:::

【110年 應用案例】 AI嘛會煮咖啡! 無人烘豆機靠AI 精準設點與培養忠實客群

你早上來杯咖啡了嗎?

臺灣於過去十年以來,逐漸形成一股喝咖啡的文化風潮,隨著AI技術的精進,無人烘豆機也能靠AI精準設點,同時培養忠實客群,我們來看看,這是如何辦到的? 根據國際咖啡組織 (ICO) 調查,國人一年喝掉約 28.5 億杯咖啡,臺灣咖啡市場規模上看 800 億元,且每年約有 20% 成長。

臺灣近十年來,人手一杯的「喝咖啡」文化,已成為流行的代名詞,而「咖啡」甚至以65%的高比例當選為國人平日最常選擇的飲品,其中重度咖啡愛好者的族群更願意花費更高的價錢去選購符合自身口味的咖啡豆來享用咖啡。近兩三年來,越來越多無人飲品販賣店於臺灣飲品市場上問市。

無人咖啡飲品店無法快速展店,主要受到兩大問題困擾,一是客流量與機器設點位置的合適性,往往仍需憑藉人力進行評估分析;二是如何精準打入中高階咖啡愛好者市場?

AI解決無人烘豆機設點合適性與培養忠實客群兩大難題

為解決上述兩大問題,協助無人烘豆機能迅速打開市場,昇銳電子擬以透過導入AI 人流計數分析與AI 人臉陌生辨識,來針對無人烘豆機的設置地點進行人潮數量計算,且歸類消費者的性別及年齡,以進行更為精準的商情分析;並提供消費者對於烘焙咖啡生豆的多重選擇,期以給予專業的咖啡愛好者更客製化的服務與貼近其需求和個人口味的一包「高品質烘豆」。

自2018年起,無人販賣店的興起,無非是因為業主想減少不斷上漲的租金與人事成本的費用支出,但在店面設點的初期評估,卻仍需花費鐘點人力費以人眼計算客流量,但人非機器,難免會有計算來店消費者與道路上經過人潮的錯誤率,而無法做到精準的即時客流分析,或甚至經過一段試營運後才進行估算是否達到設點的營運效益,以上皆會造成錯失最佳撤掉設點位置的停損時機。

昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,推出無人烘豆機。

▲昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,推出無人烘豆機。

昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,與帶來「黑金」風潮的咖啡進行商機結合,並且抓住臺灣眾多咖啡行家喜歡親自至量販店耐心挑選符合自身口味的咖啡生豆與喜愛去高品質的研磨咖啡廳或連鎖咖啡店之消費習慣與特點,故誕生針對咖啡豆產地、品種、烘焙方式等提供選擇的第一台無人咖啡烘豆機之新創概念。

AI烘豆機提升客戶忠誠度與物料管理效率達20%

針對無人烘豆機的精進開發,昇銳電子工程師搭載AI NVIDIA 開發平台於TCNN+Facenet 的基礎上進行,透過AI 將關於性別及年齡搜集之數萬張的影像資料進行樣本訓練,以針對首次選購咖啡烘豆的消費者也能利用人臉陌生辨識來簡單地歸類,藉此取得消費者的信任並提升使用意願,並進而進行購買資訊紀錄及未來商品購買推薦以產出消費者購買行為分析,便可使業主參照消費者對於不同咖啡生豆的偏好度高低,作為未來物料準備數量之依據,以降低原物料轉運及庫存問題,並提升物料管理效率達20%。

再者,業主可透過放置此無人烘豆機於選定之人流匯聚率高的地段內,便能透過攝影機捕捉人潮,並針對機台擺設位置的客源是否充足,進行對於經過人潮數量的計算,進而評估消費者佇足購買機率的高低,並於短時間內分析出是否需要將機台進行移設,並可更容易地瞄準出中高階咖啡愛好者所在的最佳設點位置。

而關於無人烘豆機有專業烘焙模式介面,其針對咖啡生豆的產地來源、品種、烘焙方式(淺中深焙)、入豆與出豆溫度、轉速溫度與目標溫度等跟溫度、風速和秒數相關之選擇,提供消費者多種選項以烘焙出符合自己愛好的客製化精品咖啡豆。而若過程中業者針對機台有要進行改善的需求,工程師能配合調整韌體參數,也能協助與業主的訂單系統進行整合。

服務人員簡述吾人烘豆機的操作方式。

▲服務人員簡述無人烘豆機的操作方式

「黑金」透過AI 可更深入至咖啡廳、科學園區、商業大樓

此一無人烘豆機針對咖啡行家的客群,不僅能設點於中高階咖啡廳,以烘製相較於在量販店購買更為客製化的咖啡豆,更能在製作完成一包咖啡豆時,即時提供給咖啡廳內專業的技術店員協助進行咖啡研磨與手沖,而剩餘的烘豆也能將其帶回家之後自己沖泡與享用。在這之中也為咖啡廳帶來了附加價值,其可更加了解消費客群對於咖啡豆的偏好程度,並能推出更能吸引顧客的飲品促銷活動與進行合適的備料管理。

而除了咖啡廳,無人烘豆機也能透過AI 人流計數分析,精準設點於科學園區與商業大樓裡或附近店面,以提供其有高度飲用咖啡需求的內部員工,於辦公室也能手工沖泡的優質咖啡豆。另外,更能推出實體會員制以隨時發起選購咖啡豆之促銷活動,或不定時提出支付優惠回饋,進而吸引到新客源與培養既有顧客的忠誠度和黏著度。

智慧無人烘豆機的操作介面。

▲智慧無人烘豆機的操作介面

推薦案例

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
哈瑪星科技建構AI模型管理平台 加速AI落地應用

搭上AI列車,資服業者借助深厚的產業基礎,不僅自己轉型,也協助客戶轉型 成立已超過20年的哈瑪星科技,近年來不斷研發AI技術,並協助產業客戶導入AI。哈瑪星認為,執行一個完整的AI專案,除了AI理論知識、數據分析與模型訓練能力,實務上還需要依據客戶的需求開發數據串接API、建置資料庫、開發前端RWD網頁,甚至還需要考慮到版面設計與使用者體驗 User Experience。這些工作不僅對AI新創業者形成技術門檻,即便對已具規模的業者來說,每個專案反覆投入人力進行類似的功能開發,也難以累積技術經驗、加速業務成長。 機關客戶對於AI仍具備高度客製化之需求 以哈瑪星科技所執行的政府A機關的需求為例,用戶須針對特定管道的不實資訊進行管控,需要平台提供用來訓練模型和預測的數據接入功能,並可以在平台上完成自然語言處理NLP文本分類模型訓練與使用。當模型發現不實資訊時,需要即時透過通訊軟體通報相關負責同仁。而B機關的需求則是希望透過AI模型針對民眾陳情案件進行自動分類,並即時提供陳情民眾或案件承辦人員可參考之歷史案件資訊。儘管專案模式相似 數據接入、模型預測、警示通知,但在個別專案中,仍只能分別進行需求功能開發,無法重複利用既有的程式與模型來加速後續專案的執行。 在深入探討之後,哈瑪星科技發現企業面臨導入AI專案的痛點,包括導入成本高昂、專案時程冗長等,其中,在企業內難以齊備資料科學家、分析師、工程師、設計師等人才,而現階段的專案皆為集中解決特定領域需求,難以重複利用AI模型跨入其他應用領域,同時,因為工具集中在AI專案領域,無法滿足客戶提供整體解決方案。 換言之,在AI技術的落地上,由於AI資服業者往往面臨「人力有限」、「領域限縮」與「工具不足」等困境,致使專案執行成本高昂或時程冗長。這些都是業者們亟需解決的共通性問題。因此,若有一個AI模型應用服務管理平台,將可解決上述困難,不僅能夠快速導入降低成本,還有助於縮短專案時程,提供客戶一站式解決方案。 AI模型應用服務管理平台協助快速完成專案 因此,哈瑪星科技在經濟部工業局AI計畫支持下,進行「AI模型應用服務管理平台AISP研發計畫」,投入研發AISP產品,目的是為了讓AI資服業者能事半功倍地完成AI專案。 AI模型應用服務管理平台提供AI一站式解決方案 透過AISP,AI資服業者可透過既有的模組功能快速組裝數據API介接、模型管理與模型預測結果監控訂閱等需求功能。同時也提供常用的圖形化工具,幫助業者快速設計用戶所需要的互動式圖表或儀表板,有效降低執行專案所需要的人力成本,並縮短解決方案POC或導入時程,加速產業AI落地與擴散。 在產品商模上,短期內將廣邀具備AI專門領域技術的資服業者合作,藉由平台服務解決各類場域需求單位所面臨的AI導入問題,逐步建立平台品牌信賴感。 中期則盼以哈瑪星過往的成功經驗逐步拓展業務市場,聯合多家資服業者建立策略聯盟,針對專門領域可解決更多且廣泛的問題,並提供更多解決方案供場域單位選擇。 平台結合領域專家共同擴展海外市場 長期而言,在建立各項專門領域的AI策略聯盟後,平台將擁有大量針對專門領域的AI解決方案專家,累積大量的專案成功經驗後,哈瑪星科技期望AISP將能與專家業者們攜手合作,共同進軍拓展國際市場。 哈瑪星科技股份有限公司於民國89年延攬多位資深專業經理人及相關領域技術專長人才所組成,致力於軟體技術研發暨服務,並以建構成為國際級軟體公司為目標,積極促成各項跨國產業合作機會。公司在首任總經理的優良領導之下,已快速成長成為臺灣主要軟體公司之一。

【解決方案】佐翼科技無人機導入高爾夫球場域 可節省一半人力
佐翼科技無人機導入高爾夫球場域 可節省一半人力

對於大多數的高爾夫球場而言,場務的營運及管理是一個令人頭疼的問題。「球場就是在賣草皮,場地一定要顧好」,一位高球場負責人不諱言指出。面臨球場場務人力短缺、老年化及成本高昂的市場痛點,導入AI無人機進行農藥噴灑及防蟲害,將可節省球場一半以上的人力成本,並大幅提升整體營運效率。 初夏晌午,位於桃園的台北高爾夫俱樂部,AI智慧無人機緩緩升空,其主要的任務是進行高爾夫球場AI 智慧無人機施肥噴藥的測試。事實上,執行此項任務的佐翼科技,其無人機普遍使用於稻田、香蕉、茶樹等農作物,來從事施肥施藥及防治病蟲害的工作,對於動輒數十到上百公頃的高爾夫球草坪,要運用AI無人機協助草皮維護作業,現階段將進行資料蒐集、建立施藥AI模型及多光譜影像分析測試等,未來將進一步進行大規模的技術落地驗證,為無人機導入高爾夫球場域建立典範。 透過AI無人機施肥灑藥 可節省一半人力 傳統高爾夫球場維護草坪的作業方式,是以人工揹著藥桶,或是駕駛施藥車逐一分區進行噴灑。「國內高爾夫球場於2001年起開始種植超矮性百慕達草種品系,此一草種喜好涼爽的氣候,台灣高溫潮濕的天氣型態並不適宜」,佐翼科技執行長進一步指出,為避免草皮遭受病蟲害,就必須進行農藥噴灑工作,以18洞球場而言,相當於每周要噴灑一次殺菌劑,T台及球道每兩個月噴藥一次。對於高爾夫球場而言,噴灑農藥耗時費力,重要的是,大規模噴灑將增加人員中毒與農藥量增加的風險。 農用無人機在高爾夫球場應用之效益 根據佐翼科技研究,高爾夫球場的蟲害包括夜盜蟲、斜紋夜盜蛾等,其生活習性是傍晚會出來覓食,因此,噴藥的工作必須傍晚施作。依據傳統作業方式,每次施藥估計需要兩台車三個人力,共耗費45小時的時間。若透過AI無人機施肥灑藥,操作人力僅需1人,20分鐘可以噴灑08公頃土地,約可節省三分之二的人力,也可減少營運成本30左右。 高爾夫球場草坪透過AI無人機施肥灑藥,約可節省一半人力 啟用農用無人機應用於高爾夫球場的草皮維護,除了顯著的效益顯現外,佐翼科技也特別導入AI多光譜影像辨識建立NDVI標準化植被指數分析,「所謂的多光譜是將不同的波長波段光線打在草坪的植株上,蒐集反射回來的影像進行分析」,佐翼科技劉姓執行長接著解釋,因為不同光譜,每一種植物在光的波長吸收程度不一,透過多光譜可以掌握草種生長狀況。同時再結合AI影像辨識,可以精準偵測病蟲害分布情況,據此決定施藥量的多寡。 跨領域協作 建立無人機草坪多源影像資料庫 運用AI多光譜影像辨識技術,佐翼科技將蒐集包括可見光譜、多光譜、熱影像和高光譜影像等,建立無人機草坪多源影像資料庫,完整掌握百慕達草種生長週期。 佐翼科技累積豐富的農業AI無人機噴灑藥劑經驗,但要將AI解決方案導入大面積的高爾夫球場仍有諸多問題需要克服。例如需要建立全新施藥模型及測試飛行方式,尤其是多光譜影像辨識運用,概念驗證並不困難,但實際執行則需要更多的測試實證,反覆推論,並與植物專家建立協同作業才能完成,這部分則須仰賴資策會等法人單位跨域整合,集結更多場域投入實證,建立典範,才能在高爾夫球場場域擴散。 智慧無人機導入高爾夫球場的國際案例文獻並不多,在驗證的過程中,能否快速複製至下一個球場尚未可知,但佐翼科技劉姓執行長認為,透過跨領域協作的方式,將問題定義清楚,一一臚列,供需雙方取得共識,針對每一個問題提出可以解決的方案,並找尋內外部的資源合作,才能逐步完成高爾夫球場智慧化的目標,順利協助產業轉型。 佐翼科技執行長劉峻麟