:::

【109年 應用案例】 AI地址解析,查找坐標不再鬼打牆

賦予地址空間坐標,協助推動「資料開放」政策

近年來政府推動「開放資料」,希望藉由資料的開放,促使跨機關資料流通,提升施政效能,滿足民眾需求,以強化民眾監督政府的力量。其中,交通資料與生活密不可分,但來源多是民眾通報的事故資料,在描述地址位置時,常以所在地的明顯目標物或門牌地址做通報;也曾有民眾反應警廣的路況報導,都沒有實際坐標。將這些原先不具空間屬性的地址,帶入地理坐標的資訊,是邁向「智慧空間決策」的途徑之一。

然而,未結構化的地址,若無人工介入處理,改善各門牌地址規格不一的情形,定位的正確率並不高,需要提升資料品質、加強資料可用性,才能創造開放資料應用的可能性,進一步協助政策推廣,並廣泛應用至休閒旅遊、求職及就業、出生及收養等各個不同領域中。

地址無嚴格規範且書寫方式不一,造成定位精確度低

Address Locator為崧旭資訊股份有限公司與研鼎智能股份有限公司GOLiFE與共同開發的「單機版門牌地址定位軟體」,提供單筆或批次地址定位的服務,為了賦予門牌地址空間屬性資料,Address Locator核心技術是以「地址解析」(Parse) 及「地址定位」(Locate) 兩階段進行門牌對位處理。首先,「地址解析」階段將擬定位門牌,依地址中行政區域階層關鍵字:縣市、鄉鎮市區、村里、路街段、巷、弄、號,拆解門牌結構;接著,「地址定位」則將前述拆分後門牌與母體地址匹配,取得定位層級及對應坐標。

然而,實際導入業務的過程中,由於門牌地址來源由不同主管機關各自維護,缺乏一致性標準,常見問題包括:包含特殊字(桃園市觀音區樹林里經建四路2之25及2之26號)、行政區缺漏(基隆市信一路28號)、重複行政階層關鍵字(桃園市平鎮區雙連里民族路雙連二段118巷12號12號)、特殊路街段巷弄(無行政區階層關鍵字)、門牌中文數字與阿拉伯數字規格不一、非現況地址等,地址型態複雜,地址精確拆分不易。

建立地址斷詞模型,成功精準定位!

為有效處理各式雜亂的門牌樣態,解決現有Address Locator地址定位上的困難,導入AI及自然語言處理技術的「地址正規化」及「中文斷詞工具」優化現有門牌地址定位能力。其中「地址正規化」處理地址關鍵字缺漏、異體字、行政區缺漏等問題;而「中文斷詞工具」則協助解決特殊地址樣態造成的「拆分錯誤」,避免出現無法成功定位的問題。

透過AI斷詞技術成功解析地址

▲透過AI斷詞技術成功解析地址

過去在處理地址定位服務時,仍需人工進行資料規格調整的前處理,故多未單以產品的方式銷售,而是涵蓋在專案計畫中,提供門牌地址定位服務。而在導入地址正規化與AI斷詞技術後,已成為一個完整的產品,大幅降低使用者人為調整的時間,並達到預期的定位精準度,且AI加值後的Address Locator地址定位軟體,已於崧旭資訊股份有限公司網站上進行產品介紹及正式上架。

經過四個月的測試與修正,AI技術成功導入原有地址定位產品中,從斷詞工具的選擇、語料的建立、模型訓練並與產品功能介接,再以完整的驗測規劃,蒐集「政府資料開放平台」與「台中市政府資料開放平台」,共62個資料集、30萬餘筆地址,完全比對率達90.08%,模糊比對率高達98%,在比對率及處理時間上都大幅優於原產品!

為推廣AI技術應用於資訊服務領域,將AI加值後的門牌地址定位服務,作為新的解決方案,並於崧旭公司網站中上架宣傳;從產品功能開始介紹,說明地址正規化方式及地址定位功能;接著,引導潛在客戶想像可以適用的情境包括:決策分析、精準行銷及其他應用,產品將協助不同領域的資料,透過門牌定位賦予空間資訊,進入二維空間探索資料的脈絡與趨勢。

門牌地址定位解決方案

▲門牌地址定位解決方案

賦予景點、交叉路口及興趣點空間坐標

成功開發AI加值產品再導入致力於國內智慧型交通運輸系統類型的公司過程中發現,雖能有效解決門牌地址定位的問題,但也發現實務上關於空間資訊的描述,除門牌地址外,也包括交叉路口、興趣點及地景描述等資料樣態,為了擴大AI應用的面向,「實體識別」將成為重要的後續應用,並不僅止於門牌地址定位,在資訊轟炸的時代,資料蒐集並不是難事,如何從資料中篩選出感興趣的關鍵詞才是關鍵,未來也將朝這個方向繼續發展AI技術的資訊應用服務,期能更優化此產品,創造更多商機!

推薦案例

【解決方案】佐翼科技無人機導入高爾夫球場域 可節省一半人力
佐翼科技無人機導入高爾夫球場域 可節省一半人力

對於大多數的高爾夫球場而言,場務的營運及管理是一個令人頭疼的問題。「球場就是在賣草皮,場地一定要顧好」,一位高球場負責人不諱言指出。面臨球場場務人力短缺、老年化及成本高昂的市場痛點,導入AI無人機進行農藥噴灑及防蟲害,將可節省球場一半以上的人力成本,並大幅提升整體營運效率。 初夏晌午,位於桃園的台北高爾夫俱樂部,AI智慧無人機緩緩升空,其主要的任務是進行高爾夫球場AI 智慧無人機施肥噴藥的測試。事實上,執行此項任務的佐翼科技,其無人機普遍使用於稻田、香蕉、茶樹等農作物,來從事施肥施藥及防治病蟲害的工作,對於動輒數十到上百公頃的高爾夫球草坪,要運用AI無人機協助草皮維護作業,現階段將進行資料蒐集、建立施藥AI模型及多光譜影像分析測試等,未來將進一步進行大規模的技術落地驗證,為無人機導入高爾夫球場域建立典範。 透過AI無人機施肥灑藥 可節省一半人力 傳統高爾夫球場維護草坪的作業方式,是以人工揹著藥桶,或是駕駛施藥車逐一分區進行噴灑。「國內高爾夫球場於2001年起開始種植超矮性百慕達草種品系,此一草種喜好涼爽的氣候,台灣高溫潮濕的天氣型態並不適宜」,佐翼科技執行長進一步指出,為避免草皮遭受病蟲害,就必須進行農藥噴灑工作,以18洞球場而言,相當於每周要噴灑一次殺菌劑,T台及球道每兩個月噴藥一次。對於高爾夫球場而言,噴灑農藥耗時費力,重要的是,大規模噴灑將增加人員中毒與農藥量增加的風險。 農用無人機在高爾夫球場應用之效益 根據佐翼科技研究,高爾夫球場的蟲害包括夜盜蟲、斜紋夜盜蛾等,其生活習性是傍晚會出來覓食,因此,噴藥的工作必須傍晚施作。依據傳統作業方式,每次施藥估計需要兩台車三個人力,共耗費45小時的時間。若透過AI無人機施肥灑藥,操作人力僅需1人,20分鐘可以噴灑08公頃土地,約可節省三分之二的人力,也可減少營運成本30左右。 高爾夫球場草坪透過AI無人機施肥灑藥,約可節省一半人力 啟用農用無人機應用於高爾夫球場的草皮維護,除了顯著的效益顯現外,佐翼科技也特別導入AI多光譜影像辨識建立NDVI標準化植被指數分析,「所謂的多光譜是將不同的波長波段光線打在草坪的植株上,蒐集反射回來的影像進行分析」,佐翼科技劉姓執行長接著解釋,因為不同光譜,每一種植物在光的波長吸收程度不一,透過多光譜可以掌握草種生長狀況。同時再結合AI影像辨識,可以精準偵測病蟲害分布情況,據此決定施藥量的多寡。 跨領域協作 建立無人機草坪多源影像資料庫 運用AI多光譜影像辨識技術,佐翼科技將蒐集包括可見光譜、多光譜、熱影像和高光譜影像等,建立無人機草坪多源影像資料庫,完整掌握百慕達草種生長週期。 佐翼科技累積豐富的農業AI無人機噴灑藥劑經驗,但要將AI解決方案導入大面積的高爾夫球場仍有諸多問題需要克服。例如需要建立全新施藥模型及測試飛行方式,尤其是多光譜影像辨識運用,概念驗證並不困難,但實際執行則需要更多的測試實證,反覆推論,並與植物專家建立協同作業才能完成,這部分則須仰賴資策會等法人單位跨域整合,集結更多場域投入實證,建立典範,才能在高爾夫球場場域擴散。 智慧無人機導入高爾夫球場的國際案例文獻並不多,在驗證的過程中,能否快速複製至下一個球場尚未可知,但佐翼科技劉姓執行長認為,透過跨領域協作的方式,將問題定義清楚,一一臚列,供需雙方取得共識,針對每一個問題提出可以解決的方案,並找尋內外部的資源合作,才能逐步完成高爾夫球場智慧化的目標,順利協助產業轉型。 佐翼科技執行長劉峻麟

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度

臺灣堪稱製造業大國,然而,在產線上,品質瑕疵檢測一直是製造業長期痛點,雖然有AOI設備可輔助,但大多採用固定式機器,受限於角度,診斷不夠精準,誤判率也高。海量數位工程公司導入AOI機器智能手臂檢測系統,可有效降低誤判率,提高瑕疵檢測精準度。 一般來說,產品的良率攸關企業的成本與客戶的退貨率,而製造產業品質瑕疵的檢測流程,往往需要編制大量的品質檢測人力。目前製造業檢測工具雖然有AOI設備來輔助進行,但這些設備多半採用固定式的檢測機器,固定式相機容易受限於角度,導致診斷不夠精準,誤判率太高等缺點,因此,人員在後端需要再次篩選檢驗,也就是複檢,通常人工目測檢視的瑕疵漏檢率平均在5上,甚至可高達20。 製造業品質檢測三大痛點 機器手臂AOI之動態多角度品檢協助解決 根據海量數位工程實際了解製造業在檢測產品品質有三大痛點: 痛點一、人力檢測產品品質出錯率高 目前製造業多以人力來檢測產品外觀,但人工判斷多半有誤差,例如:表面刮傷、色差、焊道外觀hellip等,瑕疵判斷出錯率高,且須待成品階段才能一次性檢驗,時常出貨前全檢後依然遭整批退件,導致重製及人力成本大增。 痛點二、品質檢測之數據無法量化與記錄 傳統人力檢測無法保留檢測數據,嗣後發生品質糾紛時,責任難以釐清。而海外品牌高階代工單往往要求溯源與相對應的缺點紀錄,傳統產業原有之人力檢測難以符合更高階代工單之要求。 痛點三、傳統AOI視覺檢測的限制 現有製造業常用的AOI視覺檢測系統,因為視覺軟體技術的限制,都是以固定相機、固定光源及單一角度的方式來進行,這種方式對於平面或形狀由直線組成之產品例如:長方體或正方體的單一檢測點尚可處理,但對於複雜形狀的產品例如:汽車零件多為不規則狀多點、多幅度的檢測,就較難實現。 海量數位工程研發AOI機器智能手臂檢測系統,有效提高瑕疵檢測精準度。 為解決製造業在品質檢測的痛點,海量數位工程決定從研發多角度、可移動式的檢測儀器開始發想,從結合工廠自動化領域中的兩大代表性技術-機器手臂與機器視覺著手。海量數位工程以機器手臂結合AOI之動態多角度AI視覺即時品質檢測方式,改善固定式檢測受限多角度的問題,視覺檢測技術的提升與結合人工智慧,進一步相機取得的影像資訊可由平面取樣提升至多角度、多維度取樣。 選定汽車產業做為實證場域 可快速回應顧客需求 AOI機器智能手臂檢測系統,所運用的AI技術包括無監督學習(unsupervised)、監督式學習Supervised learning、半監督式學習Semi-supervised Learing,使業者在初期樣本不齊全,或是沒有不良樣本的情況下也能使用無監督深度學習技術學習良品,並應用在汽車三角架自動焊接的視覺檢測上。可解決導入前受限於固定式機器的角度、診斷不夠精準、誤判率高的問題。 汽車零組件單價較高,會要求更嚴格的瑕疵檢測正確率。 在導入AI服務的產業中,選定汽車製造業作為實證場域。海量數位工程表示,汽車製造業主要為相關零組件製造商,而且通常元件單價較高,需更多品質檢測品質及良率,會要求更嚴格的正確率,因此選定汽車業做為導入的場域。 機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統,除了可以改善汽車零組件檢測瑕疵品質失誤率外,因為以多角度的機器手臂AOI服務來提升定點式AOI光學檢測,可以符合多數產業之量測需求;最後是建立第三方系統平台,建置共同工作整合平台監測系統,以便在問題發生時,第一時間接收訊息並著手處理。 本系統可針對出廠產品之重要數據進行記錄儲存,為實現未來數位生產線與虛擬生產之基礎。同時於瑕疵發生時,可即時串接海量MES監控系統,迅速反應至相關製造決策部門,嗣後並利用ERP系統進行專案管理與檢討,有效精進其生產效率,降低生產成本。 有助降低溝通成本 期許成為行業標配 就產業上下游整合而言,可以為上下游之數據連貫提供一基礎之標準,降低供應鏈之溝通成本,經由指標代工廠與品牌商的認證,有機會成為該產業之行業標準配置。 透過此一計畫的產出數據資料庫建置,業者進一步透過大數據分析Data Analysis,優化供應鏈管理的解決方案「供應鏈規畫Supply Chain Planning, SCP」,依據數據,建立預測計畫,並運用科技串連供應鏈上下游的數據,精準控制產品品質。未來對接歐美、日,需要品質精細訂單,業者能更快速回應及整合產業供應鏈Supply Chain 。 最後期望透過標竿示範產業之場域驗證,例如:以汽車零組件製造產業標竿示範場域,透過機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統計畫進行驗證,讓汽車代工廠與汽車原廠之間有更優化的供應鏈聯繫,並成為該行業標準。更進一步尋求更多的AI團隊,加入場域協作平台跨產業之開發,帶動整體AI新創與場域結合的生態系。 海量數位工程研發的自走車

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝