:::

【2020 Application Example】 Full Inspection AI Implementation in AOI Sealing Process, Reducing Screening Volume by 50%

Miniaturization of products, client demands full inspection

A listed electronic component manufacturer in Taichung, responding to the 5G era injecting new growth momentum into the quartz component industry, especially under the explosion of 5G opportunities, the importance of quartz components will play a more crucial role than in the past in consumer products.

As frequency components move towards miniaturization and at the same time demand high precision, the manufacturing processes are more susceptible to subtle factors, necessitating manufacturers to manage comprehensive data across all aspects including human, machine, material, method, and environment to quickly identify key defective factors in complex production environments.

Differing perceptions of defects, difficulty in enhancing quality consistency

With the trend of miniaturization and complexity of electronic components, visual inspection on the production line has four main functions including measurement, identification, positioning, and inspection, with inspection being the most challenging part as most electronics manufacturers still rely on traditional manual visual inspection.

Taking the PCB industry, where Automated Optical Inspection (AOI) technology has the highest penetration rate, as an example, a research institution once investigated and found that when two individuals inspect the same PCBA board four times, their mutual agreement rate was less than 28%, and the self-agreement rate was only about 44%. Due to differing perceptions of defects among on-site personnel, even automated machine vision can still lead to inconsistencies in product quality due to system settings or differences among quality control staff.

偲捷科技檢測AI化,降低過篩率20%~30%

With the support of the advisory team, collaboration with Sijie Technology aimed at the defects in the sealing process. Based on CNN (Convolutional Neural Network), the integration of multiple models introduced an AI recognition module to aid in the optimization of subsequent AOI tests, aiming to improve the accuracy of inspection equipment.

It is estimated that after introducing AI visual recognition, the over-screening rate could be effectively reduced to 20~30%. Thus, the industry, needing smarter inspection systems, has started applying AI technology to assist AOI equipment in optimizing subsequent screening tests.

AI-powered AOI Inspection Solution Cross-Model Design Concept

▲AI-powered AOI Inspection Solution Cross-Model Design Concept

Sealing AOI Inspection Trial Results

▲Sealing AOI Inspection Trial Results

Reducing false rejects, cutting manual screening workload by 50%

The project, through a deep learning network architecture, reclassifies defects detected including true and false defects, and further classifies them to reduce the false reject rate of the traditional AOI solution. This is anticipated to further aid manual inspectors in reducing more than 50% of the inspection screening volume, addressing current production line issues of relying heavily on manual re-inspection and low efficiency.

Future goals include integrating robotic arms for automatic loading and unloading, and analyzing defect causes to optimize production process parameters.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data

【導入案例】峰漁運用AI知識化養魚 有效提升10水產產量
Fongyu Uses AI Knowledge-based Fish Farming to Effectively Increase Aquatic Production by 10%

Fisheries is an important industry in an island economy However, the fish farming industry has faced severe challenges in recent years, including climate change, labor shortage, and rising costs In particular, nearly 110,000 workers in agriculture will retire due to old age over the next 10 years For this reason, the need for aquaculture to move towards smart farming is becoming increasingly urgent Founded in 2014, Fongyu Corp Ltd has developed a unique eco-friendly farming model based on its own fish farming It uses AI knowledge-based fish farming to effectively increase aquatic product production by 10, and reduced labor cost by 15 The word "Fongyu" has a profound meaning "Fong" represents good mountains and "Yu" represents good water, and is the hope that companies will allow Taiwan to always have good mountains and good waterIt is also a homophone for "having a full figure," expressing the hope that products will give consumers a full and healthy body and mind The founder of the company, Liu Chien-Shen, has been through the difficult entrepreneurial journey of becoming an apprentice in fish farming, raising funds, renting fish farms, establishing a fish farming company, building a brand, and expanding sales Labor shortage and aging workers are hidden worries in the fish farming industry Currently, fish farms in Taiwan are still mainly traditional fish farms, and farming techniques are still passed down through word-of-mouth In addition, the labor shortage and average age of workers exceeding 60 years old has made it impossible to effectively stably improve productivity and yield This farming method makes it difficult to prevent and control diseases, and greatly increases the possibility of excessive use of drugs, environmental pollution, and water quality and ecological damage, creating a vicious cycle that lowers the quality of fish farming In addition, 651 of workers in Taiwan's fish farming industry are inadequately skilled With limited support from IoT sensors, traditional fish farmers still mainly rely on their own experience and knowledge for water quality management, feeding, and disease detection Fish farming management relies heavily on the ability of individual fishermen Once experienced workers retire, the industry will not only face the issue of succession, but also the difficult of stably supplying a certain amount of harvest that meets quality standards This may cause a dilemma for the entire industry from fish farming to sales In order to improve the pain point of inability to pass on experience in fish farming, and at the same time create a "digital" foundation for fish farming, the top priority must be to collect farming behavior data and develop AI services as an important starting point Fishery digital twin technology helps fishermen transition to smart farming With the assistance of the Institute for Information Technology III, Fongyu implemented the "fishery digital twin" technology to dynamically adjust the farming schedule In other words, the fish farming schedule is adjusted according to the species, habits, and variables of the fish The use of AI in fish farming not only effectively increase aquatic production by 10, but also reduced labor cost by 15 In terms of specific methods, we first digitalized the fish ponds, feed, and decision-making behavior for each species, such as sea bass and Taiwan tilapia, and recorded the seasonal temperature changes from releasing seedlings to harvesting, all of which were digitalized, gradually recording the experience and methods of experienced workers into a rich database Based on the recorded data, we analyzed the compound variables to find the best farming behavior and generate a dynamic farming schedule The records for each pool provide data on workers' experience However, fish farming behavior generally relies on rules of thumb Even experienced fish farmers cannot ensure that they will find the best solution Therefore, new methods are proposed to solve this issue That is, "to determine the best fish farming behavior by predicting the interaction with water quality and past data on feeding, and evaluating fish farming behavior based on water quality and fish farming," and provide fishermen with the most intuitive recommendations through daily schedules To continue optimizing the dynamic fish farming calendar on a rolling basis, iterations of the model will be developed through the three-step cycle 1 Input the current fish farming calendar into the model 2 The model predicts the future environment 3 Shortcomings of the fish farming calendar are corrected based on the future environment to obtain a new version of the fish farming calendar In the process, the experience of aquaculture experts is used to establish the causal relationship between fish farming behavior and the environment The establishment of a dynamic fish farming process and technology-based fish farming recommendation services provide a traceable and detailed fish farming process It is one of the few technologies that can digitalize fish farming Fishermen can quickly and easily record their daily behaviors to build knowledge without taking up too much time, but in the long run it can reduce labor cost by 15 and increase output and revenue by an average of 10 Smart fish farming has achieved outstanding results, reducing labor cost by 15 and increasing output by 10 At the same time, the fish farming calendar can also be extended to different aquatic species, such as white shrimp, milkfish, clams, and Taiwan tilapia, to produce fish farming schedules for ponds with different specifications, and the harvested aquatic species can be traced according to different specifications, establishing vertically integrated services for safe food products Fongyu's main products are divided into two categories One is aquaculture modules, including fry, feed, materials and probiotics, production planning and processes, and monitoring, which can be sold separately or exported as modules The high-quality aquatic products produced by Fongyu have repeatedly won awards Figure Fongyursquos official website The other category is high-quality aquatic products, including seabass fillets, seabass balls, oil-free seabass balls, seabass dumplings, and seabass soup The products have won various awards, including the top ten souvenirs in Pingtung in 2017, "Barramundi Fillet" won the 2017 Eatender of the Council of Agriculture COA, "Oil-Free Barramundi Fillet" won the 2018 Eatender Gold Food Award of the COA, and "Dumplings of Barramundi" and "Barramundi Broth" won the 2019 Eatender of the COA The consecutive awards represent that the "quality" of Fongyursquos aquatic products can be seen and eaten with peace of mind In addition, Fongyu has exclusive fingerlings that meet international needs, such as Pure seawater cultured tilapia fingerlings and seawater Taiwan tilapia fingerlings from selective breeding FY-01 are items that aquaculture companies in many countries are looking forward to The company also has aquaculture modules, disease monitoring tools, and feeding materials designed in accordance with the environment, in order to provide customers with more stable income

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI Can Make Coffee! Autonomous Coffee Roasters Relying on AI for Precise Location Setting and Cultivating Loyal Customers

Have you had your morning coffee yet Over the past decade, Taiwan has gradually formed a coffee drinking culture With the advancement of AI technology, autonomous coffee roasters can now rely on AI for precise location setting while also cultivating a loyal customer base Let's see how this is done According to the International Coffee Organization ICO, Taiwanese consume approximately 285 billion cups of coffee annually, with the coffee market in Taiwan estimated at 80 billion TWD, growing about 20 each year In recent years, the 'drinking coffee' culture in Taiwan has become synonymous with popularity, with coffee being the most frequently chosen daily beverage by 65 of the population Coffee enthusiasts, particularly the more avid ones, are willing to pay more for coffee beans that suit their tastes An increasing number of unmanned drink kiosks have also begun to appear in the Taiwanese beverage market Unmanned coffee beverage shops face difficulties in expanding quickly, primarily due to two major issues one is the appropriateness of customer flow and machine placement locations which still rely on manual analysis the second is penetrating the market of mid to high-end coffee lovers accurately AI resolves two major challenges for autonomous coffee roasters suitable placement and cultivating a loyal customer base To tackle these issues and help autonomous coffee roasters quickly break into the market, Raysharp Electronics intends to implement AI for people flow counting analysis and unfamiliar face recognition These technologies aim to calculate the crowd size at potential roaster locations and classify consumers by gender and age for more precise market analysis They also provide multiple choices for the roasting of raw coffee beans, offering a more customized service tailored to the needs and tastes of professional coffee aficionados with a pack of 'high-quality roasted beans' Since 2018, the rise of unmanned stores has been mainly due to owners wanting to reduce persistently rising rent and personnel costs However, the initial assessment of store locations still requires hourly labor expenses for manual estimation of customer flow, leading to possible miscalculations of both on-site consumers and passerby traffic These inaccuracies may prevent precise real-time analysis of customer flow, or even misguided estimations of operational efficacy after a trial run, thus missing the optimal timing for loss-preventing location retraction Raysharp Electronics introduces autonomous coffee roasters equipped with AI-based people counting analysis and facial recognition Raysharp Electronics combines AI people counting analysis and facial recognition with the coffee trend known as 'black gold', addressing the preferences of numerous coffee connoisseurs in Taiwan who enjoy personally selecting coffee beans at bulk stores and frequenting high-quality grinding cafes or chain coffee shops A new concept for the first autonomous coffee roaster offering choices based on the origin, variety, and roasting methods of coffee beans has emerged AI coffee roasters enhance customer loyalty and materials management efficiency by 20 For the advanced development of autonomous coffee roasters, Raysharp Electronics engineers have equipped the AI NVIDIA development platform on the basis of TCNNFacenet Through AI, tens of thousands of images related to gender and age are used for sample training, allowing even first-time coffee roasting customers to be easily classified using unfamiliar face recognition This gains consumer trust, enhances willingness to use, and allows for recording purchase information and future product recommendations, leading to consumer purchase behavior analysis This information helps owners tailor future material preparation based on consumer preferences for different coffee beans, reducing raw material transportation and storage issues, and improving material management efficiency by 20 Moreover, by placing these autonomous coffee roasters in high-traffic areas, owners can use cameras to capture the crowd and assess whether the machine location has an adequate customer base, quickly analyzing whether to reposition the machines, and more easily targeting the best locations for middle and high-end coffee lovers The unmanned coffee roaster features a professional roasting mode interface, providing options based on the origin and variety of coffee beans, their roasting methods light, medium, deep, and related temperature, wind speed, and timing settings If improvement needs arise during the process, engineers can adjust firmware parameters and also assist in integration with the owner's ordering system Staff members briefly describe the operation of the autonomous coffee roaster 'Black Gold' penetrates deeper into coffee shops, science parks, and commercial buildings through AI This autonomous coffee roaster targets coffee connoisseurs and can be placed in middle to high-end coffee shops to roast more customized coffee beans than those available in bulk stores Upon completing a batch of coffee beans, it immediately provides them to professional technicians within the coffee shops for grinding and manual brewing The remaining roasted beans can also be taken home for brewing and enjoyment It also adds value to coffee shops by better understanding consumer preferences for coffee beans and launching more customer-attracting drink promotions and appropriate inventory management In addition to coffee shops, the autonomous coffee roaster can also utilize AI-based people counting analysis to precisely set up near scientific parks and commercial buildings, offering high-quality coffee beans for office brewing to internal employees with high coffee consumption needs Furthermore, implementing a physical membership system can initiate coffee bean purchase promotions or periodic payment incentives, thus attracting new clients and cultivating existing customer loyalty and retention The operation interface of the smart autonomous coffee roaster「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」