:::

【2020 Application Example】 AI Implementation in Construction Industry Reduces Workplace Accidents: Safety Visibility Enhanced

The construction industry is Taiwan's leading industry, supporting the architecture, decoration, and repair sectors. However, the high incidence of occupational accidents in this sector is a major concern for both employers and workers. The introduction of AI for equipment recognition in the construction industry reassures companies and protects workers, creating a win-win situation.

According to the Ministry of Labor's 2017 statistics on occupational injuries, the average rate of occupational injuries per thousand workers across various industries is 2.773. However, the construction industry tops the list with a rate of 10.036, which is 3.6 times the average and categorizes it as a high-risk group for occupational injuries. Proactive early warning measures can significantly reduce the rate of workplace accidents.

In light of this, the Institute for Information Industry, under the mandate of the Ministry of Economic Affairs' Industrial Development Bureau, has initiated an AI project that prioritizes the implementation of AI technology in the construction industry. Selecting well-known construction firms in Taiwan, the project applies Canon's safety helmet proper wearing recognition solution to reduce occupational accident rates.

Smart Recognition of Safety Helmet Wearing: A Solution for Employers

Senior executives in the construction industry emphasize that compared to other industries, construction workers face higher health and safety risks primarily at construction sites. Many risks arise from the workers not properly wearing or using personal protective equipment, such as safety helmets. Relying solely on human supervision for ensuring safety gear compliance is time-consuming and often ineffective. Implementing AI technology for smart monitoring on construction sites can save corporate resources while ensuring worker safety, achieving dual benefits.

Indeed, to protect workers during operations, construction plants require workers to properly wear safety helmets. Wearing a helmet does not imply it is worn correctly. To prevent the helmet from falling off during operations, it is necessary to securely fasten the chin strap directly under the chin after putting on the helmet.

Proper Wearing Method for Construction Site Safety Helmets

▲工地用安全帽正確佩戴方法

At construction sites, many foreign workers often do not follow proper safety protocols, such as not wearing safety helmets correctly. If supervisory personnel were to be assigned, it would entail excessive use of human resources. With the assistance of the information strategy team, major construction companies have adopted Canon's image recognition technology.

To determine the optimal placement of image recognition cameras, both teams first conduct site surveys and collect various types of safety helmets used on-site. Subsequently, standard cameras are installed at entry points of construction sites and work zones to capture footage of the site personnel. This footage helps Canon develop models for correctly and incorrectly worn helmets, aiding the image recognition software in its learning phase. Canon's engineers regularly visit the site to retrieve footage, and once the image recognition software achieves a certain accuracy level, the image recognition cameras are then installed at the construction site.

Canon Construction Site Safety Helmet Data Collection Camera Setup

▲佳能工地安全帽資料搜集攝影機設置

Improving Recognition Accuracy for Concrete Implementation of Workplace Safety

Currently, no local technology can accurately recognize the proper wearing of safety helmets. Therefore, Canon has developed and trained its own recognition software. The complex environment at the actual installation sites can impact the effectiveness of recognition.

In the future, machine learning will significantly enhance the overall recognition accuracy, ensuring that safety measures involving the wearing of safety helmets are concretely implemented.

While AI recognition technology is introduced in the construction industry's safety domain, it can also be integrated with mobile devices for early warning. In practice, once a camera captures recognition data and processes it, the results can be pushed immediately to specific individuals such as safety managers on their mobile phones, tablets, or even linked to access control systems. If a worker is detected without a properly worn safety helmet, relevant personnel can be alerted promptly. Access can be denied until the worker correctly wears the safety helmet, offering considerable potential for future applications.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】峰漁運用AI知識化養魚 有效提升10水產產量
Fongyu Uses AI Knowledge-based Fish Farming to Effectively Increase Aquatic Production by 10%

Fisheries is an important industry in an island economy However, the fish farming industry has faced severe challenges in recent years, including climate change, labor shortage, and rising costs In particular, nearly 110,000 workers in agriculture will retire due to old age over the next 10 years For this reason, the need for aquaculture to move towards smart farming is becoming increasingly urgent Founded in 2014, Fongyu Corp Ltd has developed a unique eco-friendly farming model based on its own fish farming It uses AI knowledge-based fish farming to effectively increase aquatic product production by 10, and reduced labor cost by 15 The word "Fongyu" has a profound meaning "Fong" represents good mountains and "Yu" represents good water, and is the hope that companies will allow Taiwan to always have good mountains and good waterIt is also a homophone for "having a full figure," expressing the hope that products will give consumers a full and healthy body and mind The founder of the company, Liu Chien-Shen, has been through the difficult entrepreneurial journey of becoming an apprentice in fish farming, raising funds, renting fish farms, establishing a fish farming company, building a brand, and expanding sales Labor shortage and aging workers are hidden worries in the fish farming industry Currently, fish farms in Taiwan are still mainly traditional fish farms, and farming techniques are still passed down through word-of-mouth In addition, the labor shortage and average age of workers exceeding 60 years old has made it impossible to effectively stably improve productivity and yield This farming method makes it difficult to prevent and control diseases, and greatly increases the possibility of excessive use of drugs, environmental pollution, and water quality and ecological damage, creating a vicious cycle that lowers the quality of fish farming In addition, 651 of workers in Taiwan's fish farming industry are inadequately skilled With limited support from IoT sensors, traditional fish farmers still mainly rely on their own experience and knowledge for water quality management, feeding, and disease detection Fish farming management relies heavily on the ability of individual fishermen Once experienced workers retire, the industry will not only face the issue of succession, but also the difficult of stably supplying a certain amount of harvest that meets quality standards This may cause a dilemma for the entire industry from fish farming to sales In order to improve the pain point of inability to pass on experience in fish farming, and at the same time create a "digital" foundation for fish farming, the top priority must be to collect farming behavior data and develop AI services as an important starting point Fishery digital twin technology helps fishermen transition to smart farming With the assistance of the Institute for Information Technology III, Fongyu implemented the "fishery digital twin" technology to dynamically adjust the farming schedule In other words, the fish farming schedule is adjusted according to the species, habits, and variables of the fish The use of AI in fish farming not only effectively increase aquatic production by 10, but also reduced labor cost by 15 In terms of specific methods, we first digitalized the fish ponds, feed, and decision-making behavior for each species, such as sea bass and Taiwan tilapia, and recorded the seasonal temperature changes from releasing seedlings to harvesting, all of which were digitalized, gradually recording the experience and methods of experienced workers into a rich database Based on the recorded data, we analyzed the compound variables to find the best farming behavior and generate a dynamic farming schedule The records for each pool provide data on workers' experience However, fish farming behavior generally relies on rules of thumb Even experienced fish farmers cannot ensure that they will find the best solution Therefore, new methods are proposed to solve this issue That is, "to determine the best fish farming behavior by predicting the interaction with water quality and past data on feeding, and evaluating fish farming behavior based on water quality and fish farming," and provide fishermen with the most intuitive recommendations through daily schedules To continue optimizing the dynamic fish farming calendar on a rolling basis, iterations of the model will be developed through the three-step cycle 1 Input the current fish farming calendar into the model 2 The model predicts the future environment 3 Shortcomings of the fish farming calendar are corrected based on the future environment to obtain a new version of the fish farming calendar In the process, the experience of aquaculture experts is used to establish the causal relationship between fish farming behavior and the environment The establishment of a dynamic fish farming process and technology-based fish farming recommendation services provide a traceable and detailed fish farming process It is one of the few technologies that can digitalize fish farming Fishermen can quickly and easily record their daily behaviors to build knowledge without taking up too much time, but in the long run it can reduce labor cost by 15 and increase output and revenue by an average of 10 Smart fish farming has achieved outstanding results, reducing labor cost by 15 and increasing output by 10 At the same time, the fish farming calendar can also be extended to different aquatic species, such as white shrimp, milkfish, clams, and Taiwan tilapia, to produce fish farming schedules for ponds with different specifications, and the harvested aquatic species can be traced according to different specifications, establishing vertically integrated services for safe food products Fongyu's main products are divided into two categories One is aquaculture modules, including fry, feed, materials and probiotics, production planning and processes, and monitoring, which can be sold separately or exported as modules The high-quality aquatic products produced by Fongyu have repeatedly won awards Figure Fongyursquos official website The other category is high-quality aquatic products, including seabass fillets, seabass balls, oil-free seabass balls, seabass dumplings, and seabass soup The products have won various awards, including the top ten souvenirs in Pingtung in 2017, "Barramundi Fillet" won the 2017 Eatender of the Council of Agriculture COA, "Oil-Free Barramundi Fillet" won the 2018 Eatender Gold Food Award of the COA, and "Dumplings of Barramundi" and "Barramundi Broth" won the 2019 Eatender of the COA The consecutive awards represent that the "quality" of Fongyursquos aquatic products can be seen and eaten with peace of mind In addition, Fongyu has exclusive fingerlings that meet international needs, such as Pure seawater cultured tilapia fingerlings and seawater Taiwan tilapia fingerlings from selective breeding FY-01 are items that aquaculture companies in many countries are looking forward to The company also has aquaculture modules, disease monitoring tools, and feeding materials designed in accordance with the environment, in order to provide customers with more stable income

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
Even the United Nations is on board! Yoyo Data Application captures global business opportunities with agricultural data

Nearly 2,000 days in the fields have made Yoyo Data Application a top player in Taiwan’s agricultural data sector Their comprehensive grasp of crop yields, production periods, and prices has enabled them to collaborate with the United Nations The service area for agricultural land skyrocketed from 24 hectares to over 6,000 hectares in less than three years—a 250-fold increase For Wu Junxiao, founder and CEO of Yoyo Data Application, aligning with global environmental trends and becoming a data company at the intersection of climate technology and the green economy to serve the global market is his ultimate entrepreneurial goal Wu Junxiao, originally an engineer, joined the Industrial Technology Research Institute in 2010, where he honed his profound technical and data science analytic skills 'At that time, I was working in data analysis engineering, and almost all data-related materials would be directed to me Additionally, I worked on indoor cultivation boxes, planting vegetables and mushrooms, hence planting the seed of entrepreneurship by integrating agriculture with data analysis,' Wu recalls Since 2016, Wu Junxiao has been frequently visiting farms to 'embed' himself among farmers and agricultural researchers, chatting and sharing information systematically, which quickly established his agricultural know-how Solid data analysis capabilities have even convinced the United Nations In 2017, he left the Institute to start his own business and founded Yoyo Data Application in 2019 Today, many agricultural businesses are his clients, with service areas rapidly climbing from 24 hectares to over 6,000 hectares, expected to surpass 7,000 hectares in 2022 His clientele includes markets in Japan, Central America, and even entities under the United Nations like the World Farmers Organization, which utilizes the 'Yoyo Crop Algorithm System' supported by Yoyo Data How exactly does Yoyo Data Application manage to impress even UN agencies The 'Yoyo Crop Algorithm System' developed by Yoyo Data Application accurately predicts the production period, yield, and prices Firstly, due to Wu Junxiao's precise mastery over agricultural data, Yoyo Data Application's clients don't necessarily need sensors or other hardware devices 'Sensors are expensive and if you buy cheap devices, you just collect a lot of noise or flawed data, which is useless,' Wu explains He continues, 'Collecting data doesn't necessarily require sensors our data solutions can solve problems more directly and effectively' For instance, one of Yoyo Data Application's products, the Yoyo Money Report Agri-price Linebot, developed in collaboration with LINE in 2020, gathers data on origin, wholesale, and terminal prices spanning over 10 years, driven by Yoyo Data’s proprietary AI algorithms This enables the system to autonomously learn about agricultural product trading prices, using big data and AI to perform price prediction analysis, thereby helping buyers reduce transaction risks and expanding the data application to the entire agricultural supply chain Regarding banana prices, the accuracy of price predictions increased from the original 70 to 998 Wu Junxiao notes that both buyers and farmers are very sensitive to prices Now, through the Yoyo Money Report service, both buyers and farmers can precisely understand the fluctuations in agricultural product prices Yoyo Data can also provide customers with optimal decision-making advice based on predictive models for crop growth, yield, and price estimations Currently, price predictions cover 28 types of crops Precise estimates of production periods and price fluctuations allow Yoyo Data to provide differentiated services based on data analysis The 'Yoyo Crop Algorithm System' provided by Yoyo Data Application incorporates a 'Parameter Bank', usually collecting 200-300 parameters, not just straightforward data like temperature and humidity, but also data divided according to the physiological characteristics of the crops Through effective dynamic data algorithms, it can accurately calculate when crops will flower and when they can be harvested, what the yield will be, and so forth For instance, the prediction accuracy of the broccoli production period is 0-4 days, with the flowering period predicted this year to be precisely 0 days, perfectly matching the actual flowering time in the field In these dynamic calculations, a 7-day range is considered reasonable, and the average error value of Yoyo Data's predictions typically ranges from 2-4 days, with most crop production period accuracies above 80 Through effective dynamic data algorithms, over 120 global crops can have their production periods and yields accurately estimated Using these effective dynamic data algorithms can set estimates for production quantities, helping adjust at the production end Yoyo Data Application's clientele primarily includes exporters of fruit crops like pineapples, bananas, guavas, mangos, pomelos, sugar apples, Taiwan's agricultural production is highly homogenized, often leading to a rush to plant the same crops and resulting in price crashes Yoyo Data Application helps clients differentiate their offerings Thus, Wu Junxiao positions his company as a boutique digital consultant, carefully selecting clients for quality over quantity He notes that Taiwanese agricultural clients focus on how to improve yield rates, even categorizing yield rates by quality, aiming for high-quality, specialized export markets whereas international clients prioritize maximizing per-unit yields, showing different operational approaches in domestic and international markets In addition to agricultural fruit, Yoyo Data Application has also extended its services to the fisheries sector, including species like milkfish, sea bass, and white shrimp, all using the same system to establish various parameters related to the growth of fish and shrimp, such as when to feed and when to harvest, and the anticipated yield, timing, and prices Yoyo Data Application harnesses the power of data to create miracles in smart agriculture In response to the company's rapid development, Yoyo Data Application introduced venture capital funds in 2021 to expand its staff and promote its business Wu Junxiao states that in response to the global trend towards net zero carbon emissions by 2050, he plans to help clients plant carbon in the soil, effectively retaining carbon in the land while also connecting clients to carbon trading platforms, creating environmental business opportunities together Wu Junxiao says that from the start of his entrepreneurial journey, he positioned the company as a global entity, thus continuous international collaborations are planned As a data company serving a global clientele and focused on climate technology and the green economy, this represents Wu’s expectations for himself and his company's long-term goals Yoyo Data Application founder and CEO Wu Junxiao「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】佐翼科技無人機導入高爾夫球場域 可節省一半人力
Droxo Tech Applies Drones in Golf Courses to Reduce Manpower by Half

For most golf courses, the operations and management is a headache "Golf courses are selling turf and need to be properly taken care of," a golf course manager bluntly pointed out Facing the market pain points of labor shortage, aging population and high cost, the use of AI drones for pesticide spraying and pest control will reduce labor costs by more than half and greatly improve the overall operational efficiency At noon in early summer, an AI drone is slowly taking off at the Taipei Golf Club in Taoyuan Its main task is to test AI drone fertilizing and pesticide spraying on the golf course In fact, drones of Droxo Tech, the company performing this task, are widely used for fertilization, pesticide spraying, and pest and disease control for rice, bananas, and tea trees For golf courses with turfs that often cover tens to hundreds of hectares, AI drones are needed to assist in turf maintenance Data collection, development of pesticide spraying AI models, and multispectral image analysis and testing will be carried out in the current stage In the future, large-scale technology implementation and verification will be carried out to set an example for applying drones to golf courses Using AI drones to fertilize and spray pesticides can reduce the manpower required by half The traditional way of maintaining the turf in golf courses is to carry spray buckets or drive spraying vehicles to spray areas one by one "Domestic golf courses began to plant ultra-dwarf Bermuda grass in 2001 This grass species prefers a cool climate and is not suitable for Taiwan's hot and humid weather" Droxo Techrsquos CEO further pointed out that to prevent turf from pests and diseases, pesticide spraying is necessary For an 18-hole golf course, it is equivalent to spraying pesticides once a week, and the T-ground and fairways are sprayed every two months For golf courses, spraying pesticides is time-consuming and labor-intensive It is important to note that large-scale spraying will increase the risk of personnel poisoning and increase the amount of pesticide used Benefits of applying agricultural drones to golf courses According to Droxo Techrsquos research, golf course pests include Spodoptera litura, which comes out at night to look for food, so pesticide spraying must be carried out in the evening According to the traditional method, pesticide spraying requires two vehicles and three personnel for a total of 45 hours If AI drones are used for fertilizing and pesticide spraying, it only takes one operator to spray 08 hectares of land in 20 minutes, saving about two-thirds of the manpower and reducing operating costs by about 30 Using AI drones to fertilize and spray pesticides on golf courses can reduce the manpower required by half In addition to the significant benefits of using agricultural drones for golf course turf maintenance, Droxo Tech also specially introduced AI multispectral image recognition for NDVI Normalized Difference Vegetation Index analysis "The so-called multispectral is to direct light with different wavelengths on the turf, and the reflected images are collected for analysis" Droxo Tech CEO Liu continued to explain that each plant absorbs light with different wavelengths, so multispectral imaging can determine the growth status of grass species At the same time, combined with AI image recognition, the distribution of pests and diseases can be accurately detected, and the amount of pesticide used is determined on this basis Cross-domain collaboration to build a multi-source turf image databasenbsp Using AI multispectral image recognition technology, Droxo Tech will collect visible light, multispectral, thermal images, and hyperspectral images to establish a multi-source turf image database to fully understand the growth cycle of Bermuda grass Droxo Tech has accumulated rich experience in agricultural AI drone pesticide spraying , but there are still many problems that need to be overcome to implement AI solutions in golf courses For example, it is necessary to establish a new pesticide spraying model and test flight methods, especially the application of multispectral image recognition PoC is not difficult, but actual implementation requires more test evidence, repeated inferences, and collaboration with plant experts This part must rely on the cross-domain integration of legal entities such as the Institute for Information Technology III, gathering more fields for verification, and creating a paradigm before it can be more widely adopted by golf courses There are not many international cases on the application of AI drones in golf courses During the verification process, it is not yet known whether it can be quickly copied to the next golf course However, Droxo Tech CEO Liu believes that through cross-domain collaboration, clearly defining the problems and listing them one by one, supply and demand parties can reach a consensus, propose solutions to each problem, and seek cooperation with internal and external resources Only then will we be able to gradually achieve the goal of making golf courses smarter and smoothly assist the industry with transformation Zuoyi Technology's CEO, Liu Junlin 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」