:::

【109年 應用案例】 LEO國眾電腦AI行動視力智慧箱 定點視力檢測關懷行動不便長者

若提到檢查視力,大家直覺會想到跑一趟眼科,不過這對於住在偏鄉、或年紀大的長者來說很不方便,如果視力檢查也能行動化,那就能輕鬆解決這個問題。

AI行動視力智慧箱圖
▲LEO國眾電腦推出「AI行動視力智慧箱」,希望能深入偏鄉與社區提供視力檢查,解決城鄉醫療差距的問題。 

「AI行動視力智慧箱」解決城鄉醫療差距

台灣正式邁入高齡社會,根據健保統計資料顯示,國內70歲以上長者白內障病變比例高達九成,甚至在新北市29個行政區中,有高達13區沒有眼科診所,甚至有些地區因為偏遠與人口稀少,沒有醫生願意看診,可見城鄉醫療資源差距之大。由簡明仁博士在1985年創立的LEO國眾電腦希望在醫師人力不足的問題下,運用AI技術來解決問題,於是找上工業技術研究院服務系統科技中心(工研院服科中心)的團隊協助。

工研院自 2014 年開始投入眼底鏡整合平台,研發團隊向教學醫院、診所等醫療機構收集上百萬張眼底攝影照片,從中篩選出適合的 10 幾萬筆資料,再交由專業眼科醫師審圖、註記、判斷,將每張眼底攝影照片標示為 4 個不同的病況等級,再餵給人工智慧進行學習。其後,逐步因應醫療現場需求開發新功能,提供全程自動化的自助式眼底攝影服務。

本案例透過工研院輔導技轉,由國眾電腦提供服務整合營運客服,工研院則負責系統整合、平台維運,此外,場域端則由大學光學眼科提供檢測場所以及檢測服務,推廣至糖尿病共同照護網、視光中心、驗光所、眼科診所、社區服務據點提供眼底鏡檢測服務。這套「AI行動視力智慧箱」亦在AI HUB大會上正式展示,希望能強化未來深入偏鄉與社區提供視力檢查,解決偏鄉醫療資源不足的問題。

AI行動視力智慧箱圖
▲「AI行動視力智慧箱」將細隙燈、眼壓計、眼底攝影…等眼科手持式儀器與行動視力檢查系統整合成一卡皮箱,可提供2~5項視力檢測。

「AI行動視力智慧箱」即時上傳數據

AI行動視力智慧箱與眼科手持式儀器圖
▲「AI行動視力智慧箱」使用方式相當簡單,內建區域無線網路,能將掃瞄的影像與數據即時上傳。 

「AI行動視力智慧箱」將細隙燈、眼壓計、眼底攝影…等眼科手持式儀器與行動視力檢查系統整合成一卡皮箱,可提供2~5項視力檢測功能,在設計上更以病人為中心,提供身份識別、檢測數據讀取、眼底自動比對系統、病歷資料歸檔管理…等功能,特別是能進行病人個別檔案管理,加上內建區域無線網路與智能閘道器,方便把包括影像、數據…等所有檢測資料即時上傳。

AI行動視力智慧箱無線數據上傳圖
▲目前「AI行動視力智慧箱」已與台北各大醫院與新北市家醫診所合作,未來也計畫陸續深入各偏鄉地區。 

「AI行動視力智慧箱」除了可應用在醫療院所、健檢中心…等固定場所,可攜性這個最大優勢,讓視光師或護理師可帶著前往一般家庭、或偏鄉幫民眾做眼睛檢測,提升醫事人員執行任務便利性與機動性,讓視力檢測走出醫院、走入社區。目前「AI行動視力智慧箱」已與台北各大醫院、新北市家醫診所合作,希望透過直接深入偏鄉與社區,讓行動不便長者可就近接受眼睛檢查,以達到及早發現盡早治療的最大目標。

推薦案例

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝

這是一張圖片。 This is a picture.
CCTV 智能影像搜索系統

查找某特定人物,尋找攜行李箱入廠人物進入高安區。人物及物件顏色特徵確定,人物藍黑色上衣,行李箱顏色黑色,透過CCTV 智能影像搜索系統,做物件與顏色檢索條件設定,可以成功搜尋到三段縮圖有出現關鍵標的影片,可以有效解決作業人員查找物件標的物,透過此系統查詢速度可比人工快6倍。 需求痛點 日月光高雄廠區內密布CCTV能及時監控廠區中的各個角落,但若在事件事故發生時,無法在有限的時間可透過CCTV影像回放被找到,其背後之意涵與其中蘊藏之巨大風險自是不言而喻,而許多平時無人的區域也很容易成為治安上的死角。故如何更智能、更有效的監控占地龐大的廠區是全體半導體企業打造智慧廠區之一大重點。日月光高雄廠占地遼闊,其中有許多重要的場域需要監控人員進出以確保企業機密與員工安全。 1 自動化生產線與自動倉儲:半導體企業之自動化生產線與自動倉儲中常有AGV(Automated Guided Vehicle)無人車高速行駛,若有廠區人員不慎誤入AGV移動區域且無法對該人員發出警告,則當憾事發生將追悔莫及。 2 材料與產品存放區域:半導體相關製程之材料價值不菲,若存放材料或產品之區域遭人入侵則有損失高價材料、產品之風險。 3 高機密管制區:營業秘密關乎半導體相關企業之核心技術競爭力,若有人員侵入高機密管制區則有企業營業秘密外洩之風險,而營業秘密安全防護一直以來都是半導體相關企業最最重視之議題。 4 卸貨碼頭區:日月光L但碼頭區常有卸貨車輛進出,若人員闖入碼頭區則有發生人車擦撞、碰撞意外之風險。甚至堆放在碼頭區待出貨的貨物有失竊以及因人員碰撞後,貨物倒塌造成損毀,因而造成公司具大的信譽、金錢損失。更進一步的造成生產出貨的不便。 異常事件發生時,如何在海量數據中,快速搜尋符合條件的關鍵影像 日月光高雄廠有許多重要的場域都需要架設CCTV為安全把關,但CCTV的數量動輒上千支、上萬支,一旦發生事件要去搜索影像時,都要用人眼一一回放查找、搜索,耗時耗力效益不彰。有鑑於現今電腦視覺的發展,遂利用AI來替代人眼回放查找。 問題情境 物件偵測 物件偵測資料來源分成兩個部份 開源資料集OIDv4、以及日月光高雄廠CCTV影像檔案。針對OIDv4中,取出符合定義的九大類別物件訓練資料,其中有二類物件未能於OIDv4中搜索到可用資料,分別為刀子與汽油桶,其餘七種類別物件皆可從OIDv4中取出可用訓練資料,此訓練資料皆已有標記。而針對高雄廠CCTV影像檔案,從中抽取部分幀(Frame)的影像,並且對欲偵測的物件進行人工標記以做為訓練與測試資料。 九大物件 顏色辨識 顏色辨識資料來源分成兩個部份網路圖像截圖、以及高雄廠CCTV影像檔案。目前並沒有找到針對顏色辨識應用的公開可下載的開源資料集,因此只能從網路蒐集圖像,於網路上搜索符合定義的九大類別物件的圖像,儲存圖像後將物件與背景分割,只保留物件的區塊,最後將圖像依照顏色做類別標記。另外針對高雄廠CCTV影像檔案,則使用物件偵測資料已標記好的bounding box擷取CCTV影像檔案中各個Frame的物件所在區塊之圖像,最後將肉眼可辨其顏色之圖像依照顏色做類別標記。針對每種物件類別皆有其專屬顏色定義,各種物件類別的顏色定義取決於此物件類別於現實生活中常見之顏色。 動態忽略免除混淆訓練 從OIDv4訓練專案的物件偵測雛型模型時,因為此資料集的每張影像中,皆只有針對單一類別做標記,但影像中有可能包含其他欲偵測之類別未被標記,故針對此種情況,訓練時會使用動態忽略之技術使其不會有混淆訓練的情況。接著使用高雄廠取出的訓練資料用來Fine-Tune雛型模型提高物件於特定指定場域下的辨識率。最終選取訓練過程中於測試集計算之損失值最低的模型做為主要物件偵測模型。 動態忽略 AI幫你看 CCTV 智能影像搜索系統主要是做為監控影像的搜尋輔助系統,可以藉由設定搜尋物件條件來加速達到從影片找出目標事件的功能,僅需定義搜尋條件,即可快速產出關鍵物件的縮圖影片並進行回放確認,縮短昔日以人工調閱案件所須時間,查找時間快6倍,前端安全單位運用此平台可強化風險管理第一道防線之自行監督功能以及早採取因應措施。

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵

隨著高齡人口增加,伴隨著各種慢性病的發生機率日增,其中,心臟衰竭不僅是隱形殺手,由於心衰疾病的病程非常長,復發機率高,造成醫護人員的負擔加重。然而,利用通過醫療認證之心電心音裝置,搭配心臟衰竭風險AI預測評估及遠距照護系統可輔助診斷幫助醫師做出正確的診斷,以利於後續病患的醫療或轉介。 心臟衰竭病程長 醫療支出是糖尿病5倍 如果你有呼吸易喘,甚至稍微動一下就喘,或是夜晚睡覺的時候,容易從睡夢中驚醒,需要坐起來才會比較舒服,又或是下肢容易有水腫等狀況,甚至合併有焦慮、不安、疲倦、食慾下降hellip等症狀,當心很有可能是心臟衰竭。 根據統計,全球心臟衰竭人口約有6000萬人,每年新增的心臟衰竭人口約500萬人。中國的心血管疾病患者將近29億人口,占城市居民死亡原因第二位;而全中國約有1200萬心臟衰竭病人,佔心臟病死因的59以上。尤其心衰疾病的病程非常長,且復發及再入院率非常高,使得醫療支出的成本是高血壓的2倍、糖尿病的5倍。 根據美國研究統計,心肌梗塞及心臟衰竭病人的30天內死亡率分別為166及111,並且30天內再住院率分別為199及244。心臟衰竭的症狀因為和其他疾病如慢性肺阻塞,氣喘等疾病相似,有185 的誤診率,對於醫療院所而言,是相當棘手的問題。 麗臺科技為顯示卡大廠,2000年起投入醫療及健康照護領域。由於董事長盧崑山曾分別與2011年及2015年兩度心臟病發,因此,麗臺科技專注於健康大數據,自主研發心臟衰竭AI辨識技術,此一AI應用讀取病患的心電圖以及心音圖做出異常檢測以及心臟衰竭的風險預測模型,可及早發現疾病徵兆。 麗臺科技自主研發心臟衰竭AI辨識技術 可預測病史及風險 麗臺自主研發之心臟衰竭AI辨識技術具以下三種判斷功能: 1 心臟衰竭病史之預測 將心電及心音圖資料分類為「具心臟衰竭住院病史」以及「未具心臟衰竭病史」兩類。 2 心臟衰竭風險預測 將心電及心音圖資料給予發生的心臟衰竭風險預測值。 3 心臟衰竭再發生風險預測 針對已有心臟衰竭的患者判讀其心音圖及心音圖,判斷其心衰再發生之風險預測。 麗臺科技表示,心臟衰竭AI辨識技術應用可輔助醫師更有效率且精確的診斷,以利後續病患的醫療或轉介。舉台北榮總研究心臟衰竭的離院病患為例,根據心電心音同軸檢測裝置所計算出的EMAT電機活化期指數與SDI心縮不全指數作為治療指引的病患,會比依據傳統症狀做為治療指引的病患,有更高的存活率,此研究也已刊登於國際心臟權威期刊JACC,獲得國際市場肯定。 系統廠商可將心臟衰竭AI辨識技術作其他加值應用 麗臺科技表示,合作系統廠商可選擇自建心臟衰竭AI風險預測引擎,將自有系統之心電心音圖上傳到麗臺心臟衰竭AI風險預測引擎後,引擎回傳風險預測值,做為系統整合廠商合作廠商的加值應用輸入。 不僅臨床使用 心臟衰竭AI風險預測引擎可延伸居家或工作場與使用 此外,這套系統也可以延伸至其他應用,包括: 一、醫院門診快篩:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,在門診、急診進行10秒快速檢測,評估病患心臟病史及心臟衰竭風險。 二、出院風險評估:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,評估病患住院期間的心臟衰竭風險,檢測數據可作為出院前的風險評估及預後指標。 三、居家連續照護:病患可使用心電心音記錄器、穿戴心電圖記錄器,透過居家傳輸盒閘道器,在家量測心電心音訊號,並上傳至amor健康雲平台進行心臟衰竭AI風險預測分析。病患可透過APP自主健康管理,檢視歷史生理趨勢;疾病個管師可透過健康管理後台Web管理會員健康。 四、居家康復訓練 病患可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 心臟衰竭AI辨識技術系統可以延伸至員工居家照護等應用。 此外,在工廠或辦公室等場域也可以透過這套系統達到員工健康管理的目標,應用的方向包括: 一、工作場域之作業安全單位:在員工執行工作業務前發給員工穿戴心電圖記錄器。 二、業務執行者生理監測:員工於執行業務或訓練時,配戴穿戴心電圖記錄器之疲勞警示,警示生理狀態是否可繼續執行任務。任務執行段落可使用資料傳輸盒或APP 將生理監測資訊上傳至健康管理平台,並評估作業員工心臟衰竭風險,檢測數據可作為企業資源人力單位做為風險評估及公共安全對應指標。 三、工作場域生理監控中心照護:工作場域的生理監控中心可透過健康雲平台,檢視並記錄員工值情時之歷史生理趨勢。 四、工作場域之護理單位:護理單位在接收生理監控中心指示,可依據值情員工的生理趨勢給予健康管理的建議;護理中心可透過健康管理後台Web管理員工健康。 五、員工可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 工作場域應用心臟衰竭雲端照護及大數據中心示意圖