:::

【109年 應用案例】 「農業智慧化暨大數據應用平台」,有效降低肥料施用量50%!

靠天吃飯,生菜村業者生存大不易

全球市場趨勢瞬息萬變,對農業而言,必須跟都市競爭土地和水,還要挑戰其他危機,如:緩解氣候變遷、保護自然棲地等,尤其以氣候變遷讓從農者更難以傳統方式進行種植規劃。對於以有機生菜出口之業者,得要克服氣候、蟲害等問題,讓生菜能夠達到海外客戶要求標準,是業者正面臨的課題…

台灣生菜村面臨的困境與需求

台灣生菜村雖然目前已採用國際認證標準流程(G.GAP)種植,並透過豐聯資訊股份有限公司所開發的「智慧農業資訊系統」執行種植管理,但仍面臨氣候異常導致作物產量與品質無法控制的困境。

近幾年更常為了田間病害及產量問題而奔波,不僅耗費人工,在防治藥材施用上也較往年多出一倍支出,若仍一昧憑藉過往習慣的模式栽種與生產,將造成產業停滯甚至是被淘汰的局面。

故冀望透過AI加值,讓生菜村在種植上可更加資訊化、智慧化,更具分析及預測性,以利未來擴大產業出口量及拓展產業發展之多元性。

生菜村的需求現況

台灣生菜村的農產業目前僅落實「資訊化管理」,雖有數據應用概念,但無執行之作法及方向,且目前仍採人工田間巡視,靠經驗判斷用藥量。由於作物每一個季度會因環境因素而有不同的生產型態,故可經由歷史氣象數據,對比當時作物產量與採收日,推估萵苣生長所需的積溫條件,建立積溫運算模組,推估種植時程,讓系統依當下整體環境氣象溫度、溼度之數據自動分析預測,並於作物採收期間,協助田間人員工作優化,降低過往需每日現場巡視判斷下一步的工作排程。

農業資訊系統+AI,要讓生菜生長無礙

「栽培環境的穩定性」在作物生長過程中扮演重要角色,了解作物的生長條件可以大幅提高生產量,品質也將有一定的水準,搭配「田間智能設備裝置」與「linebot」隨時進行農田管理及警示接收,讓管理者可快速應變以減少可能產生之損失,並協助進行病害防治、生長期、採收預估,再介接氣象局數據進行整合,建立「種植數據資料庫」,透過數據的蒐集進行農務分析,如:施肥用量規劃、不同月份萵苣生長天數分析、從氣候溫度下分析萵苣產出的質與重量,甚至是病害防治預測等。

導入數位化後前後對比差異

▲圖一:導入數位化後前後對比差異

彙整生菜村田間設備蒐集的種植數據及外部數據如:溫度、溼度、日照值、農地肥力等分別應用在四個面向,包含:

1.建立作物進度及生長障礙資訊,分析適合生長及阻礙生長的溫度區間,導入Open data數據(即時及未來氣象預測數據)形成預測標準,再搭配田間氣象感測設備進行田間監控,達成即時警示通知及預防的效果。

2.結合種植數據進行生長期預測,以達成預估採收日之目標。

3.藉由手機田間氣象監測,達成即時管控及調整田間作業之目標,以利生菜村有效管理人力、資材成本、作物品質等。

4.彙整農地肥力數據,提供農地適用肥料使用比例,以降低施肥次數,並藉此活絡農地肥力同時改善整體環境。

數據應用說明

▲圖二:數據應用說明

未來將持續優化系統並推廣至更多單位

「農業種植智慧化大數據應用平台」讓生菜村的農務者不再侷限於傳統農業的經營模式,將種植和生產管理制度化,並透過標準化的規範提升品質、穩定產量、減少人力耗損和資材成本。

提升病蟲害偵測精準度,自80 %提升至100 %

未來希望能增加病蟲害偵測的精準度,農民可即時掌握作物狀況,使系統更加完善,也希望將此套系統的模式套用在更多作物上,藉由政府的推廣,讓更多務農者能以低成本的方式種出品質高、品質穩定的作物。

推薦案例

這是一張圖片。 This is a picture.
測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。

【解決方案】優式AI智能割草機器人 搶攻高爾夫藍海市場
優式AI智能割草機器人 搶攻高爾夫藍海市場

一台看似掃地機器人的AI智能割草機器人,在面積達30公頃的高爾夫球場草坪上來回穿梭進行除草工作。這是由國人自主研發與設計的AI智能割草機器人,此種機型搭載全球首創電子圍籬定位技術,可利用高精準定位的GPS功能結合雲端AI計算最割草路徑,已計畫搶攻高爾夫球藍海市場。 這款AI智能割草機器人由成立於2019年的台灣新創公司優式機器人進行研發,優式機器人總經理陳招成曾擔任台灣前5大ODM科技公司的執行副總經理,擅長軟硬整合工作。在他擔任服務型機器人聯盟總召集人時,就深知在少子化、人力漸趨吃緊的情況下,服務型機器人勢必成為高度成長的產業。 新需求》園藝市場規模大 剛性需求殷切 「發展服務型機器人核心技術,一定要找到剛性需求,綜觀歐美國家,人工短缺,然園藝需求增加,園藝工長年短缺7-10」,在此「剛性需求」強烈的情況下,陳招成成立優式機器人公司,第一個產品就是研發AI智能割草機器人。 以國外來說,美國是全球最大的園藝市場,佔全球產值高達30-40,估計約有100萬名園藝工,然近年來皆處於7-10的缺工狀態,遲遲無法改善。主要缺工原因為:人口老化,加上園藝工作靠勞力工作吃重,年輕人不想做。而不像在台灣,歐美國家對於草坪維護十分重視,並明文規定不除草,將觸犯法規予以重罰,因此,AI智能割草機器人的市場發展潛力相當大。 藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔 優式機器人所開發的AI智能割草機器人已研發至第二代,包括國內大學院校及知名美術館使用最新機型M1,同時也在美國包括一些全球知名的高科技公司,及知名的大學院校等實際場域中運行,正進行後續商務合作的洽談中。 優式機器人表示,目前使用的專業RTK系統,可以將原本GPS定位的誤差從數十公尺縮小到2公分左右,讓機器人在戶外也可以精準的移動。簡單設定邊界後,便能透過APP輕鬆地進行作業。 新應用》導入高爾夫球場 解決人力老化及短缺問題 陳招成進一步說明,國土測繪局是RTK的服務商,RTK將定位點的誤差參考圖提供出來,優式機器人透過4G上網,即可抓取特定位置的定位誤差值。再透過優式機器人的AI演算法,將原本一般GPS 10-20公尺誤差值縮短到2公分。定位好之後,優式機器人再運用六軸加速器定位、陀螺儀、輪子的輪差等感測裝置導入,進行軟硬整合工程,搭配輪子的運動模式和地形的契合,才能達到精準的除草路徑規劃。 這款寬度62公分、長度84公分、高度 46公分,重量只有25公斤的智能割草機器人可以在雲端將割草邊界設定完成,可以透過設定避掉水池與沙坑,用AI演算法自動計算出最佳路徑,一小時可除草面積大約是150坪,電池可以連續使用6小時以上,電池續航力是目前全球最高。 除了一般園藝公司外,在經濟部工業局AI計畫團隊的協助下,將優式機器人的AI智能割草機器人導入高爾夫球場的割草應用。 位於台中市太平區的知名高爾夫球場現有場務人員5人,負責整個球場30公頃的草坪、植栽維護、及其他景觀維護工作。但因場務人員平均年齡高達55歲,且長期無法招募到新的場務人員,針對場務人員的老年化及人力的短缺,希望能尋求AI科技的導入來減緩衝擊,因此藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔。 新挑戰》因應草種不同 需藉由專家系統克服困難 「這款AI智能割草機器人具備低噪音、低汙染、低人力成本及防水、防盜等配置,在割草的過程中,能透過超音波感測器辨識避開障礙物,並同時保持除草品質,維持美觀一致的割草長度」,陳招成接著表示,高爾夫球最重要的是草紋要漂亮、不能有病蟲害。 根據場勘後發現,高爾夫球場地主要分為果嶺、球道及長草區三大區塊,長草區以現行機器人除草沒有問題,20度以內的斜坡道都能夠克服;球道區的短草只能維持兩公分,草種也不同,需要修改刀盤設計;至於果嶺區的草因為影響到推桿速度,不僅要除草,還要壓草至與地面貼合,草的方向要一致,諸多因素均會影響到果嶺指數,這部分需要更多的研究與測試。 AI智能割草機器人能透過超音波感測器辨識避開障礙物,並同時保持除草品質 AI智慧割草機器人內建攝影鏡頭,可以用來偵測草坪的健康狀態,陳招成表示,未來也將導入專家系統,及早判斷草坪是否有病蟲害或水分足夠與否,將草坪健康數據分析提供給客戶參考,可及早防範與因應,以減少災害損失。 本身也是高爾夫球好手的陳招成表示,台灣高爾夫球發展得很好,然而,受到氣候多雨潮濕、有颱風等天候因素影響,與國外一流球場比較,台灣的高爾夫球場土質偏硬,坑洞較多,若智能割草機器人要普遍導入高爾夫球場仍有許多困難必須克服。但因台灣的困難地形造就很好的試煉場所,一旦台灣能夠克服諸多問題順利導入,就能擴展到海外市場,搶攻新的藍海市場商機。 優式機器人總經理陳招成

這是一張圖片。 This is a picture.
AI走入公益,食(實)物銀行也有時尚科技

社團法人台灣食物銀行聯合會以下簡稱本會以食物援助、貧困救濟、減少食物浪費、建構無飢網絡為組織宗旨,在台灣各地已有55個食物銀行據點,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 但各據點皆需大量人力與志工以傳統聯繫方式處理食物銀行日常事務,聯絡非營利組織與捐贈機構,為據點收到物資捐贈後,再分配給有需要的家庭戶或個人。在物資管理上缺乏數位化與整合資訊,可能產生物資資源分配不均問題。 倉儲轉運中心與迷你食物銀行 分配弱勢物資 本次場域驗證單位社團法人高雄市慈善團體聯合總會食物銀行據點之一,以下簡稱高慈總 於109年6月24日正式啟用台灣首座「食物銀行-倉儲轉運中心」佔地200坪,提高食物物資再分配、運用之效益、妥善存放及食物物資管理,至今已搶救近二百噸蔬果續食,服務一百多個團體、逾5萬戶弱勢家庭受惠,持續服務19家迷你食物銀行,將於高雄多個行政區陸續落成,分配食物物資給超過10萬人次弱勢家庭。 高慈總「食物銀行-倉儲轉運中心」於高雄大社區 照片來源 社團法人高雄市慈善團體聯合總會 人力與食物物資管理的挑戰 面對大量經濟弱勢家庭的需求,「食物銀行-倉儲轉運中心」的管理顯得格外重要。進貨時需進行分類整理、汰廢、入帳等繁瑣的工作,出貨時則需參照社工員的食物物資需求做配置建議。這些工作都需要依靠人工判斷及經驗累積。而參與的志工多為高齡人士,體力有限,而倉儲工作需耗費大量體力,志工的招募困難重重。倘若有大批食物物資進庫,在調配上會耗費空間與人力整理、盤點,並同時擔憂食物物資是否能有效的被運用及周轉。也顯示出食物銀行服務逐漸擴大規模,但人力與物資管理系統無法隨之配合。 同時食物銀行物資來自各界之捐贈,故類別多樣且效期、規格、數量也均不相同。迷你食物銀行的志工夥伴,多數也為高齡人士,但卻需執行個案服務、食物物資管理配置、物資資源開發等多重職責,有時也需向物資領用者說明並接受即期、大量特殊性的物資,如成人接受嬰兒奶粉。 「食物銀行-倉儲轉運中心」物資盤點需要皆仰賴人力 迷你食物銀行志工具多重職責 照片來源社團法人台灣食物銀行聯合會 報廢物資減少60 物資轉遞速度增加80 為精進物資管理並達到物資有效利用,並解決人力短缺等問題,在本次場域實證案導入「食物銀行倉儲物資募集AI自動預警需求判讀系統」,第一部分為建構分類模型之前置作業,建置以及蒐集場域倉儲資訊,進行AI建模訓練,將過往場域倉儲資訊收集建置成資料庫,使AI可進行預處理、分類等工作。同時視其物資種類之相依狀況作為特徵值,導入演算法中進行運算建模,再依收集之資料進行重新訓練,最終進行場域驗證並針對經常性五大類物資進行數據整理,以建立數據資料所需之訓練及測試資料集,第二部分以演算法之RNN技術建構分類模型;進一步利用強化學習建構食物銀行倉儲管理機制,使分類完善之受贈物資如白米、沖泡飲品、麵條、泡麵、罐頭等可以根據儲位指派原則自動指派儲位。 AI服務系統服務流程與說明 資料來源社團法人台灣食物銀行聯合會 在AI預判下,可優化物資轉遞速度及物資調配,有效精準配對物資捐贈並降低捐贈歷程的損耗,增加物資分配正確性,提高媒合服務率即捐贈成功率,降低錯誤物資造成人力物力浪費,即時監控食物物資的庫存,確保操作者能夠迅速回應需求,有效提供物資援助。 以AI系統的導入,加上數據智慧化建置,協助倉儲轉運中心的運作,可爭取更多時間分配捐贈物資使用。導入加速社福團體數位化服務推展,完善照顧整體社會弱勢群組之需求。 使用系統進行物資分配調度 照片來源 社團法人高雄市慈善團體聯合總會 透過本次的場域驗證後,未來可推廣至食物銀行其他服務據點導入AI系統,也可與更多非營利組織、公益團體、慈善團體等夥伴合作,擴大「食物銀行倉儲物資募集AI自動預警需求判讀系統」應用範圍如醫療用品配送,幫助更多組織更智慧化地管理和分發,減少物資的浪費,以提高社會福祉。