:::

【2020 Application Example】 AI data analysis platform for enterprise patent monitoring, complete patent analysis and development trends with one click!

How to efficiently analyze the massive growth of patent information and tap potential value?

Patents are a valuable source of technology, market and competitive information. However, the total number of published patent documents has reached 120 million, with 6.3 million new ones added last year alone. How can we make these massive patent documents available for our own use?

Patent analysis provides an indispensable and practical way to fully tap the value of patent information. Through patent analysis, you can understand the strengths, weaknesses, and opportunities of your own and your competitors' respective patent portfolios, as well as global patent application trends, technology panorama, and possible blank areas.

However, patent analysis requires a thorough understanding of the underlying data, including: the usage and purpose of the data, as well as the problems that can be solved, etc. How to effectively use and analyze massive information is the most troublesome problem...

Unstructured data types can only be read and organized manually, which is very annoying!

"Patent specification" is a legally binding document that combines legal and scientific terms. It is unstructured data. In the past, various search and analysis methods were manually read and organized, which was time-consuming and time-consuming. It often happens that we are unable to keep up with the litigation schedule. When assisting enterprises in patent layout, they often face the difficulty of quantifying the degree of litigation risks faced by competitors and customers, as well as the quality and value of patents. This results in the inability of a domestic enterprise intellectual property management company to further expand its business scope and to promote the outside world. Knowledge of patented value-added applications.

In recent years, enterprise intellectual property management companies have also begun to assist R&D personnel in enterprises to master important technologies and patent competition intelligence that will affect the future development of the industry in advance, allowing relevant personnel to more calmly carry out patent layout and improve patent quality. and value. However, most of the business scope is in the agency of patent software, such as: Intellectual Property Operation Management Information System (IPServ), which mainly assists companies or individuals in managing intellectual property rights, but currently does not provide "patent monitoring" data analysis for companies or individuals. services.

Intellectual Property Operation Management Information System (IPServ )

▲Intellectual Property Operation Management Information System (IPServ)

These patent software include patent retrieval, management and maintenance, etc. Whether patent big data can successfully assist companies in understanding market conditions, patent value, litigation threats and monitoring competitors' illegal infringements all depends on the acquisition of patent data. . However, cleaning patent data is very time-consuming, so it has always been a headache. It was not until Taiwan Data Science Co., Ltd. developed the "AI Data Analysis Platform for Enterprise Patent Monitoring" that the light finally appeared...

Traditional patent analysis is time-consuming and time-consuming. Instead, use the "AI Data Analysis Platform for Enterprise Patent Monitoring" to get it done with one click!

The idea of ​​"AI Data Analysis Platform for Enterprise Patent Monitoring" is to use discriminating influencing factors such as "patent code" and "company industry type" in patent application cases, through big data analysis, and Add relevant news information, and then use machine learning to assist experts through AI to analyze the current market situation, avoid the threat of lawsuits, and monitor competitors' illegal infringements.

These finally extracted factors will also affect the performance of individual stocks. For this, according to different corporate attributes and development directions, "customized big data analysis" can be used to enhance the strategic position of the company. It is hoped that the search through the platform can quickly allow companies to understand the patent layout of competitors when adding new product lines to avoid infringement; or when manufacturers are looking for partners, they can also filter from companies with advanced R&D and This platform serves as a great tool for co-opetition relationships.

System operation flow chart

▲System operation flow chart

Traditionally, patent analysis is time-consuming and requires manual searching of patents and reading patent information to produce a patent analysis report. Now, through the "Enterprise Patent Monitoring Data Analysis Platform", users can enter After systematic analysis of the company names of your own company and that of your competitors in a certain year, you can quickly know the technical layout, change trend monitoring and other results of that year and among companies, saving work time and manpower.

For example, if you want to know the current development status of related technologies in physics, chemistry, and electricity on the market, you can analyze the IPC patent numbers and check which companies have clusters of patents, so as to determine whether the clustered patents are relevant. Technology or interdependent technology, understand the similarities in patent layout and industry trends between companies, shorten decision-making time, preemptively lay out or make patent avoidance designs.

Using artificial intelligence to improve traditional manual patent search operations to improve work efficiency, the "Patent Monitoring Platform" helps patent analysts more easily understand the current status of patent development in specific technical fields to predict future technology research and development directions. "Patent layout" is when an enterprise builds a strict protection network for its patent portfolio by integrating market, industry, legal and other factors to form a favorable research and development direction and reduce the risk of infringement.

A rigorous patent layout can help companies avoid landmines in strategic planning and avoid unnecessary litigation; or they can expand the scope of protection of their own technology by applying for patents and purchasing patents first. To achieve this goal, The key is to identify trends ahead of peers by analyzing a large amount of patent information. Taking the product line people flow information flow antenna developed by our company as an example, the patent monitoring platform can achieve the above goals based on the patent portfolio of the product.

People flow information flow antenna product picture

▲People flow information flow antenna product picture

In the future, text mining (Text Mining) will be conducted on the titles and abstracts of patent document contents. Manual assistance was provided in the early stage, and machine learning was adopted in the later stage to establish a "patent thesaurus automatic word segmentation system". Use this word segmentation system to segment titles and abstracts, and calculate word frequency (TF) and inverted document frequency (IDF). Through statistical methods (such as correlation numbers), the characteristics of patent documents are extracted to find related words with strong correlation between patents. Improve the similarity of exploration patents and better understand the risks of patent litigation.

Collaborate with patent industry players to create a more convenient "Enterprise Patent Monitoring AI Data Analysis Platform"!

By querying the "Platform Network Diagram" of the "Enterprise Patent Monitoring AI Data Analysis Platform", a company or firm can quickly see which patents its related industry companies are laying out. As for "patents", each company can consider whether to apply for all its own research and development, or directly purchase a separate patent license from an industry leader. For "company products", when it comes to commercialization, different strategies can be adopted in response to the changes of the times. They may have been enemies in the past few years, but with the differences in product development, they are allies today.

Patent monitoring platform displays 2009 Network diagram of Largan Optoelectronics and its related industries

▲The patent monitoring platform displays the network diagram of Largan Optoelectronics and its related industries in 2009

In the "Company Cross Comparison" function query, you can select multiple years at a time. For comparison companies that are highly similar to major companies, you can learn from the annual changes whether the two parties have developed too similar patents, which will make the two companies Being in the middle of a storm of high-risk infringement. When there is more data in the database, the "patent risk rate" can be further calculated, allowing users who are accustomed to reading numbers or charts to quickly understand each other and themselves from another perspective. Even if more parameters are added in the future, the "amount of infringement" can be estimated. However, to obtain the parameter content, it is necessary to cooperate with the patent industry to create a more convenient patent risk monitoring platform.

TSMC and Huaya Technology, Trend chart of similarity indicators between Powerchip Technologies

▲Trends of similarity indicators between TSMC, Huaya Technology and Powerchip Technology

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
Maintaining the reputation of the “Kingdom of Yachts” - Kha Shing Enterprise introduces the first domestic FRP ultrasonic smart inspection of composite materials

The Kaohsiung-based Kha Shing Enterprise Co, Ltd was established over 40 years ago, and is Taiwan's largest customized yacht company with customers all over America, Europe, Asia, and Australia, earning Taiwan the reputation of the "Kingdom of Yachts" Current FRP hull inspection still relies on traditional methods, such as visual inspection and knocking sounds, which is time-consuming and labor-intensive Kha Shing has applied PAUT array ultrasonic inspection to hull FRP composite materials for the first time, and combined it with AI to interpret ultrasound images, develop complete intelligent solutions, and create emerging markets for inspection companies Kha Shing Enterprise Co, Ltd was formerly Kha Shing Wood Industry Co, Ltd, and was a factory specializing in wood import in Kaohsiung Linhai Industrial Park when it was first established It began to design, manufacture, and sell yachts in 1977 After the second-generation successor of the company, President Kung Chun-Hao entered the company, he made a breakthrough in the previous manufacturing model that relied mainly on the skills of master craftsmen, introduced digital manufacturing to accelerate shipbuilding, and began to make larger yachts, ranking in the top 20 manufacturers worldwide among manufacturers of large yachts over 24 feet It also set a record of delivering 94 yachts within one year, earning Taiwan the reputation of "Kingdom of Yachts" Defect detection ensures yacht quality, using AI to replace humans to achieve higher efficiency Defect detection is very important to ensuring yacht quality At present, the yacht industry still uses very traditional defect detection methods The hull structure is usually made by hand lay-up or the vacuum infusion process, using visual inspection or knocking and the frequency of the sound to determine defects It requires time-consuming manual inspection If there are any defects, they must be reworked and repaired, and a gel coat subsequently sprayed The hull must be constructed in sections to facilitate inspection For large yachts over 24 meters long, construction in sections is very time-consuming and labor-intensive To shorten the time of the yacht manufacturing process, Kha Shing Enterprise will first carry out the gel coating process for the hull, and then perform the hand lay-on process The hull manufacturing process has two types of composite material test specimen structures In terms of 54-foot yacht hulls, the hull contains gel coat, core material, fiber and resin, and the total thickness is about 32cmplusmn01cm, which is twice the total thickness of FRP hull without core material of about 16cmplusmn01cm Defects such as incomplete impregnation of glass fiber or residual air bubbles between glass fiber and resin occasionally occur during the manufacturing process The types of defects include insufficient resin, voids, and delamination Once defects occur, the supply of hull materials will be insufficient and yacht delivery will be delayed Schematic diagram of types of FRP hull In order to solve this problem, Kha Shing Enterprise has engaged in technical cooperated with the metal materials industry and the AI technology industry, combining the ultrasonic inspection expertise of the metal materials industry with AI technologies developed by the AI technology industry in recent years to help solve issues of Kha Shing Enterprise with defect detection The method uses PAUT on the composite material structure of yachts, conducts FRP ultrasonic evaluation to determine the thickness of the yacht hull and material properties, and evaluates the ultrasonic probe frequency applicable to the hull structure based on professional ultrasonic experience After testing, a frequency of 5MHz and a probe width of 45mm can successfully find the location and size of defects in the simulated defect test specimen The three parties jointly found defect detection solutions from array ultrasonic evaluation, AI technology model development, and actual application in yachts The image inspected is an ultrasound image The image displays different colors based on the ultrasonic feedback signal An AI model that automatically identifies defective parts is established through the YOLO algorithm If the amount of abnormal data collected is insufficient for training, the CNN-based Autoencoder algorithm is used to collect normal image data for training and construct an AI model for abnormality detection The object detection YOLO model is trained by inputting image data marked as having defects, while the abnormality detection model is trained by inputting image data without defects Simulated defective specimen corresponding to PAUT results Defect detection by and AI system can shorten the construction period by 15 months and speed up determination by 50 After the development of this AI system is completed, it will be validated on actual 54-foot yachts of Kha Shing Enterprise, and can effectively resolve issues with defects The application of AI technology in ultrasonic inspection for intelligent determination is expected to accelerate determination by approximately 50, and will also shortens the construction period by 15 months, effectively improving the speed and quality of the yacht manufacturing process As Taiwan develops larger and more refined yachts, it will create opportunities for industry optimization and transformation, as well as opportunities for the development of key technologies The application of an AI ultrasonic inspection solution for composite materials is the first of its kind in the yacht industry, and is expected to attract more yacht manufacturers with inspection needs The AI ultrasonic inspection solution for composite materials has three major competitive advantages 1 Professional inspection experience and digital database to facilitate process management and analysis 2 Automatic AI determination and identification quickly identifies defects and provides immediate feedback to process engineers 3 High-efficiency process inspection provides defect repair recommendations, reduces damage rate, and improves the strength and quality of composite materials The application of AI technology can optimize the yacht manufacturing process, reduce manual inspection, create added value through the application of AI in Taiwanrsquos yacht industry, increase international purchase orders, and allow Taiwan yachts to continue to enjoy a good reputation in the world Furthermore, this business model has also spread to fields of application related to composite materials, increasing cross-sector market usage It is estimated to contribute approximately NT14 to NT2 billion in economic benefits to Taiwan's equipment maintenance and non-destructive testing market

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
Advancing to Smart Logistics 5.0: Hsinchu Logistics Delivers Medical Materials with Ultra-High Efficiency

After incorporating AI technology, traditional logistics companies have seen significant improvements in transportation efficiency and reductions in transportation costs, especially in the transfer of medical materials which involves timely service and rights of hospitals and patients The implementation of intelligent logistics can save medical material businesses the cost of constructing GDP warehouses and other expenses up to millions A major domestic logistics leader, Hsinchu Transport HCT, owns a fleet of 3,500 vehicles and a storage area of 60,000 square meters, providing customized logistics solutions including logistics, commerce, finance, information, distribution, storage, and processing The company handles up to 580,000 parcels per day, with a maximum capacity reaching 900,000 parcels, making the enhancement of transshipment efficiency crucial for HCT Medical materials transportation at hospitals need optimization of current operational processes and enhancements in systematization and intelligence Especially the transportation of hospital medical materials, which encounters various challenges Medical materials suppliers need to cater to varying customer product demands, temperature requirements, and delivery times through multiple logistics providers This highly depends on the experience and careful control of operations staff Whether it is the product shipment or actual logistics process, each step must be interconnected Any human errors can impact the service timing and rights of the hospitals and patients Thus, all concerned businesses, along with the government and hospitals, are working to optimize current operational processes and elevate the level of systematization, automation, and intelligence to minimize service errors and cost losses HCT's distribution process prior to AI implementation Currently, with the government's push for standardized platform operations on the demand side of hospitals, supply-side businesses collaborate through data coordination to improve the accuracy and efficiency of product shipments, enhancing operational quality and management benefits at the demand side At the same time, some businesses are also investing in the standardization and systematization of internal operational processes, thus enhancing operational efficiency and quality In the freight logistics sector, logistics companies' warehouse staff need to expend labor to control different logistics shipment operations If they often receive emergency task notifications for shipments to medical facilities, they usually depend on small regional logistics providers to provide customized delivery services Although this improves delivery times, it does not allow for integrated informational services The new GDP regulations for medical materials require suppliers to undergo GDP compliance certification Therefore, Hsinchu Transport, assisted by the Ministry of Economic Affairs' AI coaching program, not only extends existing logistics services compliant with GDP regulations but will also use data integration and optimized AI technologies to help medical material businesses streamline and improve their logistics operations Complex logistics issues are solved using the Simulated Annealing SA algorithm To meet the 'Good Distribution Practices for Medical Devices,' Hsinchu Transport is not only actively introducing new logistics vehicles but will also implement artificial intelligence-based mathematical optimization technologies to assist in intelligent scheduling at nationwide business points and transshipment stations They aim to optimize the routing of medical materials between business points or regions thereby enhancing efficiency in the distribution process Currently, during the transshipment process of medical materials at Hsinchu Transport, detachable tractor heads and containers are used Each business point and transshipment station differ in location design and staffing, impacting the throughput per unit of time Furthermore, daily cargo conditions size, destination vary, and due to these fluctuating and distinct demands, the deployment of tractor heads and containers changes accordingly Under these circumstances, Hsinchu Transport relies on past experiences to schedule departures at each satellite depot and adjusts daily according to the cargo needs Due to the reliance on empirical scheduling, it is often difficult to consider all variables and considerations, leaving room for improvement in the current departure schedules The cargo delivery planning inherently constitutes an NP-Hard problem, difficult to solve with traditional analytical methods Hsinchu Transport, in collaboration with Singular Infinity, utilizes the Simulated Annealing SA algorithm to find solutions The new logistic service introduced by Hsinchu Transport is 'GDP Container Shift Planning' This planning involves estimating future volumes of medical materials between stations and scheduling container truck shifts accordingly, ensuring timely and quality delivery of medical materials while maximizing operational benefits and reducing travel distances Hsinchu Transport introduces AI-optimized shift planning, constructing the most efficient route from its origin to destination Hsinchu Transport introduces 'Optimized Shift Planning' service, reducing transportation costs by 5 The introduction method involves using cloud software services Hsinchu Transport regularly inputs 'Interchange Item Tables' from station to station into the 'Optimized Shift Planning' service After setting the algorithm parameters, a GDP container shift schedule is generated At the same time, developing a Hsinchu Transport medical material scheduling system allows Hsinchu Transport's medical transport units to compile suitable schedules through the Interchange Item Tables Under the same level of service, it's estimated that this can reduce transportation costs by 5, saving medical material businesses millions in construction costs for GDP warehouses and distribution Due to its requirements for sanitation, temperature, and its fragility, the transportation and transshipment of medical materials should be minimized to reduce exposure and risk However, logistics efficiency and costs must still be considered AI designs the most efficient route for each cargo from its origin to destination, effectively completing daily transportation tasks In response to the future high development demand of industrial logistics, distribution and transshipment AI optimization will be a key issue Through this project, a dedicated project promotion organization will be established, staffed with AI technology, IT, and process domain talents After accumulating implementation experience, the application of AI will gradually expand, comprehensively optimizing and transforming Hsinchu Transport's operational system, and partnering with AIOT and various AI domain partners to accelerate and expand the achievement of benefits「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
CCTV Intelligent Video Search System

Search for a specific person, find someone with a suitcase entering the factory in Gao'an area Color features of the person and the object confirmed, person in blue and black top, suitcase in black color, throughCCTV the intelligent video search system, by setting object and color retrieval conditions, it can successfully locate three video clips containing the target subject This greatly aids operational staff in finding the target items, and through this system, search speed can far surpass manual effort6fold Pain Points The CSE-Kaohsiung Plant is densely equippedCCTVto monitor every corner of the plant area, but when an incidenthappens, it's impossible within a limited time throughCCTVvideo playback to find the incident, the implications and risks behind this are self-evident Many areas that are usually unmanned can easily become security blind spots Thus, how to monitor a vast plant area more intelligently and effectively is one of the crucial aspects of building a smart plant for the semiconductor industry The AES Plant in Kaohsiung covers a vast area, with many important sites requiring monitoring of personnel movements to ensure corporate secrets and employee safety 1 Automated production lines and warehouses In semiconductor enterprises’ automated production lines and warehouses, oftenAGV(Automated Guided VehicleAGVs automated guided vehicles travel at high speeds if plant personnel inadvertently enterAGVthe moving area and cannot issue a warning to the person, then the regrettable accidents that occur will be too late to reverse 2 Material and product storage areas Materials used in semiconductor-related processes are costly if areas storing materials or products are breached, there is a risk of loss of high-value materialsproducts 3 High-security areas Trade secrets relate to the core technological competitiveness of semiconductor-related enterprises if someone breaches the high-security areas, there is a risk of corporate secrets being leaked The safety of trade secrets has always been one of the most critical issues for semiconductor enterprises 4 Loading docks At AESLButthe dock area often has loading vehicles coming and going if someone intrudes into the dock area, there is a risk of vehicle collisions and accidents Additionally, goods awaiting shipment at the dock area could be stolen or potentially damaged from collisions, thus causing significant reputation and financial losses for the company, further leading to production and shipping inconvenience When an abnormal event occurs, how to quickly search for the relevant key footage from massive data Many important locations within the AES Kaohsiung Plant need to be equippedCCTVfor safety checks, butCCTVWith thousands to tens of thousands of cameras, manually searching through footage for an event requires laborious frame-by-frame review which is time-consuming and inefficient In light of advancements in computer vision, it's beneficial to utilizeAIto replace manual playback and searching Problem Scenario Object Detection The data source for object detection comprises two parts Open-source datasetsOIDv4and AES Kaohsiung PlantCCTVImage files For these files, search for usable data, specificallyOIDv4image files For these files, extract the defined nine major categories of objects for training data among them, two object categories, knives and gasoline barrels, were not found inOIDv4found usable data for knives and gasoline barrels, while the remaining seven categories of objects are available fromOIDv4useful training data found for the remaining seven categories of objects, all marked Regarding the Kaohsiung PlantCCTVimage files, select some frames Frame of the footage, and manually annotate the objects to be_detected for training and testing data Nine Major Objects Color Recognition The data source for color recognition is divided into two partsInternet image screenshots, and Kaohsiung PlantCCTVimage files Currently, no publicly available open-source datasets specifically for color recognition applications have been found, so images are collected from the web Search the web for images of the defined nine major object categories, save the images after separating the objects from the background, keeping only the object sections, and mark the images according to color Additionally, for the Kaohsiung PlantCCTVimage files, use the already-markedbounding boxextractCCTVimage files from variousFramesections of objects identified by color, and finally, visually identifiable images are marked according to color Each object category has its specific color definition, depending on the usual colors seen in these objects in real life Dynamic Ignore during Training FromOIDv4during the training of the object detection pilot model, since each image in this dataset is only marked for a single category, but the image may contain other desired detection categories unmarked For such cases, dynamic ignore techniques will be employed during training to avoid confusion Next, use the extracted training data from the Kaohsiung Plant toFine-Tuneenhance the detection rate of the object in specific designated areas Finally, select the model that computes the lowest loss value in the test set during the training process as the main object_detection model Dynamic Ignoring AIHelp You View CCTV The intelligent video search system primarily serves as an assistive system for searching surveillance footage, capable of speeding up the process of finding target events by setting search conditions for objects By simply defining the search conditions, you can quickly produce thumbnails of critical objects and playback for review, shortening the time required for manual case retrieval of the past The search time is quickly6doubled, allowing the front-end security unit to use this platform to strengthen the first line of risk management supervision and take timely preventive measures 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」