:::

【2021 Application Example】 Optical industry AOI imports AI Great Leap Forward to completely solve the pain points of lens defect detection

The stay-at-home economy such as smartphones and remote working is booming, and the information and communication industry is booming, driving the optical industry to flourish. However, the defect detection of optical lenses is mostly carried out by human eyes, which is not only time-consuming and labor-intensive, but also limited by the fact that human eyes are prone to fatigue. The misjudgment rate is also a lingering pain point for the optical industry. Benefiting from the evolution of AI technology, Shangyang Optics introduced diffraction optical technology for shooting, used the images captured by the system as the data source, introduced AI model training, and integrated the camera system and image recognition into a production line workstation, greatly improving defect identification The rate is as high as over 90%.

Taiwan’s optical production value accounts for 10% of the world’s, and the application range of precision optics is expanding day by day

The optical industry is a mainstream product in consumer electronics. Even though Taiwan was affected by the Sino-US trade dispute in 2019, the output value of optoelectronics still reached US$46.3 billion, accounting for 10% of the world's total. Among them, the "precision optics" segment accounts for NT$87 billion (approximately US$2.9 billion) in output value. In view of the increase in the number of smartphone lenses, precision optics still maintains a sustained growth of 4% compared to the decline in other fields.

Since Sharp launched the world's first camera phone equipped with a rear 110,000-pixel lens in 2000, end consumers' requirements for smartphone camera performance have continued to increase, and with the wave of 5G high-speed Internet The advent of the technology has led to the activation of application markets such as augmented reality (AR) or virtual reality (VR). The innovation and application of its technology have added a lot of momentum to the optical industry, and the application fields have extended from smartphones to popularization. to the mass consumer markets such as automobiles and home entertainment.

Optical lenses are inseparable from the economic development of "precision optics". As semiconductor technology continues to mature and network speeds continue to increase, optical lenses are used not only in smartphones, tablets, traditional cameras, projectors, In the field of people's livelihood vehicles, the demand for engineering visual inspection and security applications in high-precision manufacturing processes continues to grow rapidly.

Optical lens defects Detection is mostly done manually.

▲ Optical lens defect detection is mostly done manually.

"Optical lenses" are essential components of the overall optical-mechanical system. The lens finish inspection after incoming materials and before shipment not only affects the overall production line efficiency development, but also has an impact on the quality commitment of end customers that cannot be underestimated. For a long time, the optical industry has mostly used human eye detection for defect inspection. As production volume continues to increase, not only labor costs continue to rise. As inspectors age, their eyesight gradually declines, and the misjudgment rate increases every year. In addition, manpower recruitment has been difficult in recent years. Even if they are lucky enough to be recruited, it is not easy to develop the inspection technology, and the training time is lengthy, making it impossible to respond to the production line manpower needs in a timely manner.

Introducing diffraction optical technology and AI training model to improve defect recognition rate to more than 90%

The current market is flooded with a large number of automated optical inspection systems, and there are many substantial cases of lens defects. However, after years of market exploration and evaluation by Shangyang Optics, this system still cannot solve the current manual inspection problem. The main reason is that the appearance of the optical lens is curved and transparent, and it is not easy to photograph various defects, and once the defects are around There is interference from other stray lights, making judgment more difficult. Moreover, different types of lenses need to be individually rotated and lit and adjusted according to the defect status before entering the judgment stage. The labor consumption ratio is still high, which is not in line with the efficiency and cost.

Through this, through the matchmaking of the AI ​​project execution team of the Industrial Bureau of the Ministry of Economic Affairs, Xiaoma Optics assisted Shangyang Optoelectronics in establishing an effective defect photography system. Pony Optics provides guidance on precision diffraction optics. Based on the characteristics of "light" fluctuations, lens defects can be obtained through a unified lens shooting method. Current photography systems on the market mostly use geometric optics. Geometric optics uses linear light and is not easy to capture defects such as missing coatings, tiny scratches, and liquid dirt. The cooperation plan introduces diffraction optical technology for shooting. Through precise imaging from all angles, it can achieve higher contrast and better noise reduction than ordinary geometric optical elements, so as to obtain the necessary defective images.

Image of scratches and defects on the optical lens.

▲Schematic diagram of optical lens scratches and defects.

In order to improve the more detailed defect detection and recognition rate in this case, Shangyang Optics used the image captured by the system as the data source, imported AI model training, and integrated the camera system and image recognition into a production line workstation, which not only improved the defect recognition rate Reaching more than 90%, it is more conducive to the subsequent development of automated production lines.

The AI ​​model training for this cooperation project is provided by Yirui Technology. Currently, most manufacturers have introduced AOI systems for production line defect inspection. Most of them use OCR (optical character recognition), which refers to the analysis and recognition processing of image files of text data. , the process of obtaining text and layout information) technology needs to be 100% accurate, and there is no room for error, resulting in accidental killings often occurring.

After adding the AI ​​training model, optical lens defects The recognition rate is greatly improved
.

▲After adding the AI ​​training model, the optical lens defect recognition rate is greatly improved.

AI+AOI solves the two major pain points of insufficient manpower and high misjudgment rate

This time, Yirui Technology and Xiaoma Optics cooperated to install Yirui's AI system in the optical inspection instruments developed by Xiaoma Optics, adding AI algorithms to the optical detection of defects, and training based on the data and needs provided by customers. AI model identification can greatly improve the accuracy of identification of defects, improve yield rate, and increase production line efficiency. Through the tripartite cooperation between Shangyang Optics, Xiaoma Optics and Yirui Technology, the optical industry AOI is introduced into AI, hoping to completely solve the pain points of industrial lens defect detection.

Since setting up the production line in 2019, Shangyang Optics hopes to introduce a smart production model. In view of the continuous growth of the company's operations and the continuous improvement of production volume, through the introduction and expansion of this achievement, the demand for manpower will be significantly reduced, and the impact of production scheduling can be reduced due to the high accuracy of the discrimination rate index, thereby improving production efficiency.

Shangyang Optics stated that as the development results are implemented, it will lead the technology to be promoted to upstream and downstream players in the optical industry, such as upstream optical lens raw material suppliers to downstream finished product applications, including immersive gaming equipment and related curved glass products , people's livelihood vehicle and security camera devices, etc.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

這是一張圖片。 This is a picture.
Testing Seat Contact Components AI Intelligent Flaw Detection

With rapid development in 5G, AIOT, automotive electronics, and other downstream sectors, the entire supply chain is expected to benefit from this consumer market As product demand momentum gradually increases, increasing production efficiency and reducing operational costs become the most important issues In order to meet the needs of customers for various packaging types, Yingwei Technology has been committed to developing highly customized test seats However, a resulting pain point is the inability to mass-produce and fully automate operations with machines some tasks still rely on manual execution In this project, the probe part of the test seat was outsourced in 2021, and under current and future large-scale demands, work hours, costs, supply, and quality are issues Yingwei faces The company achieves a defect detection rate of 9995, which seems high, but with an average inspector able to inspect 10,000 needles per day, there would still be 5 defective needles On a test seat that is only 3 cm wide with approximately 1,000 needles, just one defective needle could potentially lead to faulty testing at the customer end As the current operational mode relies on manual visual inspection, external factors such as fatigue or oversight of personnel, and subjective judgment by inspectors may lead to the outflow of defective products, which necessitates strict quality control of contact components We once sought to utilize optical inspections Rule-based for controlling the quality of appearances, but the metallic material of the contact components leads to light scattering, background noise interference, background scratches, and material issues that could result in misjudgments Therefore, we decided to look for AI technology service providers to solve our detection difficulties Developments of Dedicated AOI Line Scan Equipment To meet the needs for inspecting thousands to tens of thousands of probes within our company's IC test seats, traditional surface imaging and individual needle imaging would be too slow to achieve rapid inspection and labor-saving goals In response, the service provider proposed a trial with an AOI dedicated line scan module solution Utilizing a width of 63mm on the X-axis for reciprocal scanning of all probes on the test seat, the tests allowed for the simultaneous scanning of 8-9 probes, significantly enhancing the future detection efficiency of AOI machines This project will proceed with the aforementioned innovative Proof of Concept POC, focusing on the development of the line scanning equipment and performing imaging, learning, and training on both normal and abnormal probes provided by our company, with initial AI model training aimed at preliminary approval This project's customized line-scan imaging module Ideal future imaging result illustration A Single AI Technology Solution for MeasurementDetection Needs Unified use of AI DL CNN learning methods, instead of the current Rule-based system which necessitates defining each defect individually, to meet the needs for abrasion measurement and appearance defect detection of malfunctionsforeign objects When the same machine uses both measurement and detection technologies, not only does it increase costs, but it also affects the detection speed Hence, the service provider recommends the use of a line scan device for imaging Its resolution is sufficient for AI to simultaneously determine appearance defects and assess the condition of needle tip abrasion, as detailed below Line scan pixel imaging displaying needle tip abrasion conditions This AI detection technology meets both measurement and inspection needs for Yingwei, not only bringing more benefits to future probe testing but also introducing an innovative axis in AI technology Change the method of human inspection, enhance work efficiency and product quality After combining both hardware line scan and software AI model training approaches, we successfully ventured into new AOI detection applications Following the AI implementation POC, including the development and validation of a customized line scan module and an initial AI model, the plan is to officially develop the AOI machine next year and integrate it into the IC test seat production line Future Prospects Probe manufacturers upstream and downstream IC factory users both have needs for the AOI inspection machine upstream can ensure probe quality before leaving the factory, while downstream users can use this machine to regularly inspect the condition of numerous IC test seats in hand Given the future demands, the AOI machine is poised to have a significant positive impact on the IC testing industry in the foreseeable future 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
Advancing to Smart Logistics 5.0: Hsinchu Logistics Delivers Medical Materials with Ultra-High Efficiency

After incorporating AI technology, traditional logistics companies have seen significant improvements in transportation efficiency and reductions in transportation costs, especially in the transfer of medical materials which involves timely service and rights of hospitals and patients The implementation of intelligent logistics can save medical material businesses the cost of constructing GDP warehouses and other expenses up to millions A major domestic logistics leader, Hsinchu Transport HCT, owns a fleet of 3,500 vehicles and a storage area of 60,000 square meters, providing customized logistics solutions including logistics, commerce, finance, information, distribution, storage, and processing The company handles up to 580,000 parcels per day, with a maximum capacity reaching 900,000 parcels, making the enhancement of transshipment efficiency crucial for HCT Medical materials transportation at hospitals need optimization of current operational processes and enhancements in systematization and intelligence Especially the transportation of hospital medical materials, which encounters various challenges Medical materials suppliers need to cater to varying customer product demands, temperature requirements, and delivery times through multiple logistics providers This highly depends on the experience and careful control of operations staff Whether it is the product shipment or actual logistics process, each step must be interconnected Any human errors can impact the service timing and rights of the hospitals and patients Thus, all concerned businesses, along with the government and hospitals, are working to optimize current operational processes and elevate the level of systematization, automation, and intelligence to minimize service errors and cost losses HCT's distribution process prior to AI implementation Currently, with the government's push for standardized platform operations on the demand side of hospitals, supply-side businesses collaborate through data coordination to improve the accuracy and efficiency of product shipments, enhancing operational quality and management benefits at the demand side At the same time, some businesses are also investing in the standardization and systematization of internal operational processes, thus enhancing operational efficiency and quality In the freight logistics sector, logistics companies' warehouse staff need to expend labor to control different logistics shipment operations If they often receive emergency task notifications for shipments to medical facilities, they usually depend on small regional logistics providers to provide customized delivery services Although this improves delivery times, it does not allow for integrated informational services The new GDP regulations for medical materials require suppliers to undergo GDP compliance certification Therefore, Hsinchu Transport, assisted by the Ministry of Economic Affairs' AI coaching program, not only extends existing logistics services compliant with GDP regulations but will also use data integration and optimized AI technologies to help medical material businesses streamline and improve their logistics operations Complex logistics issues are solved using the Simulated Annealing SA algorithm To meet the 'Good Distribution Practices for Medical Devices,' Hsinchu Transport is not only actively introducing new logistics vehicles but will also implement artificial intelligence-based mathematical optimization technologies to assist in intelligent scheduling at nationwide business points and transshipment stations They aim to optimize the routing of medical materials between business points or regions thereby enhancing efficiency in the distribution process Currently, during the transshipment process of medical materials at Hsinchu Transport, detachable tractor heads and containers are used Each business point and transshipment station differ in location design and staffing, impacting the throughput per unit of time Furthermore, daily cargo conditions size, destination vary, and due to these fluctuating and distinct demands, the deployment of tractor heads and containers changes accordingly Under these circumstances, Hsinchu Transport relies on past experiences to schedule departures at each satellite depot and adjusts daily according to the cargo needs Due to the reliance on empirical scheduling, it is often difficult to consider all variables and considerations, leaving room for improvement in the current departure schedules The cargo delivery planning inherently constitutes an NP-Hard problem, difficult to solve with traditional analytical methods Hsinchu Transport, in collaboration with Singular Infinity, utilizes the Simulated Annealing SA algorithm to find solutions The new logistic service introduced by Hsinchu Transport is 'GDP Container Shift Planning' This planning involves estimating future volumes of medical materials between stations and scheduling container truck shifts accordingly, ensuring timely and quality delivery of medical materials while maximizing operational benefits and reducing travel distances Hsinchu Transport introduces AI-optimized shift planning, constructing the most efficient route from its origin to destination Hsinchu Transport introduces 'Optimized Shift Planning' service, reducing transportation costs by 5 The introduction method involves using cloud software services Hsinchu Transport regularly inputs 'Interchange Item Tables' from station to station into the 'Optimized Shift Planning' service After setting the algorithm parameters, a GDP container shift schedule is generated At the same time, developing a Hsinchu Transport medical material scheduling system allows Hsinchu Transport's medical transport units to compile suitable schedules through the Interchange Item Tables Under the same level of service, it's estimated that this can reduce transportation costs by 5, saving medical material businesses millions in construction costs for GDP warehouses and distribution Due to its requirements for sanitation, temperature, and its fragility, the transportation and transshipment of medical materials should be minimized to reduce exposure and risk However, logistics efficiency and costs must still be considered AI designs the most efficient route for each cargo from its origin to destination, effectively completing daily transportation tasks In response to the future high development demand of industrial logistics, distribution and transshipment AI optimization will be a key issue Through this project, a dedicated project promotion organization will be established, staffed with AI technology, IT, and process domain talents After accumulating implementation experience, the application of AI will gradually expand, comprehensively optimizing and transforming Hsinchu Transport's operational system, and partnering with AIOT and various AI domain partners to accelerate and expand the achievement of benefits「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
Using Plant Growth Chambers as an Example - Standardizing Electronic Device Procedures Based on Imaging

In recent years, global climate change and environmental issues have become increasingly severe, causing major impacts on agricultural production Traditional agriculture heavily relies on weather conditions, facing challenges such as unstable crop quality, plummeting yields, and difficult pest control Particularly in Taiwan, agricultural biotech companies and farmers have suffered continuous losses, creating an urgent need for innovative solutions Meanwhile, Taiwan's plant factory industry faces many challenges high equipment and labor costs, an incomplete industrial chain diminishing international competitiveness, and a lack of cooperation among enterprises, all of which limit industry development Additionally, COVID-19the pandemic has highlighted the importance of remote monitoring and management Traditional manual inspections and data collection methods no longer meet the needs of modern agricultural production These issues collectively underline the urgent need for smart agricultural solutions, driving companies like Taiwan's HaiBoTe to develop innovative projects integrating IoT, cloud computing, and artificial intelligence technologies HaiBoTe Cloud Data Integration and Analysis Platform Facing these challenges, the agricultural sector urgently needs a system that can precisely control growth environments, improve resource efficiency, enable remote monitoring, and facilitate intelligent management Existing plant factory equipment often requires complete replacement, with poor compatibility with older equipment, and sensors and camera systems may require different interfaces, making them inconvenient to use Therefore, there is a need for a flexible solution that can integrate various equipment and technologies, providing real-time monitoring and data analysis, and automatically adjusting environmental parameters based on plant growth conditions This demand exists not only in Taiwan but is also a global trend in the development of smart agriculture By incorporating artificial intelligence, more scientific evaluation standards can be established, optimizing production processes, improving yield and quality, while reducing energy consumption and environmental impact Additionally, such smart solutions can attract more young people to participate in agricultural production, promoting industry upgrading and sustainable development Overall, the demand for smart agricultural solutions stems from the urgent requirements to address climate change, enhance production efficiency, reduce costs, and achieve precise management, and this is exactly the problem companies like Taiwan's HaiBoTe are striving to solve Taiwan's plant factory operators are facing a series of severe challenges, which are gradually eroding their competitiveness and survival space Firstly, the high cost of equipment and operations is their biggest burden Each electricity bill feels like a heavy blow, forcing them to balance between ensuring product quality and controlling costs Secondly, the unpredictability brought by climate change has become their nightmare Sudden extreme weather events can destroy their carefully nurtured crops in a short time, causing massive economic losses What's worse, they find themselves increasingly at a disadvantage in international market competition In contrast, large overseas plant factories, with their advanced automation technology and well-organized supply chains, can produce stable-quality agricultural products at lower costs, putting unprecedented pressure on Taiwan's operators On the technical level, they also face numerous challenges Compatibility issues between new and old equipment often put them in a bind, encountering various technical obstacles when trying to integrate different systems Lack of precise data analysis and forecasting capabilities also makes it difficult for them to make production decisions and accurately determine the best growth conditions for each crop Existing monitoring systems provide data that is often disorganized, difficult to interpret and apply Human resource challenges are also severe, with young people generally lacking interest in agricultural work, making it difficult for them to recruit employees with modern agricultural skills Even existing employees often feel exhausted from tedious manual operations and monitoring tasks These problems are intertwined, creating a complex dilemma that leaves plant factory operators confused and anxious They urgently need a comprehensive solution that can enhance factory operational efficiency, reduce costs, and improve product competitiveness, helping them overcome difficulties and regain their footing in the fierce market competition In facing the various challenges of plant factory operators, Taiwan's HaiBoTe company has demonstrated exceptional technical innovation and a flexible customer-oriented development strategy They deeply understand that the solution must be able to seamlessly integrate existing equipment while providing highly intelligent management functions To this end, HaiBoTe's RD team adopted a modular design approach to develop a system that can be flexibly configuredIoTIoT system The core of this system is a smart control hub that can communicate with various sensors and actuators During development, HaiBoTe worked closely with customers, deeply understanding their specific needs and operational environments They even dispatched engineers onsite to observe the daily operations of the plant factories, ensuring that the developed system actually solves practical problems This in-depth cooperation not only helped HaiBoTe optimize their product design but also established a close relationship with customers, laying the foundation for subsequent continuous improvements HaiBoTe's innovation is not just reflected in hardware design but also in their developed intelligent software system This system integrates advanced machine learning algorithms, capable of precise forecasts and optimal control of plant growth conditions based on large amounts of historical data and real-time monitoring information To help customers overcome technical barriers, HaiBoTe designed an intuitive and easy-to-use user interface, which even non-technical operators can master easily Additionally, they provide comprehensive training and tech support services, ensuring customers can fully utilize all functions of the system When facing challenges, HaiBoTe's technical team can quickly identify problems through remote diagnostics and provide solutions In one incident, during a serious equipment failure emergency faced by a customer, HaiBoTe's engineers guided the customer through system remote access, successfully instructing them on repairs and avoiding potential massive losses This full-range service not only solves customers' immediate difficulties but also strengthens their confidence in intelligent management, driving the entire industry toward more efficient and sustainable development HaiBoTe's developed smart agriculture solution not only brought revolutionary changes to plant factories but also painted an encouraging picture for the future of the entire agricultural industry The excellence of this system is evident in several aspects firstly, it achieves precise control of the plant growth environment, significantly improving crop yield and quality stability Through advanced artificial intelligence algorithms, the system can forecast and adjust optimum growth conditions based on historical data and real-time monitoring information, ensuring each plant grows in the ideal environment Secondly, it significantly reduces energy consumption and operational costs, improving resource efficiency The intelligent management system optimizes water, electricity, and nutrient supply, reducing waste and lowering manpower costs Additionally, the system's modular design and strong compatibility allow it to seamlessly integrate various new and old equipment, providing a flexible solution for gradual upgrades of plant factories Most importantly, the system injects a sense of technology and modernity into agricultural production, helping to attract the younger generation to the field and injecting new vitality into the industry Looking ahead, HaiBoTe's smart agriculture system has broad application prospects and expansion potential In addition to plant factories, this system can also be applied to traditional greenhouse cultivation, urban agriculture, and even home gardening In the field of aquaculture, similar technology can be used to monitor and optimize the breeding environments for fish or shrimp In the food processing industry, similar intelligent monitoring and forecasting systems can be used to optimize production processes and enhance food safety Even in the pharmaceutical industry, this type of precise environmental management system could be applied to drug research and production processes To further promote this system, HaiBoTe could adopt a multifaceted strategy Firstly, they could collaborate with agricultural colleges and research institutions to establish demonstration bases, allowing more people to experience the benefits of smart agriculture firsthand Secondly, they could develop customized solutions tailored to different scales and types of agricultural production, expanding the applicability of their products Furthermore, they could raise awareness and acceptance of smart agriculture within the industry by hosting forums, online seminars, and sharing success stories Lastly, they could explore collaborations with government departments to integrate this system into policies supporting the modernization and sustainable development of agriculture, thereby promoting the widespread adoption of smart agriculture on a larger scale Through these efforts, HaiBoTe not only can expand its market share but also make a significant contribution to the sustainable development of global agriculture, truly realizing the vision of technology empowering agriculture 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-09」