在智慧化系統中,AI扮演關鍵角色,國立臺灣科技大學人工智慧營運管理研究中心除了培養專業的AI人才,也積極與企業進行各種專案研究,讓產業智慧化加速在臺灣落地。其中一個案例即採用人工智慧與機器學習方法,運用品質資訊進行維修保養預測與規劃,大幅提升設備可靠度與產品品質,運用品質瑕疵檢測AOI技術,則可降低大大瑕疵錯殺率。 臺科大人工智慧營運管理研究中心總監余文煌觀察,產業對AI的需求日益殷切,以電子製造、金融及醫療等領域發展的潛力較大,一方面上述產業資訊化程度較高,自動化產線技術與數位化環境成熟,具備AI技術發展條件;另一方面,由於產業環境所需要的數據已被保留並管理使用中,在觀念及數據具備的情況下,較容易推動AI技術應用與解決方案。 品質瑕疵檢測AOI技術 有效降低錯殺率 例如,在智慧製造領域,臺科大人工智慧營運管理研究中心團隊協助臺灣電子大廠建構產線設備診斷系統,在製造現場的產線設備內建置感測網路架構,藉此偵測並記錄機台的運作狀態,透過大數據分析,在機台出現異常之初就能夠發出警示,提醒管理者排定維修時間。 並以AOI品質瑕疵檢測製程,結合機器視覺與深度學習技術,針對電子件進行瑕疵檢測,進行即時管制監控,協助企業發展包含自動化光學檢測站,表面瑕疵演算法、管理應用功能服務。 在印刷電路板的軟板業(FPC),運用品質瑕疵檢測技術進行影像辨識,主要是進行初檢之後的複檢工作,設計將原本檢出結果進行複驗。一般工廠在做瑕疵檢測時,往往認為「寧可錯殺一百,也不放過一個」,採行最嚴格標準的檢測,在現行檢測技術與流程,可能造成過度檢出而產生良品成本浪費問題。 ▲臺科大人工智慧營運管理研究中心專注於智慧製造解決方案。 臺科大人工智慧營運管理研究中心主任曹譽鐘講座教授表示,目前臺科大人工智慧營運管理研究中心的瑕疵檢測、AI模型與演算法的建構與訓練,已有初步成果,中心希望透過影像辨識之後的結果,能幫助企業快速鑑別產品在生產過程中所產生的瑕疵及品質狀態之後,下一階段即可從源頭著手,如何進行參數優化、改善生產過程中的行為,協助工廠進行製程最佳化。在產品生產過程中,機台設備的參數,可以透過機台數據異常,分析未來維修及品質管理上歸納出不同樣態提供應用場域使用企業之參考。 疫情對企業而言,是數位轉型最大的催化劑,曹主任指出,導入AI推動企業數位轉型,不一定僅從降低成本抑或提升生產效率考量,而須從根本的發展目標與問題本質進行流程分析,思考如何以AI或ICT技術服務並滿足流程與客需求,這過程往往常需跳脫既有的框架,幫助企業重新塑造新營運及管理模式,以有效提升企業績效。 ▲臺科大人工智慧營運管理研究中心主任曹譽鐘講座教授 AI導入企業最大挑戰:提升客戶信任度 在拓展AI產學合作的過程中,余文煌認為最大的挑戰在於要提升企業對你的信任度,對於客戶而言,要有一定程度的信任才可能將產線的Know-How跟你分享,告訴你經營的重點在哪裡,在缺乏營業信任度基礎之下,AI業者很難分析流程與數據的可用性。企業選擇AI合作對象通常考量兩大重點: 一、跟你合作,會不會將資料與成果販售給其他人; 二、客製化成本會不會過高;雖然企業對學界的防備心較低,但余總監仍認為,取得客戶信任度,共同建立持續性的AI創新應用能力與發展目標,是所有ICT業者面對產業客戶以及能否提供AI解決方案的關鍵因素。 針對AI人才的培育問題,余文煌也有其獨到之見解,他觀察,教育體系從國中、高中到大學已帶動AI風潮,然而,AI技術本身有很多理論基礎及產業知識必須融會貫通,與其談AI人才培育,應先定義如何建構AI領域人才發展體系或路線,將AI導入經濟體系需要哪幾類的人,把人才定位及特性系統化,讓有志投入AI產業的人才了解,如何以自身的目標衡量可發展的AI技能與工作類型。 其次,是以系統化方式幫助想推動AI的企業了解,無論是發展應用或建立技術團隊,如何衡量事業目標所對應的人才需求與技術藍圖,不僅只有扮演出題的腳色,因為AI只是解題的方法之一,協助企業建立擁有AI研發思維的創新意識,才能真正落實產業發展,強化需求並同時推動供需兩端,才能加速AI落地應用與人才培育。 臺科大人工智慧營運管理中心提供多項智慧製造解決方案 關於智慧製造的解決方案,臺科大人工智慧營運管理中心的解決方案如下: .智慧預知維修保養 採用人工智慧與機器學習方法,運用品質資訊進行維修保養預測與規劃,大幅提升設備可靠度與產品品質,針對不同設備運轉特性,建立失效模式與可靠度分析,以製程管制分析追溯產品品質履歷,協助現場人員及時排除作業異常。 .智慧派工及排程規劃 針對產業特色,開發智慧派工及排程演算法,以有效縮短整備時間及總工時。例如針對多種工件,且須滿足合併備料、群組化生產、特定製程順序等條件下的生產排程。從工件群組化生產、適配產線的指派,到群組化下各產線生產順序調整的多平行單機排程等三大模組,導入最佳化演算法,設計整的智慧排程系統。 .深度學習與自動光學檢測 提升品質瑕疵檢測AOI技術,採用機器視覺與深度學習,可進行金屬電子件之平面與曲面檢測,並進行即時管制監控,包含自動化光學檢測站,金屬AOI瑕疵演算法、模組化設計等應用技術。 本演算法設計要素:1.自動化光學檢測站 2.金屬AOI瑕疵演算法 3.模組化設計 .智慧戰情室 結合高階顯卡彈性組裝單元,包括加工機、工業機械臂、協作機械臂、工學檢驗站與輸送帶,建立數位孿生技術之智慧戰情室,技術特點包含即時監控、資料整合、數據透明、數據可視。
在智慧化系統中,AI扮演關鍵角色,國立臺灣科技大學人工智慧營運管理研究中心除了培養專業的AI人才,也積極與企業進行各種專案研究,讓產業智慧化加速在臺灣落地。其中一個案例即採用人工智慧與機器學習方法,運用品質資訊進行維修保養預測與規劃,大幅提升設備可靠度與產品品質,運用品質瑕疵檢測AOI技術,則可降低大大瑕疵錯殺率。 臺科大人工智慧營運管理研究中心總監余文煌觀察,產業對AI的需求日益殷切,以電子製造、金融及醫療等領域發展的潛力較大,一方面上述產業資訊化程度較高,自動化產線技術與數位化環境成熟,具備AI技術發展條件;另一方面,由於產業環境所需要的數據已被保留並管理使用中,在觀念及數據具備的情況下,較容易推動AI技術應用與解決方案。 品質瑕疵檢測AOI技術 有效降低錯殺率 例如,在智慧製造領域,臺科大人工智慧營運管理研究中心團隊協助臺灣電子大廠建構產線設備診斷系統,在製造現場的產線設備內建置感測網路架構,藉此偵測並記錄機台的運作狀態,透過大數據分析,在機台出現異常之初就能夠發出警示,提醒管理者排定維修時間。 並以AOI品質瑕疵檢測製程,結合機器視覺與深度學習技術,針對電子件進行瑕疵檢測,進行即時管制監控,協助企業發展包含自動化光學檢測站,表面瑕疵演算法、管理應用功能服務。 在印刷電路板的軟板業(FPC),運用品質瑕疵檢測技術進行影像辨識,主要是進行初檢之後的複檢工作,設計將原本檢出結果進行複驗。一般工廠在做瑕疵檢測時,往往認為「寧可錯殺一百,也不放過一個」,採行最嚴格標準的檢測,在現行檢測技術與流程,可能造成過度檢出而產生良品成本浪費問題。 ▲臺科大人工智慧營運管理研究中心專注於智慧製造解決方案。 臺科大人工智慧營運管理研究中心主任曹譽鐘講座教授表示,目前臺科大人工智慧營運管理研究中心的瑕疵檢測、AI模型與演算法的建構與訓練,已有初步成果,中心希望透過影像辨識之後的結果,能幫助企業快速鑑別產品在生產過程中所產生的瑕疵及品質狀態之後,下一階段即可從源頭著手,如何進行參數優化、改善生產過程中的行為,協助工廠進行製程最佳化。在產品生產過程中,機台設備的參數,可以透過機台數據異常,分析未來維修及品質管理上歸納出不同樣態提供應用場域使用企業之參考。 疫情對企業而言,是數位轉型最大的催化劑,曹主任指出,導入AI推動企業數位轉型,不一定僅從降低成本抑或提升生產效率考量,而須從根本的發展目標與問題本質進行流程分析,思考如何以AI或ICT技術服務並滿足流程與客需求,這過程往往常需跳脫既有的框架,幫助企業重新塑造新營運及管理模式,以有效提升企業績效。 ▲臺科大人工智慧營運管理研究中心主任曹譽鐘講座教授 AI導入企業最大挑戰:提升客戶信任度 在拓展AI產學合作的過程中,余文煌認為最大的挑戰在於要提升企業對你的信任度,對於客戶而言,要有一定程度的信任才可能將產線的Know-How跟你分享,告訴你經營的重點在哪裡,在缺乏營業信任度基礎之下,AI業者很難分析流程與數據的可用性。企業選擇AI合作對象通常考量兩大重點: 一、跟你合作,會不會將資料與成果販售給其他人; 二、客製化成本會不會過高;雖然企業對學界的防備心較低,但余總監仍認為,取得客戶信任度,共同建立持續性的AI創新應用能力與發展目標,是所有ICT業者面對產業客戶以及能否提供AI解決方案的關鍵因素。 針對AI人才的培育問題,余文煌也有其獨到之見解,他觀察,教育體系從國中、高中到大學已帶動AI風潮,然而,AI技術本身有很多理論基礎及產業知識必須融會貫通,與其談AI人才培育,應先定義如何建構AI領域人才發展體系或路線,將AI導入經濟體系需要哪幾類的人,把人才定位及特性系統化,讓有志投入AI產業的人才了解,如何以自身的目標衡量可發展的AI技能與工作類型。 其次,是以系統化方式幫助想推動AI的企業了解,無論是發展應用或建立技術團隊,如何衡量事業目標所對應的人才需求與技術藍圖,不僅只有扮演出題的腳色,因為AI只是解題的方法之一,協助企業建立擁有AI研發思維的創新意識,才能真正落實產業發展,強化需求並同時推動供需兩端,才能加速AI落地應用與人才培育。 臺科大人工智慧營運管理中心提供多項智慧製造解決方案 關於智慧製造的解決方案,臺科大人工智慧營運管理中心的解決方案如下: .智慧預知維修保養 採用人工智慧與機器學習方法,運用品質資訊進行維修保養預測與規劃,大幅提升設備可靠度與產品品質,針對不同設備運轉特性,建立失效模式與可靠度分析,以製程管制分析追溯產品品質履歷,協助現場人員及時排除作業異常。 .智慧派工及排程規劃 針對產業特色,開發智慧派工及排程演算法,以有效縮短整備時間及總工時。例如針對多種工件,且須滿足合併備料、群組化生產、特定製程順序等條件下的生產排程。從工件群組化生產、適配產線的指派,到群組化下各產線生產順序調整的多平行單機排程等三大模組,導入最佳化演算法,設計整的智慧排程系統。 .深度學習與自動光學檢測 提升品質瑕疵檢測AOI技術,採用機器視覺與深度學習,可進行金屬電子件之平面與曲面檢測,並進行即時管制監控,包含自動化光學檢測站,金屬AOI瑕疵演算法、模組化設計等應用技術。 本演算法設計要素:1.自動化光學檢測站 2.金屬AOI瑕疵演算法 3.模組化設計 .智慧戰情室 結合高階顯卡彈性組裝單元,包括加工機、工業機械臂、協作機械臂、工學檢驗站與輸送帶,建立數位孿生技術之智慧戰情室,技術特點包含即時監控、資料整合、數據透明、數據可視。