:::

【108年 解決方案】 創博科技-智慧自助結帳系統 未來買東西好方便

試著想像,未來世界所有店家都沒有店員,全部以智慧化設備代替,選完商品只要放到桌上,交給聰明的智慧自助結帳系統即可,讓購物過程變得輕鬆又便利。這畫面並非遙不可及,其實無人商店計劃早在台灣出現,例如最近全家便利商店砸下千萬元,打造科技概念2號店,透過人機協作,搭配引進最新科技設施,希望能分擔店員的工作勞務,創博科技希望將類似概念導入無人商店,讓消費者結帳時變得更簡單輕鬆。

▲創博科技提出智慧自助結帳系統,希望將此技術導入無人商店,讓消費者結帳時更輕鬆。

致力於智慧零售方案 提升消費者科技體驗

創博(NexCOBOT)為工業電腦新漢旗下子公司,主要專注在自主研發六軸自由度機器人,以及提出智慧零售解決方案。近幾年物聯網概念興起,實體店家與虛擬商務界限不再那麼明確,創博認為構成物聯網商務的三大基礎,包括有智慧零售、智慧物流與基於雲端的即時管理系統,而長久以來,創博也致力於智慧零售方案,以解決各大業主痛點出發,同時也考慮到提升消費者科技體驗,希望開創出不同以往的創新應用。

NexStore 機器螢幕呈現初始畫面,確認使用者身份
▲當要結帳時,只要把商品放在桌上,掃瞄器就進行影像辨識,接著螢幕裡就會顯示品項與金額。 

那麼,創博提出的智慧自助結帳系統如何運作呢?當要結帳時,只要把購物車的商品擺在桌上,上方掃瞄器就進行影像辨識,接著螢幕裡會顯示品項種類與金額,最後再使用卡片、手機等支付載具結帳即可,甚至可搭配人臉辨識系統,讓顧客透過臉部掃瞄就能付款,不必像過去要自己拿條碼機刷半天,也節省顧客排隊等待的麻煩。此外,店家也能透過後台分析來客資料與熱賣商品。

NexStore 機器介面完成掃描食物項目,確認階段示意圖
▲由於要精準掃瞄影像,因此要事先建立詳細的商品資料庫,店家也能透過後台分析來客資料與熱賣商品。 

建立商品資料庫 掌握商品資訊

由於必須精準掃瞄影像,因此所有商品要事先建立資料庫,甚至可能要掃瞄像是餅乾盒、飲料罐…商品3D圖,資料庫內容愈詳細,就能提高結帳效率與後台分析。但由於桌面空間有限,也不太可能掃瞄體積太大的商品,初期應該會以形體易於辨識(例如麵包店)的商品為主。不僅如此,創博提供智慧貨架、智慧自助點餐系統、智慧自助結帳系統、智慧營銷儀表版…等模組化解決方案,這些內容都可以依業主實際需求量身訂作,甚至要與銷售點(POS)、企業資源規劃(ERP)、消費者聯繫管理(CRM)、數字標識…等現有系統整合也沒問題。

▲除了使用支付載具,甚至還可搭配人臉辨識系統,讓顧客透過臉部掃瞄就能付款,不必像過去要手拿條碼機刷半天。 

推薦案例

【解決方案】讓硬碟裡的音樂重生 愛飛媒平運用AI為影像找到最佳拍檔
讓硬碟裡的音樂重生 愛飛媒平運用AI為影像找到最佳拍檔

一名年輕女孩,孤身在美國洛杉磯,為的是尋一個夢,一個能讓音樂創作者深埋在硬碟中的創作音樂重新找到知音的夢helliphellip。 愛飛媒平創辦人李姿慧,理工科出身,心中卻卻深埋音樂人的強大基因,為了協助全球音樂人創作音樂能找到能配對成功的「最佳夥伴」,她創立愛飛媒平公司,提供一站式AI影像音樂媒合平台AV Mapping,協助影像創作者可以快速找到擁有版權的原創音樂。 一站式AI影像音樂媒合解決方案,為音樂創作者找到創新商機 一般來說,以往影像創作者要進行影像配樂,從作詞曲、配樂、找版權,通常需要花上兩周時間,透過AV Mapping影像音樂媒合平台,10 秒鐘立即配對到適合的音樂,音樂人也可以將創作再行銷取得分潤營利,創造三贏局面。此一嶄新、去中心化的營運模式,也獲得已故台灣音樂大師-李泰祥傳人的青睞,在平台上可重溫那一段讓音樂創作恣意飛翔的時光。 李姿慧從小練鋼琴、參加合唱團及管樂團,並自己創作音樂,大學雖然念的是理工科系-成功大學測量及空間資訊學系,但從大三開始,即加入影像團隊從事配樂,並赴南藝大應用音樂系旁聽。大學畢業後,李姿慧決定順從心裡的聲音,當音樂的尋夢人。 愛飛媒平提供一站式AI影像音樂媒合解決方案 愛飛媒平提供一站式AI影像音樂媒合解決方案,主要係藉由人工智慧的影像辨識和音樂分析,影像創作者在平台上可自行搜尋、配對合適的音樂,透過系統可將配樂的時程從8小時縮短至幾秒鐘,大幅縮短近2,000倍。 李姿慧表示,傳統影像配樂工程除了創造合適配樂,還須將大量時間成本投注在溝通及搜尋上,包括後續的編曲、錄製等後製處理和音樂授權更是耗時耗力,有了AI的協助,創作者能將所有心力花在創作上,不必擔心找不到適合音樂,或是音樂版權遭盜用的困境。 虛實整合行銷,從交易到簽約一鍵完成 目前愛飛媒平的音樂資料庫共有6萬首曲目,種類超過60種,涵蓋歐美及亞洲等世界各地音樂,包含流行、EDM、搖滾、愛爾蘭音樂等。愛飛媒平獨創的去中心化概念更大幅保障音樂人權益,在平台上的音樂人可自行訂價並追蹤交易流程,達到公開透明、去中心化的特性。目前平台上包括影像及音樂創作者共有7,000多位,音樂創作者在平台上交易成功,可分潤4成以上,最高達到5成。雙方在平台上交易並完成簽約,手續十分簡便。 AVMapping共有14種AI模型,輕鬆找到速配音樂 李姿慧表示,AI影像音樂媒合解決方案共有14種AI模型,其作法是拆解所有元素之後,透過影像辨識與文字辨識,做音樂分析,再運用機器學習演算法大量訓練,將影像及音樂的特徵列出,即能快速媒合出合適影像情境、氛圍、節奏的配樂。 除了線上媒合交易外,愛飛媒平也舉辦實體音樂會活動,邀集音樂及影像創作者參與,活動的內容環繞在AI影像配樂的展示,現場運用導演一段影片讓音樂創作者PK配樂;或是拿出示範影片,由AI進行配對,只需耗費端端10秒鐘,AI配對的影像與音樂在情緒及氛圍上都十分到位,讓現場參與者嘖嘖稱奇。 三年研發獲紅點設計大獎,以科技支持音樂藝術發展 愛飛媒平花了三年的研發,平台於2021年8月正式上線,2022年元月份在美國拉斯維加斯參加CES活動,引起在場記者高度關注,共獲得超過上百家的媒體報導,使得一個月使用次數就超過千倍,吸引7,000位影像、音樂創作業者加入媒合平台,據統計,先階段美國與台灣媒合交易比重各半。 李姿慧表示,傳統音樂的授權方式十分複雜,包括著作類型、著作財產權種類等,要取得一首歌曲的授權,必須經過詞曲經紀公司、集管團體、製作公司、唱片公司,甚至是作曲、作詞者,十分繁瑣,音樂人也並不一定能得到分潤收入。透過AI影像音樂媒合平台,所有交易合約在線上完成,音樂創作者能獲得利潤,創作熱情不斷被激勵。 三步驟協助影像創作者輕鬆完成配樂工作 值得一提的是,目前NFT(Non-fungible token,又稱為非同質化代幣)在藝術及文化市場大行其道,影像音樂領域導入的可能性如何李姿慧表示,目前以太坊的交易手續費(gas fee)居高不下,加上她在洛杉磯參加多次聚會得到的結論,目前NFT接受度仍在醞釀中,然而,愛飛媒平仍看好NFT未來趨勢,在可預見的未來,仍會將相關技術導入AV Mapping平台,提供更多元化的交易方式。 為了快速擴充海外市場,李姿慧在舊金山不斷尋求國際策略性投資人挹注資金。同時,由於美國洛杉磯疫情控制得宜,產業逐漸復甦中,李姿慧也參加許多線下創作聚會。愛飛媒平希望成為連接影像與音樂的橋樑,在國際市場上導入知名的使用者案例,讓更多創作者看到平台的威力。 愛飛媒平也頻傳捷報,繼榮獲DSA數位廣告奇點銀獎、美國在臺協會與META合辦的AWE女性創業最佳潛力獎之後,李姿慧創辦的一站式AI影像音樂媒合平台AV Mapping也於2020年再度獲得德國紅點Read Dot Award設計大獎設計概念Design Concept的最佳設計獎Best of the best,希望持續以科技立足、以藝術為養分,支持音樂創作者創作出更好的作品。 愛飛媒平創辦人李姿慧榮獲多項國際大獎,是深具潛力的女性創業家

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
1 秒鐘完成結帳動作 Viscovery AI 影像辨識助攻智慧零售

近年來,人工智慧 Artificial Intelligence,簡稱 AI 已逐漸改變各行各業的運作模式,不過,絕大部分的工作仍然是由人類完成,AI 則扮演輔助的角色,因而出現了「AI Copilot」一詞,代表「由 AI 驅動的工具或助理」,旨在協助使用者完成各種任務,提高生產力和效率。 AI Copilot 的概念源自於「副駕駛」這個角色,在飛行中,副駕駛協助主駕駛員完成各項任務,確保飛行安全與效率。其實,工業革命的「機器」就開始有 Copilot 的影子,各種機器在不同領域中扮演「Copilot」的角色,輔助人類完成繁重的體力和重複性工作,大幅提升工廠生產效率,推動經濟快速發展。 隨著運算設備的進步、機器學習、深度學習、影像辨識等技術的突破,AI Copilot 的概念逐漸成形。AI Copilot 的發展標誌著從「機器輔助提升到智慧輔助的轉變」。早期的機器人只能完成預設的重複性工作,而現在的 AI Copilot 則能夠學習和適應新的環境與任務,並在實際應用中不斷優化自身表現。這一轉變不僅改變了人機交互的方式,也為各產業帶來了深遠的影響。 AI Copilot 的應用範圍涵蓋了各個行業,包括:金融、醫療、製造、教育、零售hellip等等,無處不在。 AI Copilot 於零售業的應用:AI 影像辨識結帳 在零售業,AI Copilot 的應用已經開始展現具體成果。 以 Viscovery 的 AI 影像辨識結帳系統為例,這套系統即為 AI Copilot 模式的一種,輔助店員加速結帳,或者輔助消費者簡化自助結帳流程。 nbsp 一般的結帳方式需要店員逐一掃描商品條碼,若是無條碼的商品,如:麵包、餐點,則需店員花時間先用肉眼確認品項,再一個個輸入到 POS 結帳系統中。根據一家連鎖麵包店實測,資深店員從「肉眼辨識」到「輸入一盤 6 顆麵包的商品資訊到結帳系統」的過程,就要 22 秒的時間,新進店員需要的時間可能更多。另外,根據一家日本麵包店業者分享,培訓員工認識、熟悉商品需要 1 至 2 個月的時間。 nbsp 現在有了 AI 影像辨識技術,店員可以把「辨識商品」的步驟交給 AI,由 AI 扮演 Copilot 的角色,1 秒內迅速辨識品項,加快結帳,整體節省 50 的結帳時間,優化顧客購物體驗。而培訓員工辨認麵包的時間成本,也能因此有效縮短。 nbsp 即便是帶有條碼的商品,AI 也可以在一秒內快速辨識多個品項,相比逐個掃條碼的方式,效率更高 nbsp 而有 AI 影像辨識「輔助」的自助結帳系統,則能夠讓消費者在沒有店員幫助的情況下,順利完成購物,省去刷條碼或在螢幕上查找品項的麻煩,提升購物體驗,在缺工、找不到店員的時代,也幫助店家降低營運成本。 nbsp AI 快速辨識多件結帳商品只要一秒鐘 圖片來源:Viscovery 近來,致力研發 AI 影像辨識結帳方案的新創在各國嶄露頭角,目前已知最輕量化的解決方案就在台灣,只要在結帳櫃檯安裝一支 Viscovery 的鏡頭與一台搭載 Viscovery AI 影像辨識軟體的平板,即可與店家既有的 POS 結帳系統串接,馬上啟用。 整合方式多元,有隨插即用的作法,也有與店家 POS 整合的 API 串接方案。 Viscovery AI 影像辨識系統可與店家現有的 POS 系統無痛整合 圖片來源:Viscovery AI 影像辨識結帳的導入實例 目前 Viscovery AI 影像辨識系統已導入台灣連鎖烘焙店、新加坡中式麵店、日本仙台百貨公司商辦超商 micormarket、日本麵包店與蛋糕店hellip等等。超過 700 萬筆交易筆數,都是透過這套 AI 系統完成,辨識超過 4000 萬件商品。這些使用案例展示了 Viscovery AI 影像辨識系統在零售行業的廣泛應用,未來將持續深耕、探索零售及餐飲運用 Vision AI 的各種可能。 nbsp Viscovery AI 影像辨識系統已導入日本、新加坡、台灣,使用於麵包店、蛋糕店、餐廳、便利商店等多個場域 圖片來源:Viscovery

這是一張圖片。 This is a picture.
AI缺陷智能化檢測-降低製程耗能智慧監控解決方案

AI缺陷智能化檢測-降低製程耗能智慧監控解決方案 當一片貼片陶瓷基板上有超過2萬顆貼片電阻,應該要如何快速檢測答案是用AI來檢測。 在當前科技迅速發展的時代,雷科自豪地宣布其雷射加工技術的顯著進步,這一突破得益於人工智慧AI領域的創新應用,雷科致力於將先進的AI技術整合至雷射加工機中,於2019年與合作廠商共同開發出全球第一台結合AI技術的雷射加工機,並以此為基礎上進一步在2023年打造了首台結合AOIAILASER的陶瓷載板檢測機。 智慧陶瓷載板檢測機 藉由AI與機器學習的導入,加上樣本大數據的累積,在系統愈變愈聰明的狀況下,使產品良率在一年內提升5、將檢測速度由原本2分鐘片大幅降低至20秒片、大幅降低了檢測成本、在前段有效率檢出與雷射標示後,可降低後段製程上的浪費,減少整體場域碳排、並可自動產出詳細檢驗報告,以進行數據分析與優化,有助於提升設備產能、降低人為疏漏,使雷科的設備產品更具價值、強化我國電機電子產業之國際競爭優勢。 雷科股份有限公司Laser Tek成立於1988年,並於2002年正式掛牌成為上櫃公司,成立迄今已成為具指標性之SMD電子包裝材料、SMT檢測設備、雷射設備等全球性銷售通路服務及設計製造商之一。 雷科總經理擁有20多年雷射整合經驗,他觀察到被動元件客戶每個月產能可超過10億顆SMD元件,但伴隨著SMD元件尺寸持續微型化發展,其生產製造時之瑕疵檢測作業變得更加困難,一片陶瓷基板上動輒上千上萬顆元件,元件尺寸越小,印刷雷射加工位置更加微小,檢測難度就越大,而更容易出現偏差,因此生產檢查成為相當重要的一環。 R-SMD生產檢查流程 AOI良率過殺問題,靠AI來把關 而AOI檢查機是普遍且成熟的機種,但市面上的高精度AOI運作方式是以單次拍攝小圖移動拼接成大圖,精度雖高但檢查時間較久,小尺寸SMD元件更易受環境干擾,如:光照和振動等容易造成誤判;因此AOI僅能以抽檢方式估算良率,且抽檢良率差的元件也並非單獨去除,而是連同良品整個剔除;人力複檢不但成本提高,每個人的檢查標準又無法統一,最終導致的結果,是平均會發生約2-5的產品未被檢出不良品而流入後段製程,即約每月至少2,000萬顆不良品之SMD元件,因未能在初期被檢測出,而造成後續各段製程中,不良品上依然會有印刷、加工檢查等流程,無論是油墨耗材及能源的浪費,增添了成本負擔,更因此加速設備磨損、使設備運作壽命簡短,而每一階段的浪費,皆會增加場域製程的碳排放量,不利於企業的碳足跡盤查。 0402修阻後樣品照片範例 傳統AOI 自動光學檢查的高誤判率也是業者面臨的一大生產痛點,在被動元件產業對於良率「寧可錯殺一百,不可放過一人」的高標準要求,往往會把 AOI 參數設定極高規格,導致設備異常敏感。當數據參數設定過於嚴苛時,易造成高誤判率。例如:當被動元件的汙染髒汙與印刷層顏色相近時,AOI 過篩誤判率可能高達 7 成。 汙染髒汙與印刷層顏色相近AOI易誤判 雷科有別於其他AOI供應商,捨棄了小圖拼接或線掃描方式,有效避免圖像處理時硬體或環境造成的資料遺失與斷差,採用超大面陣感光相機搭配訂製高解析度鏡頭,透過特殊影像進行合成處理。合成的過程中,感光元件的每個像素位置上都包含了從多個不同位置捕捉到的光線資訊。通過將這些資訊結合起來,影像的解析度和細節得以提高,達到億萬級別的分辨率,配合多重自動調整光源,單次拍攝可處理涵蓋7070mm,影像解析度可高達5um,取得清晰影像,再透過Smart-AI技術進行分析篩選。 三大妙法打造快速檢測Smart -AI 雷科總經理分享,快速將AI技術導入並減少檢查運算時間,並開發Smart-AI有三大方法: 方法一、先以AOI方式快速將良品與含爭議的缺陷品進行二分法區隔,將檢測重心放在少數不良的辨識上。 方法二、自動標註平台簡化訓練問題:運用攝影機蒐集機台的資料,用自動標註取代人工標註,逐步訓練以拉高精度,問題越簡單,訓練所需資料越少。 方法三、AOI與AI雙軌並進:在智慧製造流程中,僅僅單靠AOI或AI無法畢其功於一役,必須由AOI先行,將特徵值標出,同時區分是良品或是瑕疵部分,再以AI方式進行標註與訓練。接著利用可重複串聯的加疊效應,其檢測效益更大,隨著訓練資料累積越多,AOI比例降低,AI比例逐漸提高。 修阻後物件偵測與訓練 透過三大方法逐步構建系統信賴度,並將資料進行缺陷整理分類,最終將AI判斷結果回傳到主機,以雷射加工方式在製程前端控管將真正的不良品剔除,減少不良品流入其他站別,造成重複檢測或重複加工的損耗。 智慧雷射設備第一,選擇LASERTEK就對了 由臺灣品牌雷科持續打造結合AI智慧檢測與雷射加工設備,以逐步建構由原材料、產品、檢測、雷射設備等相互相加疊而成的智慧化監控解決方案,以降低生產製程之耗能為目標,落實發展半導體 載板及元件加工等領域,產出能在低碳條件下仍可滿足終端使用者需求之設備產品,以快速且優質的產品與服務來拓展國內、外需求市場,增加本土Made in TaiwanMIT設備之全球競爭力。