:::

【109年 應用案例】 AI助被動元件建構最佳AOI參數模型,降低過篩元件生產成本,年省250萬元

傳統AOI以限度樣本影像進行檢料,面臨產品過篩率過高問題

電子零組件製造業,在針對產品外觀瑕疵檢測上,經常使用AOI(Automated Optical Inspection)設備來進行量測。長久以來,AOI量測設備在影像處理上,均是利用有限的限度樣本影像,透過不同的外在光源、角度,來與產品進行外觀比對。

這樣的比對方式,雖然可將產品外觀瑕疵篩檢,做到自動化。但由於現行技術限制,產品在批次轉換之間,經常存在光源參數的調機問題,若又碰上新手的調機技師,就會造成機台稼動率的下降,以及產品過篩率過高的問題。

人工智慧影像機器學習成熟,AOI製程找到新契機

台灣被動元件目前在晶片電阻及MLCC,2019年市占分居全球前2名,長期來看,各車廠陸續推出電動車與智慧車,各國也陸續建置5G 相關設備,都將進一步推動被動元件在未來出貨數量。因此,除了擴增新產品線外,如何幫助現有產品提升相關競爭力,將會是未來產業國際競爭的關鍵。

動元件製程中,AOI檢測為共通性站別之一,現階段均採限度樣本影像,來進行相關外觀比對。但常在產品批次與批次轉換之間,存在光源參數的調機問題,而調機狀況皆會影響每批次良品過篩(誤篩)的狀況出現。現行產業在每批次不良品當中,就有平均20%的過篩(誤篩)發生。

憑藉中山大學產發中心深耕南部十多年的輔導能量,針對被動元件產業之痛點,媒合工研院AI影像辨識技術單位,降低AOI製程過篩,並減少人力調機所造成之誤差。

以影像辨識技術降低AOI過篩發生

此次工研院參與的技術單位,在AI模組建立上,利用影像辨識技術,針對被動元件製程產品,進行AOI技術開發。

開發過程先由案例廠提供產品外觀影像及相對應之調機參數,搭配現行產線人員調機邏輯,進行產品資料集建構,進一步建立AI模型。而在產線實測規劃上,先以影像辨識率為首要,藉由影像偵測、搜尋標籤的方式,進一步投透過AI模組比對,輸出可供線上人員參考的AOI調機參數。

影像分析示意圖

▲影像分析示意圖

後續也希望透過機器學習的幫助,完成調機參數AI學習曲線,進一步降低產品外觀瑕疵檢測之產品過篩率,也同步解決現場專業技術人才斷層問題,並提升產品良率。

導入機器學習前後情境

▲導入機器學習前後情境

推動製程AI應用與智慧化,打造無人工廠發展基礎

未來期能透過AI HUB的輔導,加速先進製程技術應用,建立被動元件各站製程AI指標,有助於國內被動元件生產高品質產品,提高產品良率與價格。以創新的思維提升產業附加價值,繼續帶領被動元件產業向前邁進。

推薦案例

【導入案例】峰漁運用AI知識化養魚 有效提升10水產產量
峰漁運用AI知識化養魚 有效提升10%水產產量

漁業是海島型經濟的重要產業,然而,養殖漁業近年面對嚴峻挑戰,包括氣候變遷、人力短缺與成本上揚等,尤其是未來10年農業就業人口有將近11萬名因高齡化退場,為此,水產養殖朝智慧養殖的需求日益殷切。 成立於2014年的峰漁公司,以自行水產養殖為基礎,開發出獨有的友善環境養殖模式,運用AI知識化養魚,有效提升10水產產量,降低15人力時間成本。 「峰漁」二字的涵義深厚,「峰」代表好山,「漁」代表好水,期望企業能讓台灣永遠有好山好水;也是「豐腴」的諧音,希望產品帶給消費者飽滿健康的身心。公司創辦人劉建伸歷經養魚學徒、募資、租借魚塭、創立養殖公司、開創品牌及推展銷售等創業歷程,實屬不易。 勞動人力短缺與漁業從業人員年齡老化 養殖漁業藏隱憂 臺灣現階段的水產養殖仍以傳統式養殖魚塭為主,養殖技術仍靠口耳相傳的經驗傳承為主,加上勞動人力短缺與漁業從業人員平均超過60歲,導致無法有效穩定的提升產能與良率,此種飼育方式在水產疾病控制上產生一定的難度,又為了進行疾病防治,而使得藥物濫用、環境汙染與水質生態破壞的可能性大增,造成惡性循環,使得養殖品質下降。 此外,臺灣養殖市場也有651水產養殖工作者遭遇技術不足困擾,傳統養殖戶在有限的IoT感測器支持下,主要仍然是憑藉本身的經驗知識來進行水質管理、飼料投餵、疾病發現等養殖作為,此種極度倚賴個別漁民能力的養殖管理,一旦老師傅凋零,不僅面臨傳承接班的議題,也難以穩定的供應一定品質、數量的漁獲,恐將造成整個養殖漁業從養殖到銷售端的困境。 為了改善漁業養殖無法經驗傳承的痛點,同時也為漁業在養殖上具備「數位化」基礎,當務之急必須從開始搜集養殖行為數據建構AI服務為重要開端。 漁業數位分身技術 協助漁民轉型智慧養殖 峰漁公司在資策會的協助下,引入「漁業數位分身」技術,以動態調整養殖排程,也就是說,依照魚類的物種、習慣、變因來調變養殖排程,用AI養殖技術來養好魚,不僅有效提升10水產產量,同時更降低15人力時間成本。 具體作法上,先將每個物種如鱸魚、台灣鯛等,將養殖的魚池、吃料及決策行為數位化,從放苗至收成的階段,所經歷的季節氣溫變化,全部一一記錄下來進行數位化,逐漸將老師傅的經驗方法紀錄存成豐富的資料庫。 針對紀錄下來的資料,分析複合式的變因,找出最佳的養殖行為,產生動態式的養殖排程。 一池一池的紀錄養殖師傅的數據經驗。 然而,養殖行為普遍依賴經驗法則,即便是資深的養殖師傅,也難確保找出最佳答案,因此提出新的做法解決此議題:即「透過預測養殖行為與水質、飼料投餵的過往資料與養殖互動,並從水質、養殖反向評價養殖行為,藉此找出最佳的養殖行為」,透過每天時程排程,給予漁民最直覺式的操作建議。 為了持續滾動優化動態養殖曆,會反覆朝向三步驟循環進行模型疊代: 1向模型輸入現在的養殖曆; 2模型預測未來的環境; 3用未來的環境修正養殖曆的缺點,藉此得到新版的養殖曆。 在過程中,同步藉由養殖專家的經驗來建立養殖行為與環境之間的因果關係。 動態養殖曆程的建立及科技養殖建議服務,提供了可回溯、追蹤詳細的養殖歷程,是少數可將養殖數據化的技術,漁民在知識的建構上可以很快速、簡易的方式記錄日常行為,不需占太多時間,長期下來可以減少15人力時間成本、平均提升10產量營收。 智慧養殖成效卓著 減少15人力提升10產量 同時,也可將養殖曆延伸至不同的水產物種,如白蝦、虱目魚、文蛤、台灣鯛等,依各池產生不同規格的養殖排程,收成的水產物種依不同規格溯源追蹤,建立安心食品一條龍服務。 峰漁主要產品分為兩類,一類是水產養殖模組,包含魚苗、飼料、資材及益生菌、生產養殖規劃與製程、監測等,可單獨販售也可模組輸出。 峰漁公司出產的優質水產品,屢屢獲得大獎。圖峰漁公司官網 另一類產品是優質水產品,包含鱸魚排、鱸魚丸、無油鱸魚丸、鱸魚水餃和鱸魚高湯,產品榮獲各種獎項,包含2017 年屏東十大伴手禮、「菌沛尖吻鱸魚排」榮獲2017 年農委會評選銀髮族友善食品、「菌沛無油鱸魚丸」榮獲農委會評選2018 年銀髮友善食品金饌獎、「好漁夫鱸魚水餃」及「精燉鱸魚高湯」榮獲2019 年農委會評選銀髮族友善食品,連續獲獎代表峰漁公司的水產品「品質」看得見也食在安心。 此外,峰漁擁有專屬符合國際需求的水產種苗,例如:純海水養殖的吳郭魚種苗及自行選育海水台灣鯛種苗(FY-01),是許多國家養殖企業引領企盼的品項,也依照環境設計的養殖模組、疫病監測工具及飼養資材,提供客戶更穩定的收益。

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。

【解決方案】優式AI智能割草機器人 搶攻高爾夫藍海市場
優式AI智能割草機器人 搶攻高爾夫藍海市場

一台看似掃地機器人的AI智能割草機器人,在面積達30公頃的高爾夫球場草坪上來回穿梭進行除草工作。這是由國人自主研發與設計的AI智能割草機器人,此種機型搭載全球首創電子圍籬定位技術,可利用高精準定位的GPS功能結合雲端AI計算最割草路徑,已計畫搶攻高爾夫球藍海市場。 這款AI智能割草機器人由成立於2019年的台灣新創公司優式機器人進行研發,優式機器人總經理陳招成曾擔任台灣前5大ODM科技公司的執行副總經理,擅長軟硬整合工作。在他擔任服務型機器人聯盟總召集人時,就深知在少子化、人力漸趨吃緊的情況下,服務型機器人勢必成為高度成長的產業。 新需求》園藝市場規模大 剛性需求殷切 「發展服務型機器人核心技術,一定要找到剛性需求,綜觀歐美國家,人工短缺,然園藝需求增加,園藝工長年短缺7-10」,在此「剛性需求」強烈的情況下,陳招成成立優式機器人公司,第一個產品就是研發AI智能割草機器人。 以國外來說,美國是全球最大的園藝市場,佔全球產值高達30-40,估計約有100萬名園藝工,然近年來皆處於7-10的缺工狀態,遲遲無法改善。主要缺工原因為:人口老化,加上園藝工作靠勞力工作吃重,年輕人不想做。而不像在台灣,歐美國家對於草坪維護十分重視,並明文規定不除草,將觸犯法規予以重罰,因此,AI智能割草機器人的市場發展潛力相當大。 藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔 優式機器人所開發的AI智能割草機器人已研發至第二代,包括國內大學院校及知名美術館使用最新機型M1,同時也在美國包括一些全球知名的高科技公司,及知名的大學院校等實際場域中運行,正進行後續商務合作的洽談中。 優式機器人表示,目前使用的專業RTK系統,可以將原本GPS定位的誤差從數十公尺縮小到2公分左右,讓機器人在戶外也可以精準的移動。簡單設定邊界後,便能透過APP輕鬆地進行作業。 新應用》導入高爾夫球場 解決人力老化及短缺問題 陳招成進一步說明,國土測繪局是RTK的服務商,RTK將定位點的誤差參考圖提供出來,優式機器人透過4G上網,即可抓取特定位置的定位誤差值。再透過優式機器人的AI演算法,將原本一般GPS 10-20公尺誤差值縮短到2公分。定位好之後,優式機器人再運用六軸加速器定位、陀螺儀、輪子的輪差等感測裝置導入,進行軟硬整合工程,搭配輪子的運動模式和地形的契合,才能達到精準的除草路徑規劃。 這款寬度62公分、長度84公分、高度 46公分,重量只有25公斤的智能割草機器人可以在雲端將割草邊界設定完成,可以透過設定避掉水池與沙坑,用AI演算法自動計算出最佳路徑,一小時可除草面積大約是150坪,電池可以連續使用6小時以上,電池續航力是目前全球最高。 除了一般園藝公司外,在經濟部工業局AI計畫團隊的協助下,將優式機器人的AI智能割草機器人導入高爾夫球場的割草應用。 位於台中市太平區的知名高爾夫球場現有場務人員5人,負責整個球場30公頃的草坪、植栽維護、及其他景觀維護工作。但因場務人員平均年齡高達55歲,且長期無法招募到新的場務人員,針對場務人員的老年化及人力的短缺,希望能尋求AI科技的導入來減緩衝擊,因此藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔。 新挑戰》因應草種不同 需藉由專家系統克服困難 「這款AI智能割草機器人具備低噪音、低汙染、低人力成本及防水、防盜等配置,在割草的過程中,能透過超音波感測器辨識避開障礙物,並同時保持除草品質,維持美觀一致的割草長度」,陳招成接著表示,高爾夫球最重要的是草紋要漂亮、不能有病蟲害。 根據場勘後發現,高爾夫球場地主要分為果嶺、球道及長草區三大區塊,長草區以現行機器人除草沒有問題,20度以內的斜坡道都能夠克服;球道區的短草只能維持兩公分,草種也不同,需要修改刀盤設計;至於果嶺區的草因為影響到推桿速度,不僅要除草,還要壓草至與地面貼合,草的方向要一致,諸多因素均會影響到果嶺指數,這部分需要更多的研究與測試。 AI智能割草機器人能透過超音波感測器辨識避開障礙物,並同時保持除草品質 AI智慧割草機器人內建攝影鏡頭,可以用來偵測草坪的健康狀態,陳招成表示,未來也將導入專家系統,及早判斷草坪是否有病蟲害或水分足夠與否,將草坪健康數據分析提供給客戶參考,可及早防範與因應,以減少災害損失。 本身也是高爾夫球好手的陳招成表示,台灣高爾夫球發展得很好,然而,受到氣候多雨潮濕、有颱風等天候因素影響,與國外一流球場比較,台灣的高爾夫球場土質偏硬,坑洞較多,若智能割草機器人要普遍導入高爾夫球場仍有許多困難必須克服。但因台灣的困難地形造就很好的試煉場所,一旦台灣能夠克服諸多問題順利導入,就能擴展到海外市場,搶攻新的藍海市場商機。 優式機器人總經理陳招成