entirely on Manual Labor Mini Food Bank Volunteers Handle Multiple Responsibilities Photo Source Taiwan Food Bank Association Reducing Scrap Resources60 Increasing Speed of Resource Transfer80 To enhance resource management and ensure effective use of materials, and to address personnel shortages, this field validation case has introduced 'Food Bank Warehouse Resource CollectionAITo advance resource management, ensure effective use of resources, and solve manpower shortages, this validation site has implemented an 'Automated Early Warning Needs Assessment System' for the food bank's warehouse resource gathering The first part involves building a classification model, setting up and collecting warehouse information at the site, andAItraining the model Past sitewarehouse information is collected and stored in a database, allowingAIfor preprocessing, classification, and other tasks At the same time, depending on the dependency conditions of the types of goods as features, algorithms are introduced for computation and modeling, and the data collected is used for retraining, ultimately validating the field and organizing data for the five most common types of goods into training and test datasets as required The second part involves constructing the classification model using AI techniques further use of reinforcement learning constructs the management mechanism for the food bank's warehouse, perfecting the classification of donated goodsRNNTechnical construction of classification models further use of reinforcement learning constructs food bank warehouse management mechanisms, making the classification of donated goods perfectlike white rice, instant drinks, noodles, instant noodles, and canned goodscan then be automatically assigned storage based on storage assignment principles AI Service System Process and Description Source Taiwan Food Bank Association AtAIUnder forecasts, it can optimize the speed of resource transfer and allocation, effectively and accurately match resource donations reducing the loss in the donation process, increase the accuracy of resource distribution, and improve the service rate—the successful donation rate—reducing the waste of resources due to incorrect items, and enabling instant monitoring of food resource stock, ensuring operators can respond quickly to needs, effectively providing resource assistance WithAIthe system's introduction and the establishment of data intelligence, it helps the operations of the warehouse and transportation center, allowing more time for the allocation of donated goods The introduction aims to accelerate the digital service rollout for social welfare organizations, thoroughly addressing the needs of the overall vulnerable segments of society Using the system for resource allocation and dispatching Photo Source Kaohsiung Charitable Organizations Association Following this field validation, it is possible to expand the system to other food bank service pointsAIThe system can also collaborate with more non-profit organizations, public welfare groups, and charitable organizations, expanding 'Food Bank Warehouse Resource CollectionAIAutomated Early Warning Demand Assessment System' application range such as medical supply distribution, helping more organizations manage and distribute more intelligently, reducing resource wastage, and enhancing social welfare 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
Preventing Problems Before They Arise: Leadtek Research Develops AI Technology for Early Detection of Heart Failure Symptoms

With the increase in the elderly population, the incidence of various chronic diseases is rising daily Among these, heart failure is not only a silent killer it has a very long disease course with a high recurrence rate, leading to increased burden on healthcare personnel However, by using medically certified electrocardiography acoustics devices, coupled with AI predictive assessment of heart failure risk and remote care systems, diagnosis can be aided significantly, helping doctors make accurate diagnoses for subsequent patient medical care or referrals Heart failure has a lengthy course and medical expenditure is five times that of diabetes If you find yourself short of breath even with minimal movement, or if you wake up from sleep needing to sit up to feel comfortable, or if you have symptoms such as swollen lower limbs, anxiety, restlessness, fatigue, or a loss of appetite, be cautious These could be signs of heart failure According to statistics, there are about 60 million people with heart failure worldwide, with 5 million new cases every year In China, nearly 290 million people suffer from cardiovascular diseases, accounting for the second leading cause of death among urban residents around 12 million of these are heart failure patients, accounting for over 59 of cardiac-related deaths The disease course of heart failure is exceptionally long, and both its recurrence and rehospitalization rates are exceedingly high, resulting in medical costs that are twice that of hypertension and five times those of diabetes According to US research statistics, the 30-day mortality rates for patients with myocardial infarction and heart failure are respectively 166 and 111, and the rehospitalization rates within 30 days are 199 and 244 The symptoms of heart failure, because they are similar to those of other diseases such as chronic obstructive pulmonary disease and asthma, have an 185 misdiagnosis rate, which poses a challenging problem for healthcare institutions Leadtek, a major graphics card manufacturer, has been investing in the medical and healthcare sector since 2000 Following two heart attacks in 2011 and 2015 experienced by Chairman Lu Kunshan, Leadtek has focused on health big data, independently developing AI technology for heart failure recognition This AI application reads patients' electrocardiograms and phonocardiograms to perform anomaly detection and model prediction of heart failure risk, enabling early detection of disease symptoms Leadtek independently developed heart failure AI recognition technology to predict medical history and risk Leadtek's independently developed heart failure AI recognition technology has the following three judgment functions 1 Prediction of heart failure history Classifies electrocardiogram and phonocardiogram data into 'with hospitalization history of heart failure' and 'no history of heart failure' 2 Risk prediction of heart failure Provides a predictive risk value of heart failure occurrence based on the electrocardiogram and phonocardiogram data 3 Prediction of heart failure recurrence risk For patients with heart failure, it reads their phonocardiogram and electrocardiogram data, assessing the risk prediction of heart failure recurrence Leadtek states that the application of heart failure AI recognition technology can assist doctors in making more efficient and accurate diagnoses, facilitating subsequent medical treatment or referrals for patients As an instance, in studies of heart failure patients discharged from Taipei Veterans General Hospital, using the EMAT Electromechanical Activation Time index and SDI Systolic Dysfunction Index calculated by the synchronized electrocardiography-acoustic device as treatment guidelines resulted in a higher survival rate compared to those treated based on traditional symptoms This research has also been published in the authoritative international cardiology journal JACC, receiving recognition in the international market System manufacturers can apply heart failure AI recognition technology for other value-added applications Leadtek states that cooperating system manufacturers can choose to build their own heart failure AI risk prediction engine, uploading their system's electrocardiogram and phonocardiogram data to Leadtek's heart failure AI risk prediction engine, which then returns risk prediction values for integration by system manufacturers cooperating manufacturers as a value-added application input Not just for clinical use, the heart failure AI risk prediction engine can also be extended for use at home or in the workplace Additionally, this system can be extended to other applications, including One, hospital outpatient screening Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to conduct a 10-second rapid test in outpatient and emergency departments to assess a patient's cardiac history and heart failure risk Two, discharge risk assessment Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to assess the heart failure risk during a patient's hospital stay The test data can serve as a pre-discharge risk assessment and prognostic indicator Three, continuous home care Patients can use the electrocardiogram and phonocardiogram recorder, wearable electrocardiogram recorder, and transmit through a home transmission box gateway to measure electrocardiogram and phonocardiogram signals at home and upload them to the amor health cloud platform for heart failure AI risk prediction analysis Patients can manage their health autonomously via an APP, reviewing historical physiological trends disease management nurses can manage member health through the health management backend Web Four, home rehabilitation training Patients can wear a health bracelet to monitor activity, fatigue, circulation, and sleep, autonomously managing their health through the mobile APP and observing the risk of heart failure, engaging in exercise and rehabilitation training to aid in swift recovery The heart failure AI recognition technology system can also be extended to employee home care applications Additionally, in factories or offices, this system can also achieve employee health management goals, with applications including One, workplace safety units Provide employees with wearable electrocardiogram recorders before they start work duties Two, physiological monitoring for business executors While executing business duties or training, employees wear wearable electrocardiogram recorders for fatigue warnings, signaling whether physiological conditions allow continued execution of tasks Task segments can use data transmission boxes or apps to upload physiological monitoring information to the health management platform, assessing the heart failure risk for operations staff, with test data serving as an indicator for enterprise resource human units and public safety Three, workplace physiological monitoring center care The workplace physiological monitoring center can inspect and record employees' historicalphysiological trends through the health cloud platform Four, workplace nursing units Nursing units receiving instructions from the physiological monitoring center can provide health management advice based on employees' physiological trends nursing centers can manage employee health through the health management backend Web Five, employees can wear health bracelets to monitor activity, fatigue, circulation, and sleep, autonomously managing their health and observing the risk of heart failure through the mobile APP, engaging in exercise and rehabilitation training to aid in rapid recovery Workplace application of heart failure cloud care and big data center diagram「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」