:::

【2021 Solutions】 Industry-university cooperation shows results. National Taiwan University of Science and Technology’s Artificial Intelligence Operations Management Research Center uses AI to assist enterprises in digital transformation.

In intelligent systems, AI plays a key role. In addition to cultivating professional AI talents, the Artificial Intelligence Operations Management Research Center of the National Taiwan University of Science and Technology also actively conducts various project studies with enterprises to accelerate the implementation of industrial intelligence in Taiwan. One of the cases uses artificial intelligence and machine learning methods to use quality information for maintenance prediction and planning, which greatly improves equipment reliability and product quality. Using quality defect detection AOI technology can reduce the rate of missed defects.

Yu Wenhuang, director of the Artificial Intelligence Operations Management Research Center of the National Taiwan University of Science and Technology, observed that industry demand for AI is increasingly strong, and electronic manufacturing, finance, medical and other fields have greater development potential. On the one hand, the above-mentioned industries have a high degree of informatization, and automation products Online technology and the digital environment are mature and have the conditions for the development of AI technology; on the other hand, because the data required by the industrial environment has been retained, managed and used, it is easier to promote the application and solutions of AI technology when the concepts and data are available plan.

Quality defect detection AOI technology effectively reduces the wrong kill rate

For example, in the field of smart manufacturing, the team of the National Taiwan University of Science and Technology's Artificial Intelligence Operations Management Research Center assisted Taiwan's major electronics manufacturers in constructing a production line equipment diagnostic system and building a sensing network architecture in the production line equipment at the manufacturing site to detect Measure and record the operating status of the machine. Through big data analysis, a warning can be issued when an abnormality occurs on the machine to remind the manager to schedule maintenance. We use the AOI quality defect detection process, combined with machine vision and deep learning technology, to detect defects in electronic parts and perform real-time control and monitoring to assist companies in developing automated optical inspection stations, surface defect algorithms, and management application functional services.

In the flexible printed circuit board (FPC) industry, quality defect detection technology is used for image identification, mainly for re-inspection after the initial inspection, and the original inspection results are designed to be re-inspected. When doing defect detection, ordinary factories often believe that "they would rather kill a hundred by mistake than let one go" and adopt the most stringent testing standards. With the current testing technology and process, it may cause excessive detection and waste the cost of good products. .

National Taiwan University of Science and Technology Artificial Intelligence Operations Management Research Center focuses on intelligence Manufacturing Solutions

▲The Artificial Intelligence Operations Management Research Center of National Taiwan University of Science and Technology focuses on smart manufacturing solutions.

Lecturer Professor Cao Yuzhong, director of the National Taiwan University of Science and Technology Artificial Intelligence Operations Management Research Center, said that the current flaw detection, AI model and algorithm construction and training of the National Taiwan University of Science and Technology Artificial Intelligence Operations Management Research Center have achieved preliminary results. The center hopes to use images to The results of the identification can help companies quickly identify defects and quality status of products during the production process. After that, the next stage can start from the source, how to optimize parameters, improve behavior in the production process, and assist the factory to optimize the process. Better. During the product production process, the parameters of the machine equipment can be used to analyze machine data abnormalities and summarize different patterns for future maintenance and quality management to provide reference for enterprises in the application field.

The epidemic is the biggest catalyst for digital transformation for enterprises. Director Cao pointed out that the introduction of AI to promote digital transformation of enterprises is not necessarily just based on reducing costs or improving production efficiency, but must be based on the fundamental development goals and the essence of the problem. Process analysis, thinking about how to use AI or ICT technology to serve and meet process and customer needs. This process often requires breaking out of the existing framework to help companies reshape new operations and management models to effectively improve corporate performance.

Chair Professor Cao Yuzhong, Director of the Artificial Intelligence Operations Management Research Center of National Taiwan University of Science and Technology
▲Chair Professor Cao Yuzhong, Director of the Artificial Intelligence Operations Management Research Center of National Taiwan University of Science and Technology

The biggest challenge for enterprises introducing AI: improving customer trust

In the process of expanding AI industry-university cooperation, Yu Wenhuang believes that the biggest challenge is to enhance the trust of enterprises in you. For customers, a certain degree of trust is required before the Know-How of the production line can be communicated to you. Share and tell you where the focus of business is. In the absence of business trust, it is difficult for AI industry players to analyze the availability of processes and data. Enterprises usually consider two key points when choosing AI cooperation partners:

1. When cooperating with you, will the data and results be sold to others?

2. Will the cost of customization be too high? Although companies are less wary of academia, Director Yu still believes that gaining customer trust and jointly establishing sustainable AI innovation application capabilities and development goals are the key to The key factors for all ICT companies to face industrial customers and their ability to provide AI solutions.

Regarding the cultivation of AI talents, Yu Wenhuang also has his own unique insights. He observed that the education system from junior high schools, high schools to universities has driven the trend of AI. However, AI technology itself has many theoretical foundations and industrial knowledge that must be integrated. When talking about AI talent cultivation, we should first define how to construct a talent development system or route in the AI ​​field, what types of people are needed to introduce AI into the economic system, systematize talent positioning and characteristics, and let talents who are interested in investing in the AI ​​industry understand how to use their own The goal measures the types of AI skills and jobs that can be developed.

Secondly, it is to help companies that want to promote AI in a systematic way to understand, whether it is developing applications or building technical teams, how to measure the talent needs and technical blueprint corresponding to business goals. It not only plays the role of problem-solving, because AI It is just one of the ways to solve the problem. Only by assisting enterprises to establish innovative consciousness with AI R&D thinking can we truly implement industrial development, strengthen demand and promote both supply and demand at the same time, and accelerate the implementation of AI applications and talent cultivation.

NTUST Artificial Intelligence Operations Management Center provides a number of smart manufacturing solutions

Regarding smart manufacturing solutions, the solutions provided by the Artificial Intelligence Operations Management Center of National Taiwan University of Science and Technology are as follows:

. Intelligent predictive maintenance

Adopting artificial intelligence and machine learning methods, using quality information for maintenance prediction and planning, greatly improving equipment reliability and product quality, establishing failure modes and reliability analysis based on different equipment operating characteristics, and using process control analysis to trace products Quality history helps on-site personnel eliminate operational abnormalities in a timely manner.

. Smart dispatch and scheduling planning

According to the characteristics of the industry, develop intelligent labor dispatch and scheduling algorithms to effectively shorten setup time and total working hours. For example, for a variety of workpieces, the production schedule must meet conditions such as combined material preparation, group production, and specific process sequences. From the group production of workpieces, the assignment of adapted production lines, to the multi-parallel single-machine scheduling that adjusts the production sequence of each production line under grouping, the optimization algorithm is introduced to design a complete smart schedule. system.

. Deep learning and automatic optical inspection

Improve quality defect detection AOI technology, using machine vision and deep learning, which can detect flat and curved surfaces of metal electronic parts, and perform real-time control and monitoring, including automated optical inspection stations, metal AOI defect algorithms, and modular design and other application technologies.

The design elements of this algorithm: 1. Automated optical inspection station 2. Metal AOI defect algorithm 3. Modular design

. Smart Situation Room

Combined with high-end graphics card flexible assembly units, including processing machines, industrial robot arms, collaborative robot arms, engineering inspection stations and conveyor belts, a smart war room with digital twin technology is established. The technical features include real-time monitoring, data integration, data Transparency and data visibility.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【解決方案】運用極現科技4D無人機雲端平台 巡檢成本降為五分之一
Utilizing Extreme Present Tech's 4D Drone Cloud Platform Reduces Inspection Costs to One-Fifth

The use of drones for intelligent inspection is becoming increasingly common, with major petrochemical and solar power plants continuing to adopt drone applications Located in Hsinchu, Extreme Present Technology earthbook has established a 4D cloud platform using its proprietary technology, offering drone, software, and data analysis platform services for intelligent inspections at solar power and petrochemical plants, reducing the total cost to just one-fifth of traditional methods involving hardware and software purchases, and cutting down the time from one month to approximately 24 hours, making it highly cost-effective For petrochemical industry operators who are constantly in a high-temperature, high-pressure dangerous environment, the safety control and inspection of plant facilities are critical 'As long as we can enhance the capabilities of facility inspection and risk identification in petrochemical sites, resource input is absolutely not an issue,' said a petrochemical industry representative with emphasis By implementing the drone 4D AI inspection cloud platform, the efficiency and safety of facility inspections among petrochemical operators can be elevated, further reducing the risk of equipment downtime Founded in March 2018, Extreme Present Tech has become a consistent winner in domestic entrepreneurship competitions, including being crowned champion in the 2019 OPEN DATA Business Innovation Practice, selected into Microsoft's startup accelerator in 2020, chosen for NVIDIA's AI startup team in 2021, and its products have been launched on the Microsoft Azure platform, earning investments from the National Development Fund and major domestic groups, thereby securing strong market validation for its technical prowess and services The founder and CEO of Extreme Present Tech, Hsu Wei-Cheng, mentioned that at the beginning of its establishment, the company took on the national space center's satellite 3D photography scheduling system and specialized in the integration of geographic information into 3D images As drone hardware technologies matured, the company shifted its operations towards the drone market and combined it with AI image recognition systems to establish a 4D cloud DaaS platform, offering services including online aerial photography ordering DaaS, 5GAIoT cloud platform SaaS, and enterpriseAPI server software, to meet the demands of drones in smart cities, facility inspection, engineering management, disaster response, pollution monitoring, and other applications, maximizing the value of drone services Smart aerial inspection regularly tracks the health status of plant equipment at a glance The quantity and area of petrochemical plants in Taiwan are immense, lacking sufficient manpower for comprehensive equipment inspections Given that petrochemical plants produce high-temperature flammable and corrosive chemicals that must be transmitted and stored through pipelines and tanks, long-term risks like pipeline ruptures and tank blockages could lead to severe occupational safety disasters, equipment downtime, and production stagnation Given the shortfalls in personnel for equipment inspections among petrochemical operators, Extreme Tech has already implemented a 4D AI drone inspection cloud platform combined with AI image recognition technology in petrochemical plant areas, providing ground-breaking evidence through the use of drones and proprietary app software services that connect on-site aerial data collection to the cloud platform, achieving fully automated and real-time aerial monitoring of petrochemical plant equipment pipelines, tanks, and ensuring precise locations and angles for each aerial operation, effectively compensating for the discrepancy in human inspection Hsu Wei-Cheng pointed out that the inspection drones used in petrochemical plants are equipped with dual lenses, one visible light and the other thermal infrared, which allow for determining pipeline obstructions through temperature conditions, enabling clients to immediately view the inspection status of the plant area from remote locations via the earthbook website, enhancing clients' inspection efficiency and accuracy The 4D aerial data platform meets diverse applications such as smart cities, transportation, engineering management, and pollution monitoring DaaS Online Order-Use Model Innovates Aerial Photography Business Model Saving 15 Costs Apart from providing a 4D aerial data platform, Extreme Present Tech also offers DaaS Drone as a Service After customers place orders on the website, Extreme Present coordinates with professionally licensed aerial photographers to provide on-site services Customers can monitor real-time operations through the platform and quickly obtain aerial data to evaluate any abnormalities, enabling timely alerts Take the solar power plant monitoring service as an example Given that solar power plant areas are large and widely distributed, located in the remote Pingtung area with the headquarters in Taipei, for inspections of the Pingtung plant, the customer just needs to use the DaaS service model, directly order online and upload a map of the Pingtung plant, obtain a quote from the company, and then entrust local Pingtung pilots to perform aerial inspections of the solar power plant During the process, the drone's route is automatically calculated by AI to plan the flight path, and the aerial data is transmitted to the client's cloud account, allowing the Taipei headquarters clients to immediately see the inspection status of the solar power plant from the earthbook website such as the condition of the solar panels, dust detection, or abnormal heat generation from solar electromagnetism, effectively helping the customer significantly reduce operational costs and efficiently complete the solar power plant inspection service Introduction of DaaS online aerial photography service in petrochemical plants According to estimates, solar power plant clients often incur high personnel costs by purchasing drones or outsourcing aerial photography With the long-term provision of aerial photography devices and the DaaS business model by Extreme Present Tech, customers can save 45 of aerial photography costs, and obtain aerial inspection reports within 24 hours post-operation, helping clients efficiently identify issues with solar panels Aiming to become the largest aerial data service company and enter the Southeast Asian market Since its establishment in 2018, Extreme Present Tech has rapidly grown in the aerial photography market with innovative thinking, actively expanding its aerial data application services Currently focused on cultivating the Taiwan market, the company aims to enter Southeast Asian nations, with Indonesia chosen as the first stop due to its high demand for infrastructure Hsu Wei-Cheng hopes that earthbook becomes the world's largest aerial data service platform Besides completing the initial round of funding from the National Development Fund and major groups, to penetrate the international market, the company continuously improves its drone data services and AI technology innovations, while also requiring the assistance of entities like the Industrial Technology Research Institute to find strategic investors that complement the company, fulfilling its goal of becoming an international aerial data corporation in phases Founder and CEO of Extreme Present Tech, Hsu Wei-Cheng「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】台灣軟體科技實力媲美國際 Golface智慧服務促高球轉型
Taiwan's Software Technology on Par with International Standards: Golface's Intelligent Services Transform Golf

Compared to Japan, where 90 of golf courses operate without caddies and use an automated service model, golf course management in Taiwan still heavily relies on human labor Facing a labor shortage of up to 70, adopting a site and membership management platform to provide intelligent golf services may be a transformation worth considering for golf course operators 'Taiwan's software technology is comparable to international standards and definitely has the capability to compete in the global market,' says Tsung-Che Liao, co-founder and CEO of Golface, established in 2014 with the vision to leverage technology at its core, aiming to create Taiwan's first golf entertainment platform With over 9 years vested in cultivating intelligent golf services, Liao is well-versed in the nuances of golf course services He has considerable domain knowledge and has launched a comprehensive intelligent golf solution The world's first networked smart golf cart hits the road automation of golf courses is no longer just a dream In mid-May, Golface's newly developed ARES Smart Golf Cat, the world's first networked smart golf cart, officially became operational Equipped with a dedicated vehicle computer mainframe, dual network systems, AI-based visual recognition cameras, and high-precision GPS tracking, golf courses can now confidently allow golfers to drive themselves The system enables real-time monitoring of any driving violations, and the presence of digital consumption traces allows for insurance coverage The procedure is as follows golfers book the cart via a reservation platform, receive a QR code, pay through the platform, and unlock the cart with the QR code at the golf course The golf cart can then be driven onto the course The course management platform can monitor and restrict the areas through which the cart can travel, ensuring it does not leave the paths Upon completion, the cart is returned through a tablet in the cart In instances of any infractions, penalties are applied directly through the user's account, and for severe violations, future access to the carts may be prohibited This achieves the goal of 'automation' ARES Smart Golf Cat is the world's first networked smart golf cart, officially in service since May 2022 'As labor costs continue to rise, recruiting and training caddies are becoming common pain points in the market While Taiwan's courses still employ caddies, there's a 70 labor shortage,' Tsung-Che Liao added This smart golf cart tablet, combined with a mobile app, has become the ultimate smart caddy Golface is striving to complete the last piece of the 'automated golf course' puzzle Amassing digital consumption trails for advanced client segmentation services Starting with consumer needs, Golface has sequentially launched services like the golf cart tablet, mobile app, golf reservation platform, instructional videos Golface TV, golf tourism, and smart carts The smart cart has been operational since May 2022, currently featuring four units with plans for mass production in the latter half of 2022 Although the cart currently requires manual operation by golfers, remote operation is anticipated early in 2023, with autonomous driving expected in the third phase Via the cart tablet and management system, staff can understand the status of the course through on-screen visual representations, showing each cart's real-time and relative location, departure times, and duration of service per hole, which aids course managers in monitoring on-course consumption effectively, thus reducing traffic jams and customer complaints 'Previously, we relied on staff's mental imagery now, we can employ imagery to visualize real-time situations on the course This makes it possible for those who don't understand golf to work in this field,' emphasized Tsung-Che Liao While course control has traditionally been handled by experienced professional players, the shortage of skilled professionals makes hiring even more challenging Therefore, replacing manpower with digital tools yields twice the result with half the effort The golf cart tablet has entered the Japanese golf market, installed at Fukuoka Century Golf Club Golface's golf cart tablet has been introduced to 14 domestic courses, and has now officially entered the Japanese market, favored by Fukuoka Century Golf Club, where tablets have been installed in carts providing automatic voice announcements for hitting strategies, distance measurements, and visual charts displaying hitting data During the COVID-19 pandemic, with borders closed, Golface utilized OTA technology to provide software updates and troubleshooting, ensuring uninterrupted services, which was highly appreciated by the Japanese golf courses Tsung-Che Liao remarks that Taiwan's software technology is not inferior to other countries like Japan, but more support from golf courses is needed to help transform the industry intelligently 'To assist in the transformation of golf courses, the first step is digitalization,' Liao pointed out By helping courses accumulate data and understand customer service cycles and hitting rhythms, it enables courses to avoid congestion and serve more customers To date, Golface has accumulated data on over 20,000 teams, 35 million scorecards, and over 10 million records This data helps enhance management performance, segment customer layers, reduce complaints, and plan marketing strategies for off-peak periods Golface co-founder and CEO Tsung-Che Liao has spent 9 years deepening intelligent golf services, aiming to build Taiwan's first golf entertainment platform「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
Complete checkout in 1 second, Viscovery AI image recognition assists smart retail

Artificial intelligence AI has gradually changed the way various industries operate in recent years However, most of the work is still done by humans, with AI playing a supporting role This has led to emergence of the term "AI Copilot," which stands for "AI-driven tools or assistants" that aim to assist users in completing various tasks and improve productivity and efficiency The concept of AI Copilot comes from the role of "co-pilot" During flight, the co-pilot assists the main pilot in completing various tasks to ensure flight safety and efficiency In fact, there have been signs of various "machines" beginning to play the role of "copilot" in different fields since the Industrial Revolution, assisting humans in completing heavy physical and repetitive tasks, greatly improving factory production efficiency, and driving rapid economic development Following the advancement of computing equipment and breakthroughs in machine learning, deep learning, and image recognition technologies, the concept of AI Copilot has gradually taken shape The development of AI Copilot marks the transition from "machine-assisted to AI-assisted" Early robots could only complete preset repetitive tasks, but today's AI copilot can learn and adapt to new environments and tasks, and continuously optimize its performance in practical applications This transformation not only changes human-machine interactions, but also has a profound impact on various industries The application scope of AI copilot covers various industries, including finance, healthcare, manufacturing, education, retail, etc, and are everywhere to be seen Application of AI copilot in the retail industry AI image recognition checkout In the retail industry, the application of AI copilot has begun to show concrete results Take Viscovery's AI image recognition checkout system as an example This system is a type of AI copilot model that helps store clerks speed up checkout or assists consumers in simplifying the self-service checkout process The store clerk needs to scan the product barcodes one by one in the regular checkout method If a product does not have a barcode, such as bread and meals, the clerk needs to first visually confirm the items, and then input them into the POS checkout system one by one Based on actual measurements at a chain bakery, it takes 22 seconds for an experienced clerk from "visual recognition" to "entering product information of a plate of 6 items into the checkout system" New clerks may need even more time In addition, according to a Japanese bakery operator, it takes 1 to 2 months to train employees to become familiar with products Now with AI image recognition technology, store clerks let AI handle the "product recognition" step, and AI will play the role of copilot, quickly identifying items within 1 second, speeding up checkout to save 50 of checkout time, and optimizing customers'shopping experience The time cost of training employees to identify bread can also be effectively shortened Even for products with barcodes, AI can quickly identify multiple items in one second, which is more efficient than scanning barcodes one by one The self-checkout system "assisted" by AI image recognition allows consumers to successfully complete shopping without the help of store clerks, eliminating the trouble of swiping barcodes or searching for items on the screen, which improves the shopping experience In a time when store clerks are hard to hire due to labor shortage, this also helps stores reduce operating costs AI quickly identifies multiple checkout items in just one second Source of image Viscovery Recently, startups dedicated to developing AI image recognition checkout solutions have emerged in various countries The most lightweight solution currently known is in Taiwan It can be immediately used by installing a Viscovery lens and a tablet installed with Viscovery AI image recognition software at the checkout counter to connect to the store's existing POS checkout system There are various integration methods, including plug-and-play and API solutions integrated with the store's POS system Viscovery AI image recognition system can be painlessly integrated with the store's existing POS system Source of image Viscovery Example of AI image recognition checkout Currently, the Viscovery AI image recognition system is being used in bakery chains in Taiwan, Chinese noodle shops in Singapore, micromarkets in department stores in Sendai, Japan, and Japanese bakeries and cake shops Over 7 million transactions were completed through this AI system, which identified more than 40 million items These use cases demonstrate the extensive application of the Viscovery AI image recognition system in the retail industry In the future, the company will continue to explore the various possibilities of using Vision AI in retail and catering nbsp The Viscovery AI image recognition system is already being used in bakeries, cake shops, restaurants, and convenience stores in Japan, Singapore, and Taiwan Source of image Viscovery