:::

【2024 Application Example】 Using Plant Growth Chambers as an Example - Standardizing Electronic Device Procedures Based on Imaging

In recent years, global climate change and environmental issues have become increasingly severe, causing major impacts on agricultural production. Traditional agriculture heavily relies on weather conditions, facing challenges such as unstable crop quality, plummeting yields, and difficult pest control. Particularly in Taiwan, agricultural biotech companies and farmers have suffered continuous losses, creating an urgent need for innovative solutions. Meanwhile, Taiwan's plant factory industry faces many challenges: high equipment and labor costs, an incomplete industrial chain diminishing international competitiveness, and a lack of cooperation among enterprises, all of which limit industry development. Additionally, COVID-19the pandemic has highlighted the importance of remote monitoring and management. Traditional manual inspections and data collection methods no longer meet the needs of modern agricultural production. These issues collectively underline the urgent need for smart agricultural solutions, driving companies like Taiwan's HaiBoTe to develop innovative projects integrating IoT, cloud computing, and artificial intelligence technologies.

 

HaiBoTe Cloud Data Integration and Analysis Platform
HaiBoTe Cloud Data Integration and Analysis Platform

 

Facing these challenges, the agricultural sector urgently needs a system that can precisely control growth environments, improve resource efficiency, enable remote monitoring, and facilitate intelligent management. Existing plant factory equipment often requires complete replacement, with poor compatibility with older equipment, and sensors and camera systems may require different interfaces, making them inconvenient to use. Therefore, there is a need for a flexible solution that can integrate various equipment and technologies, providing real-time monitoring and data analysis, and automatically adjusting environmental parameters based on plant growth conditions. This demand exists not only in Taiwan but is also a global trend in the development of smart agriculture. By incorporating artificial intelligence, more scientific evaluation standards can be established, optimizing production processes, improving yield and quality, while reducing energy consumption and environmental impact. Additionally, such smart solutions can attract more young people to participate in agricultural production, promoting industry upgrading and sustainable development. Overall, the demand for smart agricultural solutions stems from the urgent requirements to address climate change, enhance production efficiency, reduce costs, and achieve precise management, and this is exactly the problem companies like Taiwan's HaiBoTe are striving to solve.

 

 

Taiwan's plant factory operators are facing a series of severe challenges, which are gradually eroding their competitiveness and survival space. Firstly, the high cost of equipment and operations is their biggest burden. Each electricity bill feels like a heavy blow, forcing them to balance between ensuring product quality and controlling costs. Secondly, the unpredictability brought by climate change has become their nightmare. Sudden extreme weather events can destroy their carefully nurtured crops in a short time, causing massive economic losses. What's worse, they find themselves increasingly at a disadvantage in international market competition. In contrast, large overseas plant factories, with their advanced automation technology and well-organized supply chains, can produce stable-quality agricultural products at lower costs, putting unprecedented pressure on Taiwan's operators.

On the technical level, they also face numerous challenges. Compatibility issues between new and old equipment often put them in a bind, encountering various technical obstacles when trying to integrate different systems. Lack of precise data analysis and forecasting capabilities also makes it difficult for them to make production decisions and accurately determine the best growth conditions for each crop. Existing monitoring systems provide data that is often disorganized, difficult to interpret and apply. Human resource challenges are also severe, with young people generally lacking interest in agricultural work, making it difficult for them to recruit employees with modern agricultural skills. Even existing employees often feel exhausted from tedious manual operations and monitoring tasks. These problems are intertwined, creating a complex dilemma that leaves plant factory operators confused and anxious. They urgently need a comprehensive solution that can enhance factory operational efficiency, reduce costs, and improve product competitiveness, helping them overcome difficulties and regain their footing in the fierce market competition.

 

 
 

 

In facing the various challenges of plant factory operators, Taiwan's HaiBoTe company has demonstrated exceptional technical innovation and a flexible customer-oriented development strategy. They deeply understand that the solution must be able to seamlessly integrate existing equipment while providing highly intelligent management functions. To this end, HaiBoTe's R&D team adopted a modular design approach to develop a system that can be flexibly configuredIoT(IoT) system. The core of this system is a smart control hub that can communicate with various sensors and actuators. During development, HaiBoTe worked closely with customers, deeply understanding their specific needs and operational environments. They even dispatched engineers onsite to observe the daily operations of the plant factories, ensuring that the developed system actually solves practical problems. This in-depth cooperation not only helped HaiBoTe optimize their product design but also established a close relationship with customers, laying the foundation for subsequent continuous improvements.

HaiBoTe's innovation is not just reflected in hardware design but also in their developed intelligent software system. This system integrates advanced machine learning algorithms, capable of precise forecasts and optimal control of plant growth conditions based on large amounts of historical data and real-time monitoring information. To help customers overcome technical barriers, HaiBoTe designed an intuitive and easy-to-use user interface, which even non-technical operators can master easily. Additionally, they provide comprehensive training and tech support services, ensuring customers can fully utilize all functions of the system. When facing challenges, HaiBoTe's technical team can quickly identify problems through remote diagnostics and provide solutions. In one incident, during a serious equipment failure emergency faced by a customer, HaiBoTe's engineers guided the customer through system remote access, successfully instructing them on repairs and avoiding potential massive losses. This full-range service not only solves customers' immediate difficulties but also strengthens their confidence in intelligent management, driving the entire industry toward more efficient and sustainable development.

 

HaiBoTe's developed smart agriculture solution not only brought revolutionary changes to plant factories but also painted an encouraging picture for the future of the entire agricultural industry. The excellence of this system is evident in several aspects: firstly, it achieves precise control of the plant growth environment, significantly improving crop yield and quality stability. Through advanced artificial intelligence algorithms, the system can forecast and adjust optimum growth conditions based on historical data and real-time monitoring information, ensuring each plant grows in the ideal environment. Secondly, it significantly reduces energy consumption and operational costs, improving resource efficiency. The intelligent management system optimizes water, electricity, and nutrient supply, reducing waste and lowering manpower costs. Additionally, the system's modular design and strong compatibility allow it to seamlessly integrate various new and old equipment, providing a flexible solution for gradual upgrades of plant factories. Most importantly, the system injects a sense of technology and modernity into agricultural production, helping to attract the younger generation to the field and injecting new vitality into the industry.

Looking ahead, HaiBoTe's smart agriculture system has broad application prospects and expansion potential. In addition to plant factories, this system can also be applied to traditional greenhouse cultivation, urban agriculture, and even home gardening. In the field of aquaculture, similar technology can be used to monitor and optimize the breeding environments for fish or shrimp. In the food processing industry, similar intelligent monitoring and forecasting systems can be used to optimize production processes and enhance food safety. Even in the pharmaceutical industry, this type of precise environmental management system could be applied to drug research and production processes. To further promote this system, HaiBoTe could adopt a multifaceted strategy. Firstly, they could collaborate with agricultural colleges and research institutions to establish demonstration bases, allowing more people to experience the benefits of smart agriculture firsthand. Secondly, they could develop customized solutions tailored to different scales and types of agricultural production, expanding the applicability of their products. Furthermore, they could raise awareness and acceptance of smart agriculture within the industry by hosting forums, online seminars, and sharing success stories. Lastly, they could explore collaborations with government departments to integrate this system into policies supporting the modernization and sustainable development of agriculture, thereby promoting the widespread adoption of smart agriculture on a larger scale. Through these efforts, HaiBoTe not only can expand its market share but also make a significant contribution to the sustainable development of global agriculture, truly realizing the vision of technology empowering agriculture.

 

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-12-09」

Recommend Cases

這是一張圖片。 This is a picture.
Realizing the dream of unmanned stores, Magpie Life is building the future of the smartphone industry

"The DNA of Magpie Life is not limited to vending machines We believe that vending machines combine technology, access, and humanities to bring us exciting results" This is a sentence on the official website of Magpie Life Let the vending machines bring To live a pleasant life and build a considerate, technological and sustainable future for the smartphone industry is also the original intention of Magpie Life Founded in 2018, Magpie Life launched Taiwan’s first private-brand mobile payment scan code sensor 4 months after its establishment, completing the consumption experience through screen touch The Magpie U1 smart vending machine manages the POS system and gathers data in the background, allowing consumers to synchronize with the world's new retail pace and experience a new retail consumption experience of purchasing convenience, checkout security, visual entertainment, and improved logistics replenishment efficiency Traditional vending machines lack information visibility and AI technology assists in information transparencyThis time, the Magpie smart vending machine is also equipped with AI technology to provide adjustable shelf space , a vending machine equipped with an industrial computer and a large-size touch display screen to achieve the purpose of a store-less store Magpie Life stated that the biggest problem with traditional vending machines is the lack of information visibility To check inventory, replenishment personnel must physically inspect each machine, which is time-consuming and costly When a machine breaks down, it will generally be unable to operate for a long time Most failures go unreported and are not discovered until the next restocking crew arrives to replenish supplies Then you have to wait for a service technician to be scheduled, which can take weeks Traditional vending machines lack real-time interactivity When consumers encounter problems after inserting coins, manufacturers cannot handle them immediately In addition, traditional vending machines are less flexible and cannot adapt to changes in consumer preferences Traditional vending machines have shortcomings such as limited change shopping, single payment tools, limited number of products, and few choices Affected by the COVID-19 epidemic, consumption habits have shifted to contactless methods, causing the unmanned store market to heat up Generally, vending machines can only place relatively simple products such as drinks, food, etc The properties available for sale are limited The patented vending machine developed by Magpie can adjust the shelf space and is equipped with a lifting cargo elevator, which is suitable for various types of goods In addition, the machine is equipped with an industrial computer and a large-size touch display screen, which can meet the needs of advertising support at the same time It is expected to move towards a storeless store According to Magpie Life Observation, the consumer market trend in the past two years is that consumers demand convenient life, food consumption patterns value dining experiencesimple and fast, and are equipped with mobile phone-connected ordering models, and hot drinks and Fresh food delivery is the focus of two major trends The location, items sold, consumption methods and multiple payment methods are the focus of market growth for smart vending machines In terms of convenience, Taiwanese consumers still prefer to purchase vending machine food near stations, airports, schools, and businesses in business districts Various payment methods are also gaining more support from consumers, indicating that in the future, automatic Vending machines can be developed in two directions diversified items and diversified payment methods AI sales forecast technology integrates back-end management to achieve precise marketing purposesDue to the wide variety of products, it is difficult to know the performance of products under different factors such as season, market conditions , promotional activities, etc, it is easy to cause out-of-stock or over-inventory situations Magpie Life has specially developed "AI sales forecasting technology" and integrated it into the back-end management system, hoping to lock in customer purchasing preferences and intentions through data analysis In order to achieve the purpose of precise marketing, make accurate business decisions and effectively allocate limited resources The introduction of AI systems can achieve the three major goals of precise marketing, inventory management and supply chain management This system is a replenishment decision-making aid designed specifically for supply chain managers It uses AI to predict future sales demand, helping companies effectively optimize production capacity, inventory and distribution strategies Its overall system architecture includes1 Data exploratory analysis function Provides automatic value filling, automatic coding and automatic feature screening functions for missing values in the data 2 Modeling function 1 Provides model training functions for two types of prediction problems regression Regression and time series Time Series Forecast nbsp2 Supports Auto ML automatic modeling, and the best model is recommended by the system Integrated models can also be established to improve model accuracy nbsp3 Supports multiple algorithm types Random Forest, XGBoost, GBM and other algorithms nbsp4 Supports a variety of time series models exponential smoothing, ARIMA, ARIMAX, intermittent demand, dynamic multiple regression and other models nbsp5 Supports a variety of model evaluation indicators R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification and other indicators nbsp6 Supports automatic cutting of training data sets and Holdout verification data sets, and can manually adjust the ratio nbsp7 Supports automatic model ensemble learning Stacked Ensemble, balancing function learning Balancing Classes, and Early Stopping nbsp8 Supports the creation of multiple models at the same time The system will allocate resources according to modeling needs, so that modeling, prediction and other tasks have independent computing resources and do not affect each other In the overall server space With an upper limit, computing resources can be used efficiently nbsp9 It has in-memory computing function, which can use large-capacity and high-speed memory to perform calculations to avoid reading and writing a large number of files from the hard disk and improve computing performance 3 Data concatenation function Using API grafting and complete data concatenation automation, there is no need to manually import data, improving user experience 4 Chart analysis function Provides visual charts and basic statistical values for product sales AI data analysis solutions have two major advantages 1 Entrepreneurship machines can be rented and sold at low cost to open unmanned physical stores and cooperate with the chain retail industry Through smart machines, entrepreneurs can rent and sell them at a lower cost than the store rent Cost of running a retail business Two cooperation models, machine sales and leasing, are provided, and the choice is based on the evaluation of the industry 2 Various types of products are put on the shelves Products are sold anytime and anywhere 24 hours a day Up to 60 kinds of diversified products can be put on the shelves Large transparent windows enhance the visibility of products Regular replenishment and tracking of product sales status are available, and product types can be adjusted according to needs Recently, the line between the Internet and the physical world has blurred, the way customers interact has changed significantly, and consumer demand is changing and personalized The retail industry is facing unprecedented challenges and uncertainties, and mastering data has become key AI data analysis solutions can help the retail industry quickly activate large amounts of data, create seamless personalized experiences, optimize the operational value chain and improve efficiency, and strengthen the core competitiveness of enterprises 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
Testing Seat Contact Components AI Intelligent Flaw Detection

With rapid development in 5G, AIOT, automotive electronics, and other downstream sectors, the entire supply chain is expected to benefit from this consumer market As product demand momentum gradually increases, increasing production efficiency and reducing operational costs become the most important issues In order to meet the needs of customers for various packaging types, Yingwei Technology has been committed to developing highly customized test seats However, a resulting pain point is the inability to mass-produce and fully automate operations with machines some tasks still rely on manual execution In this project, the probe part of the test seat was outsourced in 2021, and under current and future large-scale demands, work hours, costs, supply, and quality are issues Yingwei faces The company achieves a defect detection rate of 9995, which seems high, but with an average inspector able to inspect 10,000 needles per day, there would still be 5 defective needles On a test seat that is only 3 cm wide with approximately 1,000 needles, just one defective needle could potentially lead to faulty testing at the customer end As the current operational mode relies on manual visual inspection, external factors such as fatigue or oversight of personnel, and subjective judgment by inspectors may lead to the outflow of defective products, which necessitates strict quality control of contact components We once sought to utilize optical inspections Rule-based for controlling the quality of appearances, but the metallic material of the contact components leads to light scattering, background noise interference, background scratches, and material issues that could result in misjudgments Therefore, we decided to look for AI technology service providers to solve our detection difficulties Developments of Dedicated AOI Line Scan Equipment To meet the needs for inspecting thousands to tens of thousands of probes within our company's IC test seats, traditional surface imaging and individual needle imaging would be too slow to achieve rapid inspection and labor-saving goals In response, the service provider proposed a trial with an AOI dedicated line scan module solution Utilizing a width of 63mm on the X-axis for reciprocal scanning of all probes on the test seat, the tests allowed for the simultaneous scanning of 8-9 probes, significantly enhancing the future detection efficiency of AOI machines This project will proceed with the aforementioned innovative Proof of Concept POC, focusing on the development of the line scanning equipment and performing imaging, learning, and training on both normal and abnormal probes provided by our company, with initial AI model training aimed at preliminary approval This project's customized line-scan imaging module Ideal future imaging result illustration A Single AI Technology Solution for MeasurementDetection Needs Unified use of AI DL CNN learning methods, instead of the current Rule-based system which necessitates defining each defect individually, to meet the needs for abrasion measurement and appearance defect detection of malfunctionsforeign objects When the same machine uses both measurement and detection technologies, not only does it increase costs, but it also affects the detection speed Hence, the service provider recommends the use of a line scan device for imaging Its resolution is sufficient for AI to simultaneously determine appearance defects and assess the condition of needle tip abrasion, as detailed below Line scan pixel imaging displaying needle tip abrasion conditions This AI detection technology meets both measurement and inspection needs for Yingwei, not only bringing more benefits to future probe testing but also introducing an innovative axis in AI technology Change the method of human inspection, enhance work efficiency and product quality After combining both hardware line scan and software AI model training approaches, we successfully ventured into new AOI detection applications Following the AI implementation POC, including the development and validation of a customized line scan module and an initial AI model, the plan is to officially develop the AOI machine next year and integrate it into the IC test seat production line Future Prospects Probe manufacturers upstream and downstream IC factory users both have needs for the AOI inspection machine upstream can ensure probe quality before leaving the factory, while downstream users can use this machine to regularly inspect the condition of numerous IC test seats in hand Given the future demands, the AOI machine is poised to have a significant positive impact on the IC testing industry in the foreseeable future 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
Maintaining the reputation of the “Kingdom of Yachts” - Kha Shing Enterprise introduces the first domestic FRP ultrasonic smart inspection of composite materials

The Kaohsiung-based Kha Shing Enterprise Co, Ltd was established over 40 years ago, and is Taiwan's largest customized yacht company with customers all over America, Europe, Asia, and Australia, earning Taiwan the reputation of the "Kingdom of Yachts" Current FRP hull inspection still relies on traditional methods, such as visual inspection and knocking sounds, which is time-consuming and labor-intensive Kha Shing has applied PAUT array ultrasonic inspection to hull FRP composite materials for the first time, and combined it with AI to interpret ultrasound images, develop complete intelligent solutions, and create emerging markets for inspection companies Kha Shing Enterprise Co, Ltd was formerly Kha Shing Wood Industry Co, Ltd, and was a factory specializing in wood import in Kaohsiung Linhai Industrial Park when it was first established It began to design, manufacture, and sell yachts in 1977 After the second-generation successor of the company, President Kung Chun-Hao entered the company, he made a breakthrough in the previous manufacturing model that relied mainly on the skills of master craftsmen, introduced digital manufacturing to accelerate shipbuilding, and began to make larger yachts, ranking in the top 20 manufacturers worldwide among manufacturers of large yachts over 24 feet It also set a record of delivering 94 yachts within one year, earning Taiwan the reputation of "Kingdom of Yachts" Defect detection ensures yacht quality, using AI to replace humans to achieve higher efficiency Defect detection is very important to ensuring yacht quality At present, the yacht industry still uses very traditional defect detection methods The hull structure is usually made by hand lay-up or the vacuum infusion process, using visual inspection or knocking and the frequency of the sound to determine defects It requires time-consuming manual inspection If there are any defects, they must be reworked and repaired, and a gel coat subsequently sprayed The hull must be constructed in sections to facilitate inspection For large yachts over 24 meters long, construction in sections is very time-consuming and labor-intensive To shorten the time of the yacht manufacturing process, Kha Shing Enterprise will first carry out the gel coating process for the hull, and then perform the hand lay-on process The hull manufacturing process has two types of composite material test specimen structures In terms of 54-foot yacht hulls, the hull contains gel coat, core material, fiber and resin, and the total thickness is about 32cmplusmn01cm, which is twice the total thickness of FRP hull without core material of about 16cmplusmn01cm Defects such as incomplete impregnation of glass fiber or residual air bubbles between glass fiber and resin occasionally occur during the manufacturing process The types of defects include insufficient resin, voids, and delamination Once defects occur, the supply of hull materials will be insufficient and yacht delivery will be delayed Schematic diagram of types of FRP hull In order to solve this problem, Kha Shing Enterprise has engaged in technical cooperated with the metal materials industry and the AI technology industry, combining the ultrasonic inspection expertise of the metal materials industry with AI technologies developed by the AI technology industry in recent years to help solve issues of Kha Shing Enterprise with defect detection The method uses PAUT on the composite material structure of yachts, conducts FRP ultrasonic evaluation to determine the thickness of the yacht hull and material properties, and evaluates the ultrasonic probe frequency applicable to the hull structure based on professional ultrasonic experience After testing, a frequency of 5MHz and a probe width of 45mm can successfully find the location and size of defects in the simulated defect test specimen The three parties jointly found defect detection solutions from array ultrasonic evaluation, AI technology model development, and actual application in yachts The image inspected is an ultrasound image The image displays different colors based on the ultrasonic feedback signal An AI model that automatically identifies defective parts is established through the YOLO algorithm If the amount of abnormal data collected is insufficient for training, the CNN-based Autoencoder algorithm is used to collect normal image data for training and construct an AI model for abnormality detection The object detection YOLO model is trained by inputting image data marked as having defects, while the abnormality detection model is trained by inputting image data without defects Simulated defective specimen corresponding to PAUT results Defect detection by and AI system can shorten the construction period by 15 months and speed up determination by 50 After the development of this AI system is completed, it will be validated on actual 54-foot yachts of Kha Shing Enterprise, and can effectively resolve issues with defects The application of AI technology in ultrasonic inspection for intelligent determination is expected to accelerate determination by approximately 50, and will also shortens the construction period by 15 months, effectively improving the speed and quality of the yacht manufacturing process As Taiwan develops larger and more refined yachts, it will create opportunities for industry optimization and transformation, as well as opportunities for the development of key technologies The application of an AI ultrasonic inspection solution for composite materials is the first of its kind in the yacht industry, and is expected to attract more yacht manufacturers with inspection needs The AI ultrasonic inspection solution for composite materials has three major competitive advantages 1 Professional inspection experience and digital database to facilitate process management and analysis 2 Automatic AI determination and identification quickly identifies defects and provides immediate feedback to process engineers 3 High-efficiency process inspection provides defect repair recommendations, reduces damage rate, and improves the strength and quality of composite materials The application of AI technology can optimize the yacht manufacturing process, reduce manual inspection, create added value through the application of AI in Taiwanrsquos yacht industry, increase international purchase orders, and allow Taiwan yachts to continue to enjoy a good reputation in the world Furthermore, this business model has also spread to fields of application related to composite materials, increasing cross-sector market usage It is estimated to contribute approximately NT14 to NT2 billion in economic benefits to Taiwan's equipment maintenance and non-destructive testing market