:::

【2020 Application Example】 Automatic fruit screening system: A solution that uses neural networks, AI, and automation to improve fruit screening efficiency by 10 times, increase output value by NT$1.7 billion, and significantly improve quality with 93% accuracy

Taiwan is located in the subtropics and has a diverse geographic environment that is very suitable for growing fruit. Bananas and pineapples were once extremely popular export commodities that we are proud of. However, farmers in consuming countries gradually obtained the excellent seeds of Taiwan’s fruits, and were able to grow the same quality fruit but at a more affordable price, causing our fruit exports to face a major crisis! At present, although Taiwan's fruits such as mango and guava still have certain competitive advantages, if they fail to make further progress compared with other countries, they will still encounter the same problem over time and cannot be ignored! Fruit quality and brand value are the only ways for Taiwan's fruit industry to remain competitive internationally.

Fruit screening is the main link in fruit production and marketing that determines quality. Currently, the industry is highly dependent on aging rural manpower, resulting in rising fruit screening costs due to labor shortage and making it extremely difficult to maintain stable yield. Therefore, the automation of fruit screening work has become a very important and urgent issue. Professor Chi-Chun Lee at the Department of Electrical Engineering of National Tsing Hua University led a team to develop an automatic fruit screening system that combines cameras, conveyor belts, and AI. The system currently has an accuracy reaching 93%. One production season can increase the output value of mango by NT$1.7 billion. With the gradual development of the AI system, the accuracy is expected to improve in the future, and the same system can also be applied to other fruits, further promoting traceable fruit and driving the technological upgrading of Taiwan's fruit industry.

Fruit screening relies heavily on scarce manpower, and the aging of the rural population makes the situation even worse

Professor Chi-Chun Lee learned about the fruit industry’s dilemma from his classmate Yu (alias), who had studied together in the United States. Yu is the young second-generation successor of one of Taiwan's largest fruit import and export companies. According to Yu's observations in the industry over numerous years, Taiwan's fruit production and export usually generated good profits at first, but after fruit farmers in the consuming countries obtained the seeds, they will often attempt to grow the fruit locally to reduce costs and obtain greater profits. If Taiwanese fruits cannot surpass the products of fruit farmers in consuming countries in terms of quality or brand value, they will be eliminated because competitors' costs are indeed lower.

Fruit screening is used to divide fruits according to quality. If they cannot pass the minimum specification, they will be discarded as waste products. In practice, the work of screening fruits will be carried out by farmers' goods yards and distributor' packaging yards respectively. However, if it is not properly handled by the collection freight yards and the packaging yards do not do a good job in sampling in the early stage, it will result in a loss for distributors and cause 30% of A/A+ grade fruits to be eliminated.

This job relies heavily on experienced fruit screeners. More experienced fruit screeners can not only control the quality and reduce the chance of fruit damage in the fruit screening process, but also have the ability to pick out about 10% more A+ grade fruits, which adds great value. What worries the industry is that experienced fruit screeners are gradually decreasing due to the aging population in rural areas, making them a very rare resource. Such rare human resources are often in high demand during busy farming periods. Farmers or distributors who fail to hire experienced fruit screeners have to settle for less experienced one, taking on the risk of additional losses and paying greater costs. The most unfortunate situation suffering a loss of 30% mentioned above.

▲ Fruit screening is an important process in the later stages of fruit production when packaging and selling. Failure to properly control quality will result in huge losses.

AI is very suitable for assisting in fruit screening, but it is difficult to obtain data sets

After understanding Yu's difficulties, Professor Lee found that this was a problem that could be solved using AI - although fruit screening relies heavily on experienced fruit screeners, it is a highly repetitive task. Handling repetitive tasks with a large amount of data has always been a strength of AI.

However, the first problem appeared even before research and development work started: Which fruit do we start with?

First of all, a suitable fruit must reach a certain export volume, and the fruit must still have considerable room for growth. For some fruits that lack international competitiveness, such as bananas and pineapples, companies no longer have the ability to invest more funds to purchase equipment, let alone sponsor R&D or assist the R&D team in experiments.

When you have an idea, you need to pick up the pace and put it into practice as soon as possible! Therefore, Irwin mango, which still has a certain advantage in terms of scale, was selected as the first experimental subject of the automatic fruit screening system.

The first step after harvesting mangoes is to screen the fruits for the first time at the goods yard. After the fruits are screened, they are sent to the packaging yard for fumigation and disinfection, and preparation for sale or loaded into containers for export. However, exporters with a deeper understanding of the target market will have stricter quality requirements and will often screen the fruit again to ensure the quality of the fruit before fumigation at the packaging site. Since employees at the goods yard are paid based on the number of mangoes screened rather than on the quality of the mangoes, they focus on quantity when working. As a result, to ensure the quality of the selected fruits, the subsequent packaging factory has to screen the fruit again, increasing labor. The solution seems simple and clear - A camera, machine conveyor belts for grading and sorting, and an AI that can distinguish the quality of mangoes from their appearance are all that are needed to achieve automatic fruit screening. However, the hard part is how can AI distinguish the quality of mangoes? That’s right, you must start by establishing a training data set! In order to create the data set, Professor Lee's team established a website that allows anyone to upload photos of mangoes and rate them. Once the data sets are refined, they can be used to train AI.

▲ The fruit screening machine developed by Professor Lee's team uses AI image recognition to select the best looking mangoes.

The accuracy of the trained AI reaches 93%, which can increase the output value by NT$1.7 billion in one season.

In 2019, the assistance of the Industrial Development Bureau (now the Industrial Development Administration of the Ministry of Economic Affairs) and AI HUB accelerated the verification of the technology.

Professor Lee's team accumulated 100,000 entries of data during the 2-month empirical period, and the accuracy of the trained AI reached 93%! This is far higher than the manual screening accuracy of 70%, resulting in a clear difference in quality. In terms of export value, the output value of mango is expected to be increased by NT$1.7 billion in one season! It can also reduce labor costs by NT$1.866 million and avoid the seasonal labor shortage problem mentioned above.

In addition, since it is no longer necessary to screen the fruit once at the goods yard and packaging yard each, it also reduces losses caused by human error in the fruit screening process. When the technology becomes more mature, the same system can be applied to other fruits exported by Taiwan, such as wax apple and guava, in the future, taking Taiwan's fruit industry to the next level.

Since it is AI, accuracy can be improved through continuous training, and continuous adjustment of algorithms and cooperation with equipment manufacturers can significantly improve production capacity. In addition, Professor Lee is also organizing the AI Cup competition with the sponsorship of manufacturers and the government, allowing more teams to use the same data set to continue to develop the algorithm, in hopes of facilitating further cooperation with companies that are interested.

Irwin mango grade identification system on AI HUB

Professor Lee's team hopes to use the power of AI to achieve complete traceability of fruits from production to packaging and transportation, thereby increasing the brand value of Taiwan's fruits! Besides hoping to allow Taiwan's fruits to seize a place in the fiercely competitive foreign markets, with high-quality supply, Taiwan's fruits can also shine internationally and become the pride of Taiwan.

▲ Taiwan's fruits still have certain competitive advantages in the international market, but they also face competitive pressure from fruit farmers in consuming countries as they are exported.


▲ Easily save NT$1.866 million per mango season and significantly improve quality.

 

 

 

 

 

 

Recommend Cases

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data

這是一張圖片。 This is a picture.
Testing Seat Contact Components AI Intelligent Flaw Detection

With rapid development in 5G, AIOT, automotive electronics, and other downstream sectors, the entire supply chain is expected to benefit from this consumer market As product demand momentum gradually increases, increasing production efficiency and reducing operational costs become the most important issues In order to meet the needs of customers for various packaging types, Yingwei Technology has been committed to developing highly customized test seats However, a resulting pain point is the inability to mass-produce and fully automate operations with machines some tasks still rely on manual execution In this project, the probe part of the test seat was outsourced in 2021, and under current and future large-scale demands, work hours, costs, supply, and quality are issues Yingwei faces The company achieves a defect detection rate of 9995, which seems high, but with an average inspector able to inspect 10,000 needles per day, there would still be 5 defective needles On a test seat that is only 3 cm wide with approximately 1,000 needles, just one defective needle could potentially lead to faulty testing at the customer end As the current operational mode relies on manual visual inspection, external factors such as fatigue or oversight of personnel, and subjective judgment by inspectors may lead to the outflow of defective products, which necessitates strict quality control of contact components We once sought to utilize optical inspections Rule-based for controlling the quality of appearances, but the metallic material of the contact components leads to light scattering, background noise interference, background scratches, and material issues that could result in misjudgments Therefore, we decided to look for AI technology service providers to solve our detection difficulties Developments of Dedicated AOI Line Scan Equipment To meet the needs for inspecting thousands to tens of thousands of probes within our company's IC test seats, traditional surface imaging and individual needle imaging would be too slow to achieve rapid inspection and labor-saving goals In response, the service provider proposed a trial with an AOI dedicated line scan module solution Utilizing a width of 63mm on the X-axis for reciprocal scanning of all probes on the test seat, the tests allowed for the simultaneous scanning of 8-9 probes, significantly enhancing the future detection efficiency of AOI machines This project will proceed with the aforementioned innovative Proof of Concept POC, focusing on the development of the line scanning equipment and performing imaging, learning, and training on both normal and abnormal probes provided by our company, with initial AI model training aimed at preliminary approval This project's customized line-scan imaging module Ideal future imaging result illustration A Single AI Technology Solution for MeasurementDetection Needs Unified use of AI DL CNN learning methods, instead of the current Rule-based system which necessitates defining each defect individually, to meet the needs for abrasion measurement and appearance defect detection of malfunctionsforeign objects When the same machine uses both measurement and detection technologies, not only does it increase costs, but it also affects the detection speed Hence, the service provider recommends the use of a line scan device for imaging Its resolution is sufficient for AI to simultaneously determine appearance defects and assess the condition of needle tip abrasion, as detailed below Line scan pixel imaging displaying needle tip abrasion conditions This AI detection technology meets both measurement and inspection needs for Yingwei, not only bringing more benefits to future probe testing but also introducing an innovative axis in AI technology Change the method of human inspection, enhance work efficiency and product quality After combining both hardware line scan and software AI model training approaches, we successfully ventured into new AOI detection applications Following the AI implementation POC, including the development and validation of a customized line scan module and an initial AI model, the plan is to officially develop the AOI machine next year and integrate it into the IC test seat production line Future Prospects Probe manufacturers upstream and downstream IC factory users both have needs for the AOI inspection machine upstream can ensure probe quality before leaving the factory, while downstream users can use this machine to regularly inspect the condition of numerous IC test seats in hand Given the future demands, the AOI machine is poised to have a significant positive impact on the IC testing industry in the foreseeable future 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

這是一張圖片。 This is a picture.
Realizing the dream of unmanned stores, Magpie Life is building the future of the smartphone industry

"The DNA of Magpie Life is not limited to vending machines We believe that vending machines combine technology, access, and humanities to bring us exciting results" This is a sentence on the official website of Magpie Life Let the vending machines bring To live a pleasant life and build a considerate, technological and sustainable future for the smartphone industry is also the original intention of Magpie Life Founded in 2018, Magpie Life launched Taiwan’s first private-brand mobile payment scan code sensor 4 months after its establishment, completing the consumption experience through screen touch The Magpie U1 smart vending machine manages the POS system and gathers data in the background, allowing consumers to synchronize with the world's new retail pace and experience a new retail consumption experience of purchasing convenience, checkout security, visual entertainment, and improved logistics replenishment efficiency Traditional vending machines lack information visibility and AI technology assists in information transparencyThis time, the Magpie smart vending machine is also equipped with AI technology to provide adjustable shelf space , a vending machine equipped with an industrial computer and a large-size touch display screen to achieve the purpose of a store-less store Magpie Life stated that the biggest problem with traditional vending machines is the lack of information visibility To check inventory, replenishment personnel must physically inspect each machine, which is time-consuming and costly When a machine breaks down, it will generally be unable to operate for a long time Most failures go unreported and are not discovered until the next restocking crew arrives to replenish supplies Then you have to wait for a service technician to be scheduled, which can take weeks Traditional vending machines lack real-time interactivity When consumers encounter problems after inserting coins, manufacturers cannot handle them immediately In addition, traditional vending machines are less flexible and cannot adapt to changes in consumer preferences Traditional vending machines have shortcomings such as limited change shopping, single payment tools, limited number of products, and few choices Affected by the COVID-19 epidemic, consumption habits have shifted to contactless methods, causing the unmanned store market to heat up Generally, vending machines can only place relatively simple products such as drinks, food, etc The properties available for sale are limited The patented vending machine developed by Magpie can adjust the shelf space and is equipped with a lifting cargo elevator, which is suitable for various types of goods In addition, the machine is equipped with an industrial computer and a large-size touch display screen, which can meet the needs of advertising support at the same time It is expected to move towards a storeless store According to Magpie Life Observation, the consumer market trend in the past two years is that consumers demand convenient life, food consumption patterns value dining experiencesimple and fast, and are equipped with mobile phone-connected ordering models, and hot drinks and Fresh food delivery is the focus of two major trends The location, items sold, consumption methods and multiple payment methods are the focus of market growth for smart vending machines In terms of convenience, Taiwanese consumers still prefer to purchase vending machine food near stations, airports, schools, and businesses in business districts Various payment methods are also gaining more support from consumers, indicating that in the future, automatic Vending machines can be developed in two directions diversified items and diversified payment methods AI sales forecast technology integrates back-end management to achieve precise marketing purposesDue to the wide variety of products, it is difficult to know the performance of products under different factors such as season, market conditions , promotional activities, etc, it is easy to cause out-of-stock or over-inventory situations Magpie Life has specially developed "AI sales forecasting technology" and integrated it into the back-end management system, hoping to lock in customer purchasing preferences and intentions through data analysis In order to achieve the purpose of precise marketing, make accurate business decisions and effectively allocate limited resources The introduction of AI systems can achieve the three major goals of precise marketing, inventory management and supply chain management This system is a replenishment decision-making aid designed specifically for supply chain managers It uses AI to predict future sales demand, helping companies effectively optimize production capacity, inventory and distribution strategies Its overall system architecture includes1 Data exploratory analysis function Provides automatic value filling, automatic coding and automatic feature screening functions for missing values in the data 2 Modeling function 1 Provides model training functions for two types of prediction problems regression Regression and time series Time Series Forecast nbsp2 Supports Auto ML automatic modeling, and the best model is recommended by the system Integrated models can also be established to improve model accuracy nbsp3 Supports multiple algorithm types Random Forest, XGBoost, GBM and other algorithms nbsp4 Supports a variety of time series models exponential smoothing, ARIMA, ARIMAX, intermittent demand, dynamic multiple regression and other models nbsp5 Supports a variety of model evaluation indicators R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification and other indicators nbsp6 Supports automatic cutting of training data sets and Holdout verification data sets, and can manually adjust the ratio nbsp7 Supports automatic model ensemble learning Stacked Ensemble, balancing function learning Balancing Classes, and Early Stopping nbsp8 Supports the creation of multiple models at the same time The system will allocate resources according to modeling needs, so that modeling, prediction and other tasks have independent computing resources and do not affect each other In the overall server space With an upper limit, computing resources can be used efficiently nbsp9 It has in-memory computing function, which can use large-capacity and high-speed memory to perform calculations to avoid reading and writing a large number of files from the hard disk and improve computing performance 3 Data concatenation function Using API grafting and complete data concatenation automation, there is no need to manually import data, improving user experience 4 Chart analysis function Provides visual charts and basic statistical values for product sales AI data analysis solutions have two major advantages 1 Entrepreneurship machines can be rented and sold at low cost to open unmanned physical stores and cooperate with the chain retail industry Through smart machines, entrepreneurs can rent and sell them at a lower cost than the store rent Cost of running a retail business Two cooperation models, machine sales and leasing, are provided, and the choice is based on the evaluation of the industry 2 Various types of products are put on the shelves Products are sold anytime and anywhere 24 hours a day Up to 60 kinds of diversified products can be put on the shelves Large transparent windows enhance the visibility of products Regular replenishment and tracking of product sales status are available, and product types can be adjusted according to needs Recently, the line between the Internet and the physical world has blurred, the way customers interact has changed significantly, and consumer demand is changing and personalized The retail industry is facing unprecedented challenges and uncertainties, and mastering data has become key AI data analysis solutions can help the retail industry quickly activate large amounts of data, create seamless personalized experiences, optimize the operational value chain and improve efficiency, and strengthen the core competitiveness of enterprises 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」