:::

【2021 Solutions】 Wisdom Stabil Tech's Domain AI SaaS Enables Industry-Ready AI Application

From AI projects to AI products, Wisdom Stabil Tech has spent five years on this journey!

With experience in implementing AI across more than 10 fields and 30 enterprises, Wisdom Stabil Tech has developed the Domain AI SaaS platform to help companies rapidly integrate AI technology, saving an estimated 50% or more in time.

Founded in 2016, Wisdom Stabil Tech provides AI image recognition solutions for smart factories. Their Domain AI SaaS platform assists clients in data cleansing, tagging, AI training, modeling, and the integration of hardware and software, leveraging the latest AI algorithms for practical implementation.

Five years of refining project experience has honed Wisdom Stabil Tech's AI products

The general manager of Wisdom Stabil Tech, Lin Gengcheng, said that the company has extensive on-the-ground AI experience in fields as diverse as golf, textiles, petrochemicals, semiconductors, and water resources, with numerous application cases accumulated.

Wisdom Stabil Tech has accumulated extensive AI project experience and launched the Domain AI SaaS platform. Pictured is the system architecture diagram of the platform.

▲慧穩科技累積豐富AI專案經驗,推出Domain AI SaaS平台。圖為平台系統架構圖。

He analyzed that there are three major pain points to successful AI implementation in the industry:

Pain point one, talent shortage: From traditional industries to high-tech semiconductor businesses, it's extremely challenging to find dedicated AI technicians with domain expertise, especially in traditional industries and SMEs. Instead of spending time looking for AI talent, it's more effective to use existing AI platforms that require no coding. This allows domain experts to use, operate, and maintain AI, addressing the current shortage of tech talent.

Pain point two, difficulty assessing implementation results: According to reports, the success rate of AI implementation isn't high, with only about 5% of international AI implementations creating significant value. Wisdom Stabil Tech also finds that their AI implementation success rate is about 5% to 10%.

Lin Gengcheng analyzed that a major difficulty lies in the process of implementing AI, which requires defining the problem, understanding domain knowledge, applying AI models, and combining systematic integration. Generating business value through these steps requires extensive interdisciplinary integration and is exceedingly challenging, necessitating significant time and human resources.

Pain point three, cost. Whether it's the introduction of talent, time, or the integration of domain knowledge with AI, the processes demand substantial time. This leads to directionless investments and ever-increasing intangible costs. If AI hardware is also factored in, the resulting financial burden makes it difficult to assess cost versus benefit.

To address the pain points of AI adoption in industries, Wisdom Stabil Tech will assist enterprises in utilizing AI to solve process or production line challenges with their proven AI models, creating standardized AI SaaS to tackle common domain issues. For individual or custom needs of enterprises, adjustments will be made based on this standardized base. Currently, Wisdom Stabil Tech offers two primary services: the Optical Inspection AI SaaS platform and the Smart Water Management AI SaaS platform, both of which are easy to monitor and maintain, enabling companies to introduce AI technology in a cost-effective and efficient manner.

Enterprises implementing the Domain AI SaaS see a decrease in costs and an increase in efficiency.

▲企業導入Domain AI SaaS產生成本下降、效率提升等具體成效

In the realm of optical inspection, using the Domain AI SaaS platform can lead to a 10x increase in quality and a reduction in labor costs by 50%. In the smart water management sector, it can achieve a 20% improvement in energy optimization.

For instance, in the textile industry, where manual inspections traditionally detect defects at a rate of 80-90%, the introduction of AI optical inspection technology can increase this rate to over 95%. This not only significantly enhances the defect detection rate by 10% but also halves labor costs.

舉例而言,紡織業瑕疵檢測過往採用人工全檢的過程中,通常檢出率在80%-90%之間,導入AI光學檢測技術之後,檢出率可以提升到95%以上。之後再透過人工進行複檢或抽檢,不僅可大幅提升10%的瑕疵檢出率,還可節省將近一半的人力,效益十分可觀。

Furthermore, in wastewater treatment plants that traditionally observe water quality samples managed by experienced technicians manually adjusting equipment, AI can optimize motor and equipment output based on monitoring data, maintaining water quality within specified standards and potentially saving over 20% in energy costs. This is essential for municipal wastewater plants and water utilities needing smart water management platforms to monitor treatment processes.

Lin Gengcheng honestly mentioned that AI is not a cure-all and can act as a 'revealing mirror,' exposing issues previously overlooked by manual processes. Thus, defining the problems with clients and adjusting how results are verified is critical.

With ambitions on the Southeast Asian market, Wisdom Stabil Tech estimates achieving an IPO in 5 years

Lin Gengcheng also stated that AI technology needs continuous refinement. At present, the goal is to not overly rely on massive data for effective AI learning. Combining traditional algorithms with current AI technology offers the best solution before comprehensive AI advancements emerge.

Besides promoting domestic industry applications, Wisdom Stabil Tech plans to expand the Domain AI SaaS platform to Southeast Asia in 2022. They are currently active in Series A funding, aiming to further enhance the depth and breadth of the Domain AI SaaS. They plan to conduct Series A+ or B rounds of funding with the goal of going public in about five years.

The Wisdom Stabil Tech team.

▲慧穩科技團隊

Wisdom Stabil Tech's founder and general manager, Lin Gengcheng.

▲慧穩科技創辦人兼總經理林耿呈

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
Complete checkout in 1 second, Viscovery AI image recognition assists smart retail

Artificial intelligence AI has gradually changed the way various industries operate in recent years However, most of the work is still done by humans, with AI playing a supporting role This has led to emergence of the term "AI Copilot," which stands for "AI-driven tools or assistants" that aim to assist users in completing various tasks and improve productivity and efficiency The concept of AI Copilot comes from the role of "co-pilot" During flight, the co-pilot assists the main pilot in completing various tasks to ensure flight safety and efficiency In fact, there have been signs of various "machines" beginning to play the role of "copilot" in different fields since the Industrial Revolution, assisting humans in completing heavy physical and repetitive tasks, greatly improving factory production efficiency, and driving rapid economic development Following the advancement of computing equipment and breakthroughs in machine learning, deep learning, and image recognition technologies, the concept of AI Copilot has gradually taken shape The development of AI Copilot marks the transition from "machine-assisted to AI-assisted" Early robots could only complete preset repetitive tasks, but today's AI copilot can learn and adapt to new environments and tasks, and continuously optimize its performance in practical applications This transformation not only changes human-machine interactions, but also has a profound impact on various industries The application scope of AI copilot covers various industries, including finance, healthcare, manufacturing, education, retail, etc, and are everywhere to be seen Application of AI copilot in the retail industry AI image recognition checkout In the retail industry, the application of AI copilot has begun to show concrete results Take Viscovery's AI image recognition checkout system as an example This system is a type of AI copilot model that helps store clerks speed up checkout or assists consumers in simplifying the self-service checkout process The store clerk needs to scan the product barcodes one by one in the regular checkout method If a product does not have a barcode, such as bread and meals, the clerk needs to first visually confirm the items, and then input them into the POS checkout system one by one Based on actual measurements at a chain bakery, it takes 22 seconds for an experienced clerk from "visual recognition" to "entering product information of a plate of 6 items into the checkout system" New clerks may need even more time In addition, according to a Japanese bakery operator, it takes 1 to 2 months to train employees to become familiar with products Now with AI image recognition technology, store clerks let AI handle the "product recognition" step, and AI will play the role of copilot, quickly identifying items within 1 second, speeding up checkout to save 50 of checkout time, and optimizing customers'shopping experience The time cost of training employees to identify bread can also be effectively shortened Even for products with barcodes, AI can quickly identify multiple items in one second, which is more efficient than scanning barcodes one by one The self-checkout system "assisted" by AI image recognition allows consumers to successfully complete shopping without the help of store clerks, eliminating the trouble of swiping barcodes or searching for items on the screen, which improves the shopping experience In a time when store clerks are hard to hire due to labor shortage, this also helps stores reduce operating costs AI quickly identifies multiple checkout items in just one second Source of image Viscovery Recently, startups dedicated to developing AI image recognition checkout solutions have emerged in various countries The most lightweight solution currently known is in Taiwan It can be immediately used by installing a Viscovery lens and a tablet installed with Viscovery AI image recognition software at the checkout counter to connect to the store's existing POS checkout system There are various integration methods, including plug-and-play and API solutions integrated with the store's POS system Viscovery AI image recognition system can be painlessly integrated with the store's existing POS system Source of image Viscovery Example of AI image recognition checkout Currently, the Viscovery AI image recognition system is being used in bakery chains in Taiwan, Chinese noodle shops in Singapore, micromarkets in department stores in Sendai, Japan, and Japanese bakeries and cake shops Over 7 million transactions were completed through this AI system, which identified more than 40 million items These use cases demonstrate the extensive application of the Viscovery AI image recognition system in the retail industry In the future, the company will continue to explore the various possibilities of using Vision AI in retail and catering nbsp The Viscovery AI image recognition system is already being used in bakeries, cake shops, restaurants, and convenience stores in Japan, Singapore, and Taiwan Source of image Viscovery

【解決方案】台灣軟體科技實力媲美國際 Golface智慧服務促高球轉型
Taiwan's Software Technology on Par with International Standards: Golface's Intelligent Services Transform Golf

Compared to Japan, where 90 of golf courses operate without caddies and use an automated service model, golf course management in Taiwan still heavily relies on human labor Facing a labor shortage of up to 70, adopting a site and membership management platform to provide intelligent golf services may be a transformation worth considering for golf course operators 'Taiwan's software technology is comparable to international standards and definitely has the capability to compete in the global market,' says Tsung-Che Liao, co-founder and CEO of Golface, established in 2014 with the vision to leverage technology at its core, aiming to create Taiwan's first golf entertainment platform With over 9 years vested in cultivating intelligent golf services, Liao is well-versed in the nuances of golf course services He has considerable domain knowledge and has launched a comprehensive intelligent golf solution The world's first networked smart golf cart hits the road automation of golf courses is no longer just a dream In mid-May, Golface's newly developed ARES Smart Golf Cat, the world's first networked smart golf cart, officially became operational Equipped with a dedicated vehicle computer mainframe, dual network systems, AI-based visual recognition cameras, and high-precision GPS tracking, golf courses can now confidently allow golfers to drive themselves The system enables real-time monitoring of any driving violations, and the presence of digital consumption traces allows for insurance coverage The procedure is as follows golfers book the cart via a reservation platform, receive a QR code, pay through the platform, and unlock the cart with the QR code at the golf course The golf cart can then be driven onto the course The course management platform can monitor and restrict the areas through which the cart can travel, ensuring it does not leave the paths Upon completion, the cart is returned through a tablet in the cart In instances of any infractions, penalties are applied directly through the user's account, and for severe violations, future access to the carts may be prohibited This achieves the goal of 'automation' ARES Smart Golf Cat is the world's first networked smart golf cart, officially in service since May 2022 'As labor costs continue to rise, recruiting and training caddies are becoming common pain points in the market While Taiwan's courses still employ caddies, there's a 70 labor shortage,' Tsung-Che Liao added This smart golf cart tablet, combined with a mobile app, has become the ultimate smart caddy Golface is striving to complete the last piece of the 'automated golf course' puzzle Amassing digital consumption trails for advanced client segmentation services Starting with consumer needs, Golface has sequentially launched services like the golf cart tablet, mobile app, golf reservation platform, instructional videos Golface TV, golf tourism, and smart carts The smart cart has been operational since May 2022, currently featuring four units with plans for mass production in the latter half of 2022 Although the cart currently requires manual operation by golfers, remote operation is anticipated early in 2023, with autonomous driving expected in the third phase Via the cart tablet and management system, staff can understand the status of the course through on-screen visual representations, showing each cart's real-time and relative location, departure times, and duration of service per hole, which aids course managers in monitoring on-course consumption effectively, thus reducing traffic jams and customer complaints 'Previously, we relied on staff's mental imagery now, we can employ imagery to visualize real-time situations on the course This makes it possible for those who don't understand golf to work in this field,' emphasized Tsung-Che Liao While course control has traditionally been handled by experienced professional players, the shortage of skilled professionals makes hiring even more challenging Therefore, replacing manpower with digital tools yields twice the result with half the effort The golf cart tablet has entered the Japanese golf market, installed at Fukuoka Century Golf Club Golface's golf cart tablet has been introduced to 14 domestic courses, and has now officially entered the Japanese market, favored by Fukuoka Century Golf Club, where tablets have been installed in carts providing automatic voice announcements for hitting strategies, distance measurements, and visual charts displaying hitting data During the COVID-19 pandemic, with borders closed, Golface utilized OTA technology to provide software updates and troubleshooting, ensuring uninterrupted services, which was highly appreciated by the Japanese golf courses Tsung-Che Liao remarks that Taiwan's software technology is not inferior to other countries like Japan, but more support from golf courses is needed to help transform the industry intelligently 'To assist in the transformation of golf courses, the first step is digitalization,' Liao pointed out By helping courses accumulate data and understand customer service cycles and hitting rhythms, it enables courses to avoid congestion and serve more customers To date, Golface has accumulated data on over 20,000 teams, 35 million scorecards, and over 10 million records This data helps enhance management performance, segment customer layers, reduce complaints, and plan marketing strategies for off-peak periods Golface co-founder and CEO Tsung-Che Liao has spent 9 years deepening intelligent golf services, aiming to build Taiwan's first golf entertainment platform「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞
Defect identification rate reaches 100%, Nairi Technology is favored by major panel manufacturers

On the machine tool production line, there are some slight differences in the first step of assembly Accumulated tolerances will cause the assembly work to be repeated, which is time-consuming and labor-intensive, resulting in shipment delays that will impact the company's reputation Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutions It uses machine learning models to inherit the experience of old masters In the CNC processing machine assembly and casting process, it uses AI to analyze production line data, accurately adjust various data, and improve Production accuracy is 25 This AI production line data analysis system is called "Master 40" by Huang Changding, chairman of Naruili Technology It is the most evolved version of the master plus artificial intelligence It has been used in machine tool processing factories with remarkable results In addition, Nairi Technology used AI defect detection technology to participate in the 2021 AI Rookie Selection Competition of the Industrial Bureau of the Ministry of Economic Affairs, assisting AUO in advanced panel image defect detection, with an accuracy rate of 100, and won the award Assisted panel manufacturer AUO to solve problems with 100 accuracy in defect detectionHuang Changding further explained that during the production of general panels, edges and corners are There may be defects in the corners Although the defects are visible to the naked eye, AOI is often difficult to identify, causing the detection error rate to often exceed 30 Therefore, re-inspection must be carried out with manpower to improve the accuracy rate However, in response to the demand for a small number of diverse products and insufficient manpower, using AI detection is indeed a good method Nairui Technology, founded in 2018, has been able to win the favor of major panel manufacturers with its AI technology in just three years In fact, it has been honed in the field of CNC machine tools for a long time Tang Guowei, general manager of Narili Technology, pointed out that the top three CNC machine tool factories in Taiwan hope to introduce AI into the two production lines of assembly and casting Among them, on the assembly line, in order to maintain the accuracy of assembly, every part of the component is designed Tolerances are designed During assembly, each component is within the tolerance However, the cumulative tolerance still fails the final quality inspection and must be dismantled and reassembled This is not only time-consuming and labor-intensive, but also causes waste "After entering the production line, I realized that some masters have accumulated a lot of experience and are good at adjustment After his adjustment, the accuracy rate has improved a lot and the speed is faster" On the contrary, the new engineers did not Based on experience, it takes a long time to adjust and may not pass the quality inspection The yield rate of Master 40 system has increased significantly from 70 to 95Tang Guowei then said that the original size data set by Master during assembly All were recorded on paper After the information was written, it was stored in the warehouse and sealed No one studied the relationship between the dimensions Narili assists customers in designing the Fu 40 system Through the human-machine panel, the master can directly input the measured dimensions and related data during assembly After collecting data from different masters, AI algorithms are used to analyze the relationship between the data and create an AI model The AI model automatically notifies the operator what size to adjust to, and the quality inspection will definitely pass In this way, the yield rate will be improved It has increased significantly from 70 to more than 95 Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutionsTang Guowei added, assembling the spindle of a CNC processing machine It took four hours In the first step, the machine made measurement errors, including vibration, temperature, speed, etc that were out of range It had to be dismantled and reinstalled, which took another four hours How to adjust after disassembly depends on the experience of the master At first, the master may have done the best assembly method based on experience, but the error rate was also 30, and the assembly took several days With the assistance of AI masters, the assembly time only takes half a day, and the yield rate reaches over 95, saving a lot of time and manpower "Use the AI model of machine learning to collect the experience of all the masters and provide it for AI learning The first step is digitalization, and the second step is knowledgeization This is the transformation of the enterprise "An important key", Huang Changding believes that Narili Technology is an important partner in the transformation of traditional manufacturing from automated production to digital transformation In addition, another industry that Naili Technology focuses on is the smart car dispatching system of the leading brand of elevator manufacturers The so-called car dispatch referring to the elevator car means that if there are more than two elevators, group management is required In the past, car dispatching was based on fixed rules If the elevator was closer to the requested car, that elevator would be automatically dispatched On the one hand, it did not take into account that dispatching a car if the elevator was called too many times might make other people wait longer The previous vehicle dispatching model did not take into account the usage characteristics of the building, resulting in a lot of waste For example, in an office building, there are peak hours in the morning, lunch break, and afternoon after work AI smart car dispatch can be flexibly adjusted according to off-peak and peak hours, increasing the efficiency of car dispatch, reducing waiting time, and reducing wasted electricity Introducing elevator smart dispatch to improve transportation efficiency and have environmental protection functionsHuang Changding added that just like the previous traffic lights at intersections, the system has already The number of seconds to stop and pass on highways, sub-trunks and small streets is programmed Smart traffic lights are now used to flexibly adjust waiting times to make road sections prone to congestion smoother Using AI to learn usage scenarios and introducing a smart dispatch system into elevators will improve transportation efficiency and make it more environmentally friendly In addition to introducing smart elevator dispatching, Nairili also introduced AI into the smart production and shipment scheduling system of elevator factories Elevator factories often cannot accurately estimate the customer's elevator delivery date For example, office buildings or stores must be completed to a certain extent before the elevator can be installed on the construction site If affected by unexpected factors such as delays in the customer's construction period, the elevator factory will often be idle or the schedule will be difficult to arrange Tang Guowei pointed out that generally those who understand the progress of client projects may be from business or engineering, but overall, the accuracy rate of shipments is only about 60, which means that 40 of them will not be shipped as scheduled Therefore, if the shipping schedule can be accurately estimated, the production line can be freed up for emergency orders or other product production needs The AI smart scheduling system will analyze past shipment data, about 20-30 parameters such as climate, distance between the factory and the construction site, and customer credit, and put them into the AI algorithm to accurately predict whether shipments can be made as scheduled goods Huang Changding also specifically stated that the machine learning of Naili Technology is not ordinary machine learning, but also incorporates various calculation methods such as traditional image processing technology and statistics Only by being very familiar with the domain knowledge can we make good products AI models are also where the company’s competitiveness lies He emphasized that the data that general SaaS platforms can process is very limited, and the accuracy rate has increased from 70 to 75 at most Naili’s strength lies in AI algorithms and machine learning, and it must be coupled with in-depth industry knowledge to produce output Good AI model Narili Technology started with the AI project, gradually deepened the technology, chose to start with the more difficult tasks, and accumulated rules of thumb It is expected to develop SaaS services this year 2022, based on customer needs starting point, gradually gaining a foothold and becoming an important partner in smart manufacturing The picture left shows the general manager of Naruili Technology Tang Guowei and Chairman Huang Changding right「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」