:::

【2020 Solutions】 SiYan Technology leverages AI to utilize Line@ for closing gaps

Targeting over 21 million Line users in Taiwan, Zhang Zhikai, with five years of app development experience at ASUS, aims to create a lightweight and fast online service. By choosing Line@ as the starting point, he established SiYan Technology, assisting Taiwan's SMEs to adopt the new retail trend in a cost-effective manner.

Behind these significant numbers, can the hidden business opportunities be seized?

According to statistics, by the end of 2018, Line users in Taiwan exceeded 21 million, with over a billion messages sent daily. On average, each individual sends more than 60 messages throughout the day, with Line becoming an integral part of daily life - from the moment they wake up, through meals, and even before sleep, always staying connected with friends and family via Line.

Line@ offers a one-stop online shop service.

▲Line@ offers a one-stop online shop service.

Zhang Zhikai, the co-founder and CEO of SiYan Technology, noted that developing an app involves substantial initial and ongoing marketing costs to reach users' smartphones. The cost of developing an app runs between 300,000 to 500,000 NTD, and the ensuing marketing expenses can be staggering. These high costs make it challenging for small and medium businesses to afford the app on their own, which could hinder business transformation. Therefore, SiYan Technology has developed the Line@ one-stop online shop service, which uses data analytics to better manage membership communities, continuously evolving an AI membership management system to optimize various functions and effectively retain customers.

Line@ provides multiple service features.

▲Line@ provides multiple service features.

Segmenting customer groups, offering precise and personalized promotional services

SiYan Technology's developed AI membership management system aggregates data from consumer records and user activities on Line@. It categorizes users based on their loyalty into VIP customers, fickle customers, and ghost customers. Marketing strategies are then tailored for different groups. For instance, VIP customers might be offered incentives like deposit bonuses; fickle customers might receive discount coupons to encourage retention; and ghost customers may be overlooked to save on marketing expenses, hence concentrating resources for more significant revenue growth for SMEs.

Line@ allows for custom customer tags, identifying customer groups.

▲Line@ allows for custom customer tags, identifying customer groups.

At this stage in the market, such applications are either supplementary software or priced too high, making them unsuitable for small to medium-sized businesses. Zhang Zhikai expressed that the AI membership system developed by SiYan Technology is particularly well-suited for street-side shops or traditional service businesses like laundromats and catering. Traditionally, these businesses have low control over their customer base, and Line@'s one-stop online store service aims to be fast, low-cost, and easy to use as long as the business has Line@, with no need for complex programming, making it a simple and quick service for small and medium-sized enterprises to adopt.

Since its launch, the AI membership system combined with Line@'s online store service has accumulated over 2,000 data entries. As more businesses join and the number of members increases, the substantial amount of data collected makes the AI system more intelligent and humanized, allowing businesses to understand their customer profiles more accurately.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
Watertight smart industrial safety inspection Linker Vision’s image analysis AI platform sets a new record of inspection time reduced from 100 minutes to 3 seconds

With the rise of smart manufacturing, there is a demand for industrial safety inspections in high-risk industries such as chemical, energy, and electrical industries Take pipeline inspection in the chemical industry as an example It relies heavily on manual regular inspection and monitoring, and lacks intelligent monitoring by a professional AI team This is not only time-consuming and labor-intensive, but may also cause accidental risks to employees in various industrial safety environments The image analysis AI platform developed by Xinyun Linke not only improves employee personal safety and reduces risk factors, but also significantly reduces the time for human visual inspection of pipeline abnormalities from an average of 100 minutes to 3 seconds Paul Shieh, founder and chairman of Linker Vision Co, Ltd Linker Vision, said, "The overall technological development and progress in the United States comes from entrepreneurship Linker Vision's original intention to start a business in Taiwan has been I hope that through my past experience in entrepreneurship in the United States, I can introduce the American entrepreneurial spirit and culture to Taiwan's budding entrepreneurial fertile ground and truly implement it "American entrepreneurial culture encourages employees to value ownership and emphasizes that employees regard themselves as owners of the company Be a part of the company, with a work attitude and spirit that would be better than mine The company's achievements are your own achievements, breaking the original employer-employee relationship The company will reward outstanding employees with stocks, share the glory together, and establish a partnership with employees Partnership On the other hand, Taiwan still has room for efforts in entrepreneurial culture and management, and it retains the traditional thinking of employers and employees It is expected that Xinyun Linke's establishment of American entrepreneurial culture and values in Taiwan will serve as a starting point to drive more domestic new companies to follow suit, and then Only by upgrading the business constitution of new software AI entrepreneurs can they break out of the cocoon and go global Facing the market, most international players focus on developing AI models and algorithms They are less willing to invest in data-centered Data-Centric AI services They think that processing large amounts of 2D or 3D data is quite time-consuming It’s also energy-consuming Seeing the gap in AI technology and encouraged by Microsoft, Xinyunlinke decided to fully invest in Data-Centric's AI technology layout and deep roots many years ago, and specialize in technical energy in data processing, filtering and accuracy Therefore, Become an important partnership with Microsoft for AI technology supply In addition, due to the gap in industrial demand, domestic large factories, whose strength is chemical manufacturing, still rely heavily on manpower for inspection of pipelines in the factory, which is time-consuming and labor-intensive However, in order to cater to the AI industry, the owner reorganized the IT department originally engaged in database management and control into an AI team However, due to the owner's lack of professional experience in AI software technology, AI models and related domain know-how, the owner introduced AI implementation Industrial safety monitoring in the chemical industry is even more challenging The world's first AI automatic labeling technology surpasses manual labeling and can visually identify objects with an accuracy of over 95 In terms of AI technology power, Xinyunlinke has launched the world's first dual-core innovative technology of automatic labeling Auto-labeling and automatic machine learning to create an efficient and stable image analysis AI platform to provide customers with the best Advanced and complete AI solutions In terms of automatic annotation, this AI technology can overcome the most difficult challenge in deep learning, which is to provide customers with the highest quality training data Taking self-driving cars as an example, how to enable one self-driving car to effectively identify another car is the importance of labeling In the past labeling methods, we first needed to collect digital images of millions of vehicles, roads, signs, and pedestrians, and spent a lot of manpower Manually labeling one image at a time was time-consuming, labor-intensive, high in labor cost, and inefficient Through automatic labeling AI technology, combined with automatic machine learning to automatically label digital images, AI can exclude human error labeling and then throw the correct data into the vehicle's brain for vehicle identification Compared with manual labeling accuracy of only 60, the accuracy of automatically labeling and identifying objects with AI can be as high as over 95 It can also reduce manual labeling time by more than 80 and save at least 80 of labor costs AI automatically marks AI behavior recognition for high-altitude operations In the automatic machine learning part, Xinyunlinke established an AI visual model with continuous learning capabilities to adapt to data changes By optimizing the overall development process, from AI data ingestion and filtering Data Selection to AI labeling AI Labeling , model training and verification, deployment and monitoring, so that AI computer vision can continue to learn more quickly and easily Automatic machine learning can currently be applied to different business cases such as object identification and counting, personnel entry and exit security detection, product defect detection, people flow identification, product shortages on shelves, etc Looking at domestic companies such as TSMC, Formosa Plastics and Hon Hai towards intelligent AI management and purchasing a large number of cameras to meet the image recognition needs of industrial safety surveillance, coupled with the introduction caused by the unfamiliarity of existing customer organizations with AI applications Thresholds and preliminary preparations for image recognition include complicated workflows such as data screening and annotation To this end, Xinyunlinke has been committed to accelerating the development of AI computer vision applications in recent years, providing client-to-end services, and can flexibly deploy according to customer needs Complete automated AI solution services in the cloud, on-premises, or cloud on-premises Xie Yuanbao said that the AI automation technology process provides data selection Data Selection AI technology through domain-type pictures given by customers, helping customers automatically filter out precise such as 10,000 transactions from a large amount of data such as 1 million transactions Data, and by using the AI algorithm technology of Auto-Labeling to replace manual labeling, it can effectively save customers a lot of labor costs and achieve efficient data labeling processing In addition, the AI technology of automated machine learning can help clients customize automatic AI model training or repeated training when the factory environment changes, providing more accurate AI models and allowing customers to operate autonomously Through the above-mentioned key features and advantages of the automated AI technology provided by Xinyunlinke, we believe that it can definitely meet the needs of customers for an automated end-to-end AI independent learning platform, and at the same time, it can significantly save customers the cost of AI team establishment In terms of technological competitiveness, in addition to providing the chemical industry with AI image analysis applications in smart industrial safety, Xie Yuanbao said that Xinyunlinke can also extend the process application of automatic annotation and automated machine learning to different industrial landing services, such as Various fields such as self-driving cars, smart warehousing self-propelled robots and self-driving buses in future smart cities are all in line with the spirit of automated mobility of Mobility as a Service We look forward to the role played by Xinyunlinke The process of image annotation in different industries accelerates the efficiency of developing image recognition services in different fields We believe that by providing client-to-end AI solutions and a complete set of automated AI image analysis pre-operation processes from Data Selection AI technology, Auto-Labeling AI technology, and automated machine learning AI technology, we can greatly satisfy our customers The demand for AI autonomous learning platform Image analysis AI platform sets a new record for smart industrial safety inspections from 100 minutes to 3 seconds Seeing the high demand for industrial safety supervision in high-risk industries such as the chemical industry in recent years, Xinyunlinke launched the "Vision AI Platform", which uses AI image recognition technology Its main functions include real-time AI streaming It has four major functions detection, event notification, defining customer-specific AI models and continuous learning In the real-time AI stream detection part, the Vision AI system can use the customer's factory camera combined with the AI module to perform real-time stream detection of AI image events It can help customers manage various operations and factory environments and keep track of them anytime and anywhere Various work situations in terms of event notification, the Vision AI platform can provide a web version or APP or LINE instant messaging software to provide customers with video records of the events at that time, so that the team does not miss any events, maintains daily production capacity and reduces accidents in defining customers In terms of exclusive AI models, a variety of basic AI models are available, including 8 detection scenarios electronic fences, personal safety equipment, construction safety equipment, construction operations, personnel counting, screen availability, smoke detection, pipeline corrosion and damage , illegal stacking for use in different industries, customers can build exclusive AI models without spending time writing programs in the continuous learning part, the Vision AI system can provide customers with the performance and accuracy of AI models, and have the ability to adapt as the environment changes Continuous learning ability Vision AI has a simple user interface and intuitive operation For cross-field industries, this platform has automated and flexible AI capabilities Customers can build self-defined AI models without spending time writing programs, and Vision AI gives AI models the ability to continuously learn and improve, allowing customers to save the labor cost of building an AI team In addition, the platform can significantly reduce the manpower allocation for routine inspections required for operational safety management, improve employee safety in the working environment, and reduce on-site accidentsrisk factors at various work sites In the platform operation mode, customers can reduce the risk of manual monitoring operations through remote operations, ensuring normal work operations and uninterrupted production operations They can also review high-risk operating situations and collect data to assist in the planning and correction of operating processes In addition, in order to ensure that customers comply with government regulations, Vision AI can help customers control the equipment and safety regulations required in different workplaces at any time through the platform's event notification and management detection The image analysis AI platform is used in cross-field AI image recognition technology Generally, for industrial safety inspections in the chemical industry, most rely on the naked eye of personnel to regularly inspect pipeline abnormalities It takes an average of 100 minutes to scan an area each time, which is time-consuming and laborious, and the pipeline location is difficult to visually observe, which may cause Employees are exposed to accidental risks in various work safety environments In order to reduce the pain points of industrial safety inspections in the chemical industry, Xinyunlinke assists well-known domestic chemical industry players by using an automated image analysis AI platform, combined with customized virtual electronic fences, and using in-plant cameras to configure AI pipeline leakage modules , the AI automatic inspection method can effectively reduce the abnormal detection time to less than 3 seconds In addition, cameras deployed in the factory can automatically record inspection schedules to achieve full-time monitoring, allowing customers to instantly discover and fully control pipelines, minimizing risks In addition, the automated image analysis AI platform can help customers apply fire warnings in factories It is conservatively estimated that the return on investment can be less than 9 months to pay back the investment The longer the platform is used, the higher the cost-effectiveness Build an automatic learning image analysis AI platform for Mobility as a Service in various fields Xie Yuanbao observed that the biggest challenge facing the entrepreneurial culture of software companies in Taiwan is that young new entrepreneurs or employees in Taiwan do not understand the entrepreneurial model and lack the awareness to regard themselves as part of the company owners This has caused It is a pity that your future is unclear or you have a past-experience mentality that prevents you from staying competent in a new start-up company for a long time I believe that the essence of true entrepreneurship lies in every employee rolling up their sleeves and working hard, so that they can truly enjoy the fruits of entrepreneurial profits Otherwise, for young entrepreneurs or employees who often change tracks, it will be like a rolling stone that gathers no moss , I am unable to take a deep root on the road of entrepreneurship, and I lose my ability to solidly accumulate financial independence Regarding the business promotion challenges of Xinyun Linke, Xie Yuanbao said with emotion that because the Taiwan market does not have a deep understanding of AI software applications, it relies more on open source AI visual analysis or machine learning and other resources on the market, but in fact These AI technology resources are limited in their ability to support customers' AI model needs, resulting in uneven quality of AI visual analysis software in the market Therefore, the impact is more indirect on Xinyunlinke's ability to truly provide customers with professional and data-centric AI image analysis services, and it also reduces the company's original business value in customer reference In terms of technical research and development challenges, the visual analysis AI platform cannot rely solely on AI model experts It must gather talents in various fields such as cloud, machine learning, data science, front-end and back-end and other professional team combinations to make the platform operate successfully Xie Yuanbao said that he believes that only through the automatic learning of the visual analysis AI platform, automatic fast and accurate data processing capabilities, and providing customers with complete AI solution services in the cloud, cloud ground Hybrid to pure ground, can we truly Convince customers and stand out from the competition Looking to the future, Xie Yuanbao hopes that Xinyunlin Technology can build an image analysis AI platform for Mobility as a Service to automatically learn in various fields such as self-driving cars, smart warehousing robots, and unmanned buses in smart cities At the same time, I am also grateful to the support of the Industrial Bureau of the Ministry of Economic Affairs for the smooth landing of Xinyunlin Technology in Taiwan and the opportunity to recruit talents from all walks of life to work together In the short-term layout, the company will actively cooperate with domestic players such as Hon Hai and TSMC to implement image analysis AI technology in fields such as self-driving cars, smart industrial safety, and smart warehousing robots In the medium to long term, Xinyunlinke will target the United States, Europe, Japan and other countries as its global market layout, establish investment and cooperation partnerships with major international companies such as Microsoft, and replicate its successful experience and promote it internationally Xinyunlinke official website Xie Yuanbao, founder and chairman of Xinyunlinke 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】小柿智檢 以「AOIAI」雙劍合璧,軟加硬體千錘百鍊 打通外觀瑕疵檢測任督二脈
Xiaoshi Intelligent Inspection uses the two swords of "AOI + AI" to combine software and hardware to open up the two channels of appearance defect detection and supervision.

Quality inspection, like a double-edged sword, has always been a favorite and painful subject for Taiwanese manufacturers When AI deep learning enters the industrial visual inspection of traditional manufacturing industries, it can not only save inspection manpower investment, solve the problem of inconsistent manual visual standards, overcome the limited visual recognition and defect detection blind spots of traditional automatic optical inspection AOI, and also enable real-time traceability Causes of quality problems The overall AIAOI visual inspection solution developed by Xiaoshi Intelligent Inspection integrates software and hardware to create efficient appearance defect detection capabilities, helping electronics OEM customers create high-efficiency products with a miss detection rate of less than 1 and an overkill rate of less than 3 Check the level Xiaoshi Intelligent Inspection was established in 2020 Although it is a new venture two years ago, it did not start from scratch Founder and CEO Hong Peijun and the core team have been deeply involved in Foxconn factories for many years and participated in countless smart factory-related solutions and process improvements , has profound AI deep learning development capabilities, and accumulated rich experience in world-class AI application implementation Seeing that AI industrial inspection must be the last mile for the manufacturing industry to move towards Industry 40, Hong Peijun resolutely decided to implement AI deep learning technology in the field of smart manufacturing with high output value, and specialized in the development of AI industrial visual inspection For the manufacturing industry, product inspection is the most important part of all quality control, but traditional industrial inspection faces two major pain points 1 Manual visual inspection Today, more than 95 of the entire manufacturing industry still relies on manual visual inspection Inspection makes it difficult for manual visual quality inspection standards to be consistent, and visual inspection of fine objects, such as passive components or highly reflective components, will cause long-term vision damage 2 Traditional AOI automatic optical inspection The product has limited visual recognition capabilities and blind spots in defect detection Among them, the detection of appearance defects such as scratches, oil stains, dirt or hair and other unexpected subtle defects has always been a problem in AOI applications Insurmountable difficulties AIAOI visual inspection overall solution is a great boon for appearance defect detection When designing the product roadmap of Xiaoshi Zhikan, customer group positioning and strengthening customer product services and value were important indicators Moreover, appearance defect detection has always been an unresolved pain in the manufacturing industry, Hong Peijun said With industrial quality inspection AI software as the core, Xiaoshi Intelligent Inspection provides an overall solution for AIAOI visual inspection It mainly promotes three major products, including "QVI-T AI deep learning inspection modeling platform software" and "AI six-sided defect inspection and screening machine" ” and “AI Industrial Quality Inspection Platform” The main customer groups served are semiconductor packaging and testing, EMS electronics foundry, small metal parts processing and other industries with high production capacity and high gross profit margin In response to customer needs, Xiaoshi Intelligent Inspection provides corresponding software and hardware services, combining self-developed AI deep learning software and hardware quality inspection equipment to reduce the manual visual burden on the production line and effectively improve the production quality of the factory In order to help equipment manufacturers and technical engineers with development capabilities accurately grasp product appearance defect detection, Xiaoshi Intelligent Inspection independently developed QVI-T deep learning detection software, which can provide customers with defect location, defect classification, defect segmentation, anomaly detection and text recognition Key functions such as this are different from the fixed detection methods of traditional software Algorithms can be refined based on different industrial detection methods and different APIs can be developed to connect devices with different lenses The software design of this platform is very lightweight It is a SaaS software built on public cloudprivate cloud It mainly involves simple image uploading, labeling, training modeling, and verification testing After completion, users can download models, SDKs, APIs, and reports Effectively help customers achieve AI inference functions Currently, most of the industrial inspection services on the market are traditional AOI software industrial inspection machines, which can only measure product contours such as the head and length of fasteners, etc, and cannot truly provide detection of subtle product surface defects such as screw head cracks and tooth damage There is a lack of such high-precision defect detection companies in the market, Hong Peijun observed Xiaoshi Intelligent Inspection developed and independently built the "AI six-sided defect detection and screening machine" from customized services in the past to providing standardized services for customers at the current stage It provides standardized testing services for fasteners in measurement and surface defects, as well as passive components High-speed surface defect detection of similar products This professional machine uses the AI deep learning AOI composite algorithm technology independently developed by Xiaoshi Intelligent Inspection Through parallel computing technology, it can achieve model inference up to 3 milliseconds per picture, and realize multiple complex defect detection on the electrodes and body of passive components This professional machine is mainly used for the inspection of fasteners, small metal parts and passive components In terms of competitiveness in the industry, the software hardware integration provided by the AI six-sided defect inspection and screening professional machine is an important core competitive advantage of Xiaoshi Intelligent Inspection It is not as simple as it sounds Hong Peijun said with emotion that this special machine is very important in the industrial inspection industry Commonly known as the highly integrated integration of optical mechanisms, electronic controls, software and algorithms, the process requires continuous optimization and iteration, and requires multiple client verifications and modifications After a long period of hard work, the technical threshold has also been raised The AI six-sided defect detection and screening professional machine will be the main product promotion direction of Xiaoshi Intelligent Inspection in the next 3-5 years It is believed that AI combined with measurement technology and surface defect detection will be an important source of core competitiveness of Xiaoshi Intelligent Inspection, Hong Peijun said AI six-sided defect detection and screening professional machine will be the main product promotion direction of Xiaoshi Intelligent Inspection in the next 3-5 years Faced with the booming development of Industry 40 in smart factories, customers often ask "Does quality inspection data have secondary use value" Hong Peijun said that the "AI Industrial Quality Inspection Platform" launched by Xiaoshi Intelligent Inspection has a machine learning mechanism , which can be used for secondary use of quality inspection data to provide customers with multiple functions including real-time monitoring and early warning of production quality, quality traceability analysis, quality factor assessment, process parameter prediction and recommendation Taking the successful introduction into the automotive parts factory as an example, through the prediction and recommendation of process parameters provided by the AI industrial quality inspection platform, when we know the product defects, we build a set of models based on the experience of past masters, coupled with the network connection data from the previous stage, After integration, we have process data, incoming material data, and quality inspection data We can predict whether these machine parameters have run out, and we can recommend whether the process parameters of certain sections should be adjusted up or down Through the AI industrial quality inspection platform, Xiaoshi Intelligent Inspection can help customers connect visual quality inspection results, process data and acceptance standards with the existing MES system of the customer's factory to improve production quality, improve efficiency and reduce costs In terms of business model, Xiaoshi Zhiqian also provides a software subscription system for the deep learning detection modeling platform software It provides public cloud customers with traffic subscription and charges based on the amount of image uploads, while private cloud customers adopt an annual license fee license charging mechanism In addition, the company also provides customers with a buyout charging mechanism for the overall solution equipment, and provides a one-year warranty, after which consumables and software update maintenance fees are charged annually Going in the opposite direction, using both hard and soft methods, with a missed detection rate of less than 1 and rapid modeling in 15 minutes Faced with various small-volume and multi-sample inspection needs in the manufacturing industry, general AI deep learning visual inspection usually requires customers to collect a large number of photos of defective products, which is time-consuming to label, and also causes customers to have difficulty in importing AI, and defective products cannot be collected The introduction cycle is long and implementation is full of risks If there are not enough bad samples, the model will be inaccurate Kosaki Chikan goes in the opposite direction and uses its product "AI Visual Inspection Model Development Tool" to train models through pictures of good products provided by customers It is relatively easy for AI to learn good products, no labeling is required, and the time can be quickly compressed to complete the modeling Take the implementation of IPC electronics industry - AAEON Technology as an example In order to reduce the manpower input of the quality inspection station in the PCBA production line and have standardized quality inspection, Xiaoshi Intelligent Inspection provides an overall solution for PCBA AI visual inspection software and hardware services, and conduct in-line inspection on the factory's highly automated assembly line, effectively saving inspection manpower investment, improving the standardization of quality inspection rates, and improving the problem of inconsistent standards caused by manual visual inspection Through the introduction of AI visual inspection software and hardware integrated solutions, we have effectively helped customers maintain an overkill rate of less than 3 in the past two years, and achieved high-efficiency performance with a missed detection rate of less than 1 In addition, this solution allows practitioners who do not understand AI to quickly operate modeling By installing the modeling tool on the device, when the customer has a new product number and needs to create a model, he only needs to provide 10 pictures of good products to scan under the device It only takes 15 minutes to quickly train the model In terms of product core strategic layout, compared with market competitors who rely solely on general software services to seize all manufacturing markets, it is not feasible to apply it to industrial inspection Hong Peijun has observed over the past 10 years and believes that only software hardware can With technical thresholds and focusing on one industry and field, only by adopting a standardized company's AI six-sided defect detection and screening special machine can it be replicated and scaled up, and the company can truly continue to move towards optimization and create product competitiveness, even if there are other competing products It’s not easy to compete for this pie, Hong Peijun said Xiaoshi Intelligent Inspection’s overall AIAOI visual inspection solution creates rapid modeling and excellent results for customers with a missed detection rate of less than 1 The most competitive AIAOI overall solution provider with global presence For new entrepreneurs, facing business expansion is a challenge every day Hong Peijun said that small companies are easily snatched away by large companies, company talents are poached by high salaries, lack of deep customer relationships, and the business team is not large enough, etc How to overcome this Hong Peijun believes that the key to success and competitiveness of a new start-up company is to be diligent in making up for mistakes, provide better services, provide more immediate feedback, and create more professional solutions to convince customers Since its establishment in 2020, Xiaoshi Intelligent Inspection has always gone against the grain in terms of product core strategic layout, surpassing the competitive market among its peers, and actively taking root in the overall solution of AI visual inspection software and hardware Hong Peijun hopes that Xiaoshi Intelligent Inspection will become the world's most competitive AIAOI overall solution provider for the electronics and semiconductor industries in the future, and provide the top AIAOI professional machines and equipment to the electronics and semiconductor industry customer base Hong Peijun said that the technical capabilities of the company's AI six-sided defect detection and screening professional machine have reached the top domestic level In order to speed up the research and development of professional machines to become more standardized and sell them to overseas markets, the company will conduct a fundraising plan at this stage, hoping to use legal persons such as the Capital Strategy Council to assist in more business connections and fundraising channels For the medium and long-term goals, Xiaoshi Intelligent Inspection will lay out the global market including mainland China and Southeast Asian countries At the same time, it will follow the international footsteps of major OEMs in global layout Under the target inspection project, it will continue to develop specialty products and spread towards the international field 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【解決方案】瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞
Defect identification rate reaches 100%, Nairi Technology is favored by major panel manufacturers

On the machine tool production line, there are some slight differences in the first step of assembly Accumulated tolerances will cause the assembly work to be repeated, which is time-consuming and labor-intensive, resulting in shipment delays that will impact the company's reputation Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutions It uses machine learning models to inherit the experience of old masters In the CNC processing machine assembly and casting process, it uses AI to analyze production line data, accurately adjust various data, and improve Production accuracy is 25 This AI production line data analysis system is called "Master 40" by Huang Changding, chairman of Naruili Technology It is the most evolved version of the master plus artificial intelligence It has been used in machine tool processing factories with remarkable results In addition, Nairi Technology used AI defect detection technology to participate in the 2021 AI Rookie Selection Competition of the Industrial Bureau of the Ministry of Economic Affairs, assisting AUO in advanced panel image defect detection, with an accuracy rate of 100, and won the award Assisted panel manufacturer AUO to solve problems with 100 accuracy in defect detectionHuang Changding further explained that during the production of general panels, edges and corners are There may be defects in the corners Although the defects are visible to the naked eye, AOI is often difficult to identify, causing the detection error rate to often exceed 30 Therefore, re-inspection must be carried out with manpower to improve the accuracy rate However, in response to the demand for a small number of diverse products and insufficient manpower, using AI detection is indeed a good method Nairui Technology, founded in 2018, has been able to win the favor of major panel manufacturers with its AI technology in just three years In fact, it has been honed in the field of CNC machine tools for a long time Tang Guowei, general manager of Narili Technology, pointed out that the top three CNC machine tool factories in Taiwan hope to introduce AI into the two production lines of assembly and casting Among them, on the assembly line, in order to maintain the accuracy of assembly, every part of the component is designed Tolerances are designed During assembly, each component is within the tolerance However, the cumulative tolerance still fails the final quality inspection and must be dismantled and reassembled This is not only time-consuming and labor-intensive, but also causes waste "After entering the production line, I realized that some masters have accumulated a lot of experience and are good at adjustment After his adjustment, the accuracy rate has improved a lot and the speed is faster" On the contrary, the new engineers did not Based on experience, it takes a long time to adjust and may not pass the quality inspection The yield rate of Master 40 system has increased significantly from 70 to 95Tang Guowei then said that the original size data set by Master during assembly All were recorded on paper After the information was written, it was stored in the warehouse and sealed No one studied the relationship between the dimensions Narili assists customers in designing the Fu 40 system Through the human-machine panel, the master can directly input the measured dimensions and related data during assembly After collecting data from different masters, AI algorithms are used to analyze the relationship between the data and create an AI model The AI model automatically notifies the operator what size to adjust to, and the quality inspection will definitely pass In this way, the yield rate will be improved It has increased significantly from 70 to more than 95 Narili Technology Company focuses on the field of smart manufacturing and provides various AI solutionsTang Guowei added, assembling the spindle of a CNC processing machine It took four hours In the first step, the machine made measurement errors, including vibration, temperature, speed, etc that were out of range It had to be dismantled and reinstalled, which took another four hours How to adjust after disassembly depends on the experience of the master At first, the master may have done the best assembly method based on experience, but the error rate was also 30, and the assembly took several days With the assistance of AI masters, the assembly time only takes half a day, and the yield rate reaches over 95, saving a lot of time and manpower "Use the AI model of machine learning to collect the experience of all the masters and provide it for AI learning The first step is digitalization, and the second step is knowledgeization This is the transformation of the enterprise "An important key", Huang Changding believes that Narili Technology is an important partner in the transformation of traditional manufacturing from automated production to digital transformation In addition, another industry that Naili Technology focuses on is the smart car dispatching system of the leading brand of elevator manufacturers The so-called car dispatch referring to the elevator car means that if there are more than two elevators, group management is required In the past, car dispatching was based on fixed rules If the elevator was closer to the requested car, that elevator would be automatically dispatched On the one hand, it did not take into account that dispatching a car if the elevator was called too many times might make other people wait longer The previous vehicle dispatching model did not take into account the usage characteristics of the building, resulting in a lot of waste For example, in an office building, there are peak hours in the morning, lunch break, and afternoon after work AI smart car dispatch can be flexibly adjusted according to off-peak and peak hours, increasing the efficiency of car dispatch, reducing waiting time, and reducing wasted electricity Introducing elevator smart dispatch to improve transportation efficiency and have environmental protection functionsHuang Changding added that just like the previous traffic lights at intersections, the system has already The number of seconds to stop and pass on highways, sub-trunks and small streets is programmed Smart traffic lights are now used to flexibly adjust waiting times to make road sections prone to congestion smoother Using AI to learn usage scenarios and introducing a smart dispatch system into elevators will improve transportation efficiency and make it more environmentally friendly In addition to introducing smart elevator dispatching, Nairili also introduced AI into the smart production and shipment scheduling system of elevator factories Elevator factories often cannot accurately estimate the customer's elevator delivery date For example, office buildings or stores must be completed to a certain extent before the elevator can be installed on the construction site If affected by unexpected factors such as delays in the customer's construction period, the elevator factory will often be idle or the schedule will be difficult to arrange Tang Guowei pointed out that generally those who understand the progress of client projects may be from business or engineering, but overall, the accuracy rate of shipments is only about 60, which means that 40 of them will not be shipped as scheduled Therefore, if the shipping schedule can be accurately estimated, the production line can be freed up for emergency orders or other product production needs The AI smart scheduling system will analyze past shipment data, about 20-30 parameters such as climate, distance between the factory and the construction site, and customer credit, and put them into the AI algorithm to accurately predict whether shipments can be made as scheduled goods Huang Changding also specifically stated that the machine learning of Naili Technology is not ordinary machine learning, but also incorporates various calculation methods such as traditional image processing technology and statistics Only by being very familiar with the domain knowledge can we make good products AI models are also where the company’s competitiveness lies He emphasized that the data that general SaaS platforms can process is very limited, and the accuracy rate has increased from 70 to 75 at most Naili’s strength lies in AI algorithms and machine learning, and it must be coupled with in-depth industry knowledge to produce output Good AI model Narili Technology started with the AI project, gradually deepened the technology, chose to start with the more difficult tasks, and accumulated rules of thumb It is expected to develop SaaS services this year 2022, based on customer needs starting point, gradually gaining a foothold and becoming an important partner in smart manufacturing The picture left shows the general manager of Naruili Technology Tang Guowei and Chairman Huang Changding right「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」