:::

【109年 應用案例】 AI銀髮照護智慧平台

隨著台灣社會高齡人口逐漸增長, 需要長期照顧的人越來越多,但供給方面卻始終不足以支撐如此龐大的需求。過去總計培訓了11萬名照服人員,但目前真正投入照服工作的僅有兩萬餘名。根據衛生福利部的推估,長照2.0需要的照服人力約三萬多人,顯示尚有很大的人力缺口待補足。除此之外,照護人力的流動率也極高,更造成雪上加霜的窘境。如此窘境造成原先就該被妥善差異化照顧之長者無法被妥善照顧,另外也造成了機構業者付出巨大的時間成本做教育訓練進而降低照護品質。

AI銀髮照護智慧平台

(1)院內基本管理:基本設定、設備設定、院內權限角色設定、職員管理、人臉辨識、住民角色管理、跌倒風險評估、褥瘡風險評估。

(2)床位管理:床位管理與床位狀態。

(3)住民管理:住民資料(基本資料、床位紀錄單、人臉辨識表)、住民結案資料。

(4)訊息紀錄:人臉辨識紀錄、跌倒訊息紀錄、電子圍籬訊息紀錄與血糖機遠端量測結果紀錄。

右側上方為須提醒住民事項,如季評估、72小時內新入住人員、護理計畫、復能計劃、處遇計畫與營養評估計劃人員。右下方為住民搜尋列表與新增新住民區塊,右側為評值服務計劃提醒事項,點選可查詢哪些住民須安排時間來進行計劃。

機器設備設定:院內機器設備如須新增,如人臉辨識鏡頭,在右上角的新增設備點選後,可設定對應的設備ID、場域名稱、IP位置、設備型態、帳號與密碼後即可完成機器與對應場域的串接設定。

機器設備設定

▲機器設備設定

權限設定:右上角新增權限按鈕,點選後可新增權限角色與各大項功能對應開關的CHECKBOX勾選,此功能對應到院內職員管理,可新建院內職員對應到權限角色,如此一來會員登錄帳密就有會員專屬功能出現在左側選單,達到權限控管人員目的。

權限設定

▲權限設定

床位管理:新增床位按鈕點選後,可輸入對應場域名稱(如哪棟大樓、區域分類名稱)、寢室名稱(A01)與床位編號(01~06)欄位,所有院內床位建置完成後,可提供住民入住選取床位使用。

床位管理

▲床位管理

床位狀態:可查詢目前床位是否有對應到住民,如果有對應到,也可用病床查詢對應的住民資訊,床位歷史紀錄查詢點選後,可查詢所有床位住過的歷史資訊。

床位狀態

▲床位狀態

住民資料列表:住民新入住時,可在首頁按新增住民按鈕進入此頁面,新增按鈕點選後,分基本資料填寫、緊急聯絡人、個人生活狀況與攜入財務四大項來填寫,完成後按儲存鈕回住民列表,找到剛剛新增的住民,點選個案病歷功能,上方除了基本資料以外,還有四項針對個別住民,須要完成的資料,如住民照片、檢附資料、會議記錄與評估紀錄。

住民照片可上傳三張,提供人臉辨識與首頁大頭圖使用。檢附資料有身分證影本、戶口名簿或戶籍謄本、家系圖、生態圖、中低收入證明、身心障礙手冊、補助函、財務物品照片與其他項。會議記錄為評估完成,所要執行服務計劃項目。評估表是要更詳細了解住民,所須填的資料與分析項目,系統會依照項目分析出結論,提供護理師下照護計畫參考使用。

住民基本資料

▲住民基本資料

住民檢附資料:

住民檢附資料
【導入案例】AI銀髮照護智慧平台

▲住民檢附資料

新入住跌倒評估:評估表其中有一項為跌倒風險因子評估,填寫下方欄位問題,系統會給一個分數,判定是否有無風險評估判斷,是目前機構針對跌倒風險這塊,來提早預防的機制

服務計畫產生1

▲服務計畫產生1

▲服務計畫產生2

智慧提醒功能:在首頁右下區塊有塊提醒事項功能,每月或每季對每個住民,由系統計算後,自動提醒護理或社工人員填寫表單,完成該住民所須工作事項。

智慧提醒入口

▲智慧提醒入口

點選入住評估連結後進入到所須填寫住民列表,機構人員再依照護理或社工身分填寫資料,完成後該住民事項提醒會消失,等下個月後會再出現提醒訊息。

提醒評值服務紀錄

▲提醒評估服務紀錄

每星期系統也會自動提醒評估服務紀錄,當照護人員下完照護計畫後,每星期須做各項服務檢測是否符合的相關紀錄表。

智慧評鑑功能:選取要查詢的住民後,點選評鑑功能,進入評鑑查詢列表。

評鑑查詢列表

▲評鑑查詢列表

評鑑紀錄
【導入案例】AI銀髮照護智慧平台

▲評鑑紀錄

點選評估計畫查詢,就可重系統查出之前所有紀錄資料提供評鑑使用。

範例-會議記錄
範例-危險因子評估表

各項表單填寫查詢紀錄,依照小項功能依序以下頁方式顯示。

由於跌倒及壓瘡風險評估之AI功能是基於11項生理數據資料作判斷,因此服務能擴散於長照住宿型機構外的長者,例如日照服務的長者,以及居家服務的長者。預計明年同時推廣至日照型機構之長者,以及有居家服務需求之長者。

推薦案例

這是一張圖片。 This is a picture.
生成式AI在商場!聚典資訊打造創新購物體驗

隨著智慧零售新風潮的崛起與不斷演進的AI科技與技術,聚典資訊乘此風浪推出生成式AI客服機器人Gen AI 客服機器人,為改寫消費體驗的傳統框架做足了準備,欲替場域、顧客與品牌方開創零售新應用 為了提升使用者體驗,聚典資訊攜手三創生活與西門商圈,共同推行全新的生成式AI智能客服系統。這一創新技術結合了高效的便利性、智能問答、自動推薦等功能,顧客們僅需拿起手機,掃描螢幕上的QR Code即可獲得所需資訊與推薦清單,不僅為他們帶來更加方便的購物體驗,場域方更能透過實體機台與後台分析協助,提升營運效益並掌握行銷流量密碼,達到商業洞見新應用的效果。 Gen AInbsp客服機器人 五大特點 【便利性提升】新的AI智能客服系統設置於驗證場域內,配備大螢幕顯示樓層導覽和分類介紹選單,操作簡便直觀。顧客可以掃描螢幕上的QR Code,客服資訊帶著走,隨時隨地查找需要的資訊,大大地提高了尋找商店與商品的效率。 【智能問答系統】聚典資訊開發的智能問答系統,使用自建語言模型,建立專屬語意資料庫。系統運用非關聯式資料庫和Vector Search技術,為每個使用情境量身定制智能問答解決方案。通過語意分析,系統能夠提供精準且人性化的回答,並經由不斷學習和更新資料庫,以提升服務品質。 【自然語言處理 NLP 技術】系統透過大規模語料庫訓練,具備深度語言結構和語意理解能力。不只能夠生成自然流暢的回答,也能通過分析不同用詞和標點符號的情緒語氣,提供適當的回應,使顧客感受到貼心的服務。 【全天候即時服務】該系統提供24小時不間斷的即時服務,確保無論何時何地,顧客都能獲得所需的幫助,其顧客滿意度高達90。 【多元應用場景】聚典資訊的生成式AI智能客服系統,除了智慧零售的應用外,還可以廣泛應用於藝文產業和行銷團隊等多個領域,提升各行業的運營效率和客戶體驗。 聚典資訊於西門商圈六號出口外之智慧顯示機台 生成式AI在商場 智慧顯示更加分搭載點擊與影像辨識的智慧顯示機台,協助使用者更能看見生成式AI,並達到完整的使用流程,避免單方面的資訊傳遞也能有效提高使用者體驗,更能依照場域需求增加模組,如小遊戲、拍貼機與智慧行銷模組,增添使用樂趣與傳遞品牌價值,建立人與人與商場的連結。 10,000以上雙月造訪人次:Gen AI配合搭載點擊與影像辨識的智慧顯示機台,更有效的引導使用者獲得重要資訊。 90以上的使用滿意度:透過完整的使用者旅程,我們也獲得90以上的使用滿意度,並持續為使用者創造美好體驗與回憶。 247全天候客服服務:透過雲端伺服器的運作,我們打造了24小時全年無休的智能客服,無時無刻幫助使用者解決各式難題。 智慧顯示Gen AI 完整零售實體場域的使用者旅程 nbsp 最懂你的智能客服 最多樣的解決方案 聚典資訊提供包含於雲端、地端或混和雲的AI解決方案,依據客戶需求進行導入,並為企業設計了專屬的問答介面,無論是使用者還是管理者,都能輕鬆上手。這套系統不僅美觀大方,還能大幅提升工作效率,讓企業在數位轉型過程中快速進入狀況。 地端部署的生成式AI解決方案能避免資料上傳至雲端,確保企業敏感資訊的安全,從資料輸入到AI模型訓練與推論的所有過程,均在地端主機進行,這樣的架構消除了資訊外洩的風險,特別適合對資料隱私有高度要求的企業,如大型零售業、製造業、科技業及政府部門等。 聚典資訊的專業團隊根據每個企業的特定需求,打造專屬的大語言模型LLM,企業只需提供相關的垂直領域資料,便能透過AI技術快速生成精準的內容,應用範圍廣泛,從文案創作、翻譯語言到客服系統等,幫助企業在不同業務領域中全面提升效能。此外亦能透過後台面板查看每次互動的完整問答紀錄,讓企業能夠檢視使用效益,並根據實際運作情況持續優化AI模型的表現,從而提供更精確、更人性化的服務。 聚典資安落地生成式AI介紹,提供多樣化的解決方案 AI for Good 「AI for good」 一直是聚典在推動技術創新的同時,也關注其在社會責任與ESG永續發展方面的角色,因此能不斷的創新並持續為使用者創造更佳的使用者體驗,也與合作企業一同推動更具效能、具社會意義的解決方案,希望能透過AI打造更智慧的城市並提供更優質的生活體驗。nbsp

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度

臺灣堪稱製造業大國,然而,在產線上,品質瑕疵檢測一直是製造業長期痛點,雖然有AOI設備可輔助,但大多採用固定式機器,受限於角度,診斷不夠精準,誤判率也高。海量數位工程公司導入AOI機器智能手臂檢測系統,可有效降低誤判率,提高瑕疵檢測精準度。 一般來說,產品的良率攸關企業的成本與客戶的退貨率,而製造產業品質瑕疵的檢測流程,往往需要編制大量的品質檢測人力。目前製造業檢測工具雖然有AOI設備來輔助進行,但這些設備多半採用固定式的檢測機器,固定式相機容易受限於角度,導致診斷不夠精準,誤判率太高等缺點,因此,人員在後端需要再次篩選檢驗,也就是複檢,通常人工目測檢視的瑕疵漏檢率平均在5上,甚至可高達20。 製造業品質檢測三大痛點 機器手臂AOI之動態多角度品檢協助解決 根據海量數位工程實際了解製造業在檢測產品品質有三大痛點: 痛點一、人力檢測產品品質出錯率高 目前製造業多以人力來檢測產品外觀,但人工判斷多半有誤差,例如:表面刮傷、色差、焊道外觀hellip等,瑕疵判斷出錯率高,且須待成品階段才能一次性檢驗,時常出貨前全檢後依然遭整批退件,導致重製及人力成本大增。 痛點二、品質檢測之數據無法量化與記錄 傳統人力檢測無法保留檢測數據,嗣後發生品質糾紛時,責任難以釐清。而海外品牌高階代工單往往要求溯源與相對應的缺點紀錄,傳統產業原有之人力檢測難以符合更高階代工單之要求。 痛點三、傳統AOI視覺檢測的限制 現有製造業常用的AOI視覺檢測系統,因為視覺軟體技術的限制,都是以固定相機、固定光源及單一角度的方式來進行,這種方式對於平面或形狀由直線組成之產品例如:長方體或正方體的單一檢測點尚可處理,但對於複雜形狀的產品例如:汽車零件多為不規則狀多點、多幅度的檢測,就較難實現。 海量數位工程研發AOI機器智能手臂檢測系統,有效提高瑕疵檢測精準度。 為解決製造業在品質檢測的痛點,海量數位工程決定從研發多角度、可移動式的檢測儀器開始發想,從結合工廠自動化領域中的兩大代表性技術-機器手臂與機器視覺著手。海量數位工程以機器手臂結合AOI之動態多角度AI視覺即時品質檢測方式,改善固定式檢測受限多角度的問題,視覺檢測技術的提升與結合人工智慧,進一步相機取得的影像資訊可由平面取樣提升至多角度、多維度取樣。 選定汽車產業做為實證場域 可快速回應顧客需求 AOI機器智能手臂檢測系統,所運用的AI技術包括無監督學習(unsupervised)、監督式學習Supervised learning、半監督式學習Semi-supervised Learing,使業者在初期樣本不齊全,或是沒有不良樣本的情況下也能使用無監督深度學習技術學習良品,並應用在汽車三角架自動焊接的視覺檢測上。可解決導入前受限於固定式機器的角度、診斷不夠精準、誤判率高的問題。 汽車零組件單價較高,會要求更嚴格的瑕疵檢測正確率。 在導入AI服務的產業中,選定汽車製造業作為實證場域。海量數位工程表示,汽車製造業主要為相關零組件製造商,而且通常元件單價較高,需更多品質檢測品質及良率,會要求更嚴格的正確率,因此選定汽車業做為導入的場域。 機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統,除了可以改善汽車零組件檢測瑕疵品質失誤率外,因為以多角度的機器手臂AOI服務來提升定點式AOI光學檢測,可以符合多數產業之量測需求;最後是建立第三方系統平台,建置共同工作整合平台監測系統,以便在問題發生時,第一時間接收訊息並著手處理。 本系統可針對出廠產品之重要數據進行記錄儲存,為實現未來數位生產線與虛擬生產之基礎。同時於瑕疵發生時,可即時串接海量MES監控系統,迅速反應至相關製造決策部門,嗣後並利用ERP系統進行專案管理與檢討,有效精進其生產效率,降低生產成本。 有助降低溝通成本 期許成為行業標配 就產業上下游整合而言,可以為上下游之數據連貫提供一基礎之標準,降低供應鏈之溝通成本,經由指標代工廠與品牌商的認證,有機會成為該產業之行業標準配置。 透過此一計畫的產出數據資料庫建置,業者進一步透過大數據分析Data Analysis,優化供應鏈管理的解決方案「供應鏈規畫Supply Chain Planning, SCP」,依據數據,建立預測計畫,並運用科技串連供應鏈上下游的數據,精準控制產品品質。未來對接歐美、日,需要品質精細訂單,業者能更快速回應及整合產業供應鏈Supply Chain 。 最後期望透過標竿示範產業之場域驗證,例如:以汽車零組件製造產業標竿示範場域,透過機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統計畫進行驗證,讓汽車代工廠與汽車原廠之間有更優化的供應鏈聯繫,並成為該行業標準。更進一步尋求更多的AI團隊,加入場域協作平台跨產業之開發,帶動整體AI新創與場域結合的生態系。 海量數位工程研發的自走車

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構