:::

【2020 Application Example】 AI data analysis platform for enterprise patent monitoring, complete patent analysis and development trends with one click!

How to efficiently analyze the massive growth of patent information and tap potential value?

Patents are a valuable source of technology, market and competitive information. However, the total number of published patent documents has reached 120 million, with 6.3 million new ones added last year alone. How can we make these massive patent documents available for our own use?

Patent analysis provides an indispensable and practical way to fully tap the value of patent information. Through patent analysis, you can understand the strengths, weaknesses, and opportunities of your own and your competitors' respective patent portfolios, as well as global patent application trends, technology panorama, and possible blank areas.

However, patent analysis requires a thorough understanding of the underlying data, including: the usage and purpose of the data, as well as the problems that can be solved, etc. How to effectively use and analyze massive information is the most troublesome problem...

Unstructured data types can only be read and organized manually, which is very annoying!

"Patent specification" is a legally binding document that combines legal and scientific terms. It is unstructured data. In the past, various search and analysis methods were manually read and organized, which was time-consuming and time-consuming. It often happens that we are unable to keep up with the litigation schedule. When assisting enterprises in patent layout, they often face the difficulty of quantifying the degree of litigation risks faced by competitors and customers, as well as the quality and value of patents. This results in the inability of a domestic enterprise intellectual property management company to further expand its business scope and to promote the outside world. Knowledge of patented value-added applications.

In recent years, enterprise intellectual property management companies have also begun to assist R&D personnel in enterprises to master important technologies and patent competition intelligence that will affect the future development of the industry in advance, allowing relevant personnel to more calmly carry out patent layout and improve patent quality. and value. However, most of the business scope is in the agency of patent software, such as: Intellectual Property Operation Management Information System (IPServ), which mainly assists companies or individuals in managing intellectual property rights, but currently does not provide "patent monitoring" data analysis for companies or individuals. services.

Intellectual Property Operation Management Information System (IPServ )

▲Intellectual Property Operation Management Information System (IPServ)

These patent software include patent retrieval, management and maintenance, etc. Whether patent big data can successfully assist companies in understanding market conditions, patent value, litigation threats and monitoring competitors' illegal infringements all depends on the acquisition of patent data. . However, cleaning patent data is very time-consuming, so it has always been a headache. It was not until Taiwan Data Science Co., Ltd. developed the "AI Data Analysis Platform for Enterprise Patent Monitoring" that the light finally appeared...

Traditional patent analysis is time-consuming and time-consuming. Instead, use the "AI Data Analysis Platform for Enterprise Patent Monitoring" to get it done with one click!

The idea of ​​"AI Data Analysis Platform for Enterprise Patent Monitoring" is to use discriminating influencing factors such as "patent code" and "company industry type" in patent application cases, through big data analysis, and Add relevant news information, and then use machine learning to assist experts through AI to analyze the current market situation, avoid the threat of lawsuits, and monitor competitors' illegal infringements.

These finally extracted factors will also affect the performance of individual stocks. For this, according to different corporate attributes and development directions, "customized big data analysis" can be used to enhance the strategic position of the company. It is hoped that the search through the platform can quickly allow companies to understand the patent layout of competitors when adding new product lines to avoid infringement; or when manufacturers are looking for partners, they can also filter from companies with advanced R&D and This platform serves as a great tool for co-opetition relationships.

System operation flow chart

▲System operation flow chart

Traditionally, patent analysis is time-consuming and requires manual searching of patents and reading patent information to produce a patent analysis report. Now, through the "Enterprise Patent Monitoring Data Analysis Platform", users can enter After systematic analysis of the company names of your own company and that of your competitors in a certain year, you can quickly know the technical layout, change trend monitoring and other results of that year and among companies, saving work time and manpower.

For example, if you want to know the current development status of related technologies in physics, chemistry, and electricity on the market, you can analyze the IPC patent numbers and check which companies have clusters of patents, so as to determine whether the clustered patents are relevant. Technology or interdependent technology, understand the similarities in patent layout and industry trends between companies, shorten decision-making time, preemptively lay out or make patent avoidance designs.

Using artificial intelligence to improve traditional manual patent search operations to improve work efficiency, the "Patent Monitoring Platform" helps patent analysts more easily understand the current status of patent development in specific technical fields to predict future technology research and development directions. "Patent layout" is when an enterprise builds a strict protection network for its patent portfolio by integrating market, industry, legal and other factors to form a favorable research and development direction and reduce the risk of infringement.

A rigorous patent layout can help companies avoid landmines in strategic planning and avoid unnecessary litigation; or they can expand the scope of protection of their own technology by applying for patents and purchasing patents first. To achieve this goal, The key is to identify trends ahead of peers by analyzing a large amount of patent information. Taking the product line people flow information flow antenna developed by our company as an example, the patent monitoring platform can achieve the above goals based on the patent portfolio of the product.

People flow information flow antenna product picture

▲People flow information flow antenna product picture

In the future, text mining (Text Mining) will be conducted on the titles and abstracts of patent document contents. Manual assistance was provided in the early stage, and machine learning was adopted in the later stage to establish a "patent thesaurus automatic word segmentation system". Use this word segmentation system to segment titles and abstracts, and calculate word frequency (TF) and inverted document frequency (IDF). Through statistical methods (such as correlation numbers), the characteristics of patent documents are extracted to find related words with strong correlation between patents. Improve the similarity of exploration patents and better understand the risks of patent litigation.

Collaborate with patent industry players to create a more convenient "Enterprise Patent Monitoring AI Data Analysis Platform"!

By querying the "Platform Network Diagram" of the "Enterprise Patent Monitoring AI Data Analysis Platform", a company or firm can quickly see which patents its related industry companies are laying out. As for "patents", each company can consider whether to apply for all its own research and development, or directly purchase a separate patent license from an industry leader. For "company products", when it comes to commercialization, different strategies can be adopted in response to the changes of the times. They may have been enemies in the past few years, but with the differences in product development, they are allies today.

Patent monitoring platform displays 2009 Network diagram of Largan Optoelectronics and its related industries

▲The patent monitoring platform displays the network diagram of Largan Optoelectronics and its related industries in 2009

In the "Company Cross Comparison" function query, you can select multiple years at a time. For comparison companies that are highly similar to major companies, you can learn from the annual changes whether the two parties have developed too similar patents, which will make the two companies Being in the middle of a storm of high-risk infringement. When there is more data in the database, the "patent risk rate" can be further calculated, allowing users who are accustomed to reading numbers or charts to quickly understand each other and themselves from another perspective. Even if more parameters are added in the future, the "amount of infringement" can be estimated. However, to obtain the parameter content, it is necessary to cooperate with the patent industry to create a more convenient patent risk monitoring platform.

TSMC and Huaya Technology, Trend chart of similarity indicators between Powerchip Technologies

▲Trends of similarity indicators between TSMC, Huaya Technology and Powerchip Technology

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
Advancing to Smart Logistics 5.0: Hsinchu Logistics Delivers Medical Materials with Ultra-High Efficiency

After incorporating AI technology, traditional logistics companies have seen significant improvements in transportation efficiency and reductions in transportation costs, especially in the transfer of medical materials which involves timely service and rights of hospitals and patients The implementation of intelligent logistics can save medical material businesses the cost of constructing GDP warehouses and other expenses up to millions A major domestic logistics leader, Hsinchu Transport HCT, owns a fleet of 3,500 vehicles and a storage area of 60,000 square meters, providing customized logistics solutions including logistics, commerce, finance, information, distribution, storage, and processing The company handles up to 580,000 parcels per day, with a maximum capacity reaching 900,000 parcels, making the enhancement of transshipment efficiency crucial for HCT Medical materials transportation at hospitals need optimization of current operational processes and enhancements in systematization and intelligence Especially the transportation of hospital medical materials, which encounters various challenges Medical materials suppliers need to cater to varying customer product demands, temperature requirements, and delivery times through multiple logistics providers This highly depends on the experience and careful control of operations staff Whether it is the product shipment or actual logistics process, each step must be interconnected Any human errors can impact the service timing and rights of the hospitals and patients Thus, all concerned businesses, along with the government and hospitals, are working to optimize current operational processes and elevate the level of systematization, automation, and intelligence to minimize service errors and cost losses HCT's distribution process prior to AI implementation Currently, with the government's push for standardized platform operations on the demand side of hospitals, supply-side businesses collaborate through data coordination to improve the accuracy and efficiency of product shipments, enhancing operational quality and management benefits at the demand side At the same time, some businesses are also investing in the standardization and systematization of internal operational processes, thus enhancing operational efficiency and quality In the freight logistics sector, logistics companies' warehouse staff need to expend labor to control different logistics shipment operations If they often receive emergency task notifications for shipments to medical facilities, they usually depend on small regional logistics providers to provide customized delivery services Although this improves delivery times, it does not allow for integrated informational services The new GDP regulations for medical materials require suppliers to undergo GDP compliance certification Therefore, Hsinchu Transport, assisted by the Ministry of Economic Affairs' AI coaching program, not only extends existing logistics services compliant with GDP regulations but will also use data integration and optimized AI technologies to help medical material businesses streamline and improve their logistics operations Complex logistics issues are solved using the Simulated Annealing SA algorithm To meet the 'Good Distribution Practices for Medical Devices,' Hsinchu Transport is not only actively introducing new logistics vehicles but will also implement artificial intelligence-based mathematical optimization technologies to assist in intelligent scheduling at nationwide business points and transshipment stations They aim to optimize the routing of medical materials between business points or regions thereby enhancing efficiency in the distribution process Currently, during the transshipment process of medical materials at Hsinchu Transport, detachable tractor heads and containers are used Each business point and transshipment station differ in location design and staffing, impacting the throughput per unit of time Furthermore, daily cargo conditions size, destination vary, and due to these fluctuating and distinct demands, the deployment of tractor heads and containers changes accordingly Under these circumstances, Hsinchu Transport relies on past experiences to schedule departures at each satellite depot and adjusts daily according to the cargo needs Due to the reliance on empirical scheduling, it is often difficult to consider all variables and considerations, leaving room for improvement in the current departure schedules The cargo delivery planning inherently constitutes an NP-Hard problem, difficult to solve with traditional analytical methods Hsinchu Transport, in collaboration with Singular Infinity, utilizes the Simulated Annealing SA algorithm to find solutions The new logistic service introduced by Hsinchu Transport is 'GDP Container Shift Planning' This planning involves estimating future volumes of medical materials between stations and scheduling container truck shifts accordingly, ensuring timely and quality delivery of medical materials while maximizing operational benefits and reducing travel distances Hsinchu Transport introduces AI-optimized shift planning, constructing the most efficient route from its origin to destination Hsinchu Transport introduces 'Optimized Shift Planning' service, reducing transportation costs by 5 The introduction method involves using cloud software services Hsinchu Transport regularly inputs 'Interchange Item Tables' from station to station into the 'Optimized Shift Planning' service After setting the algorithm parameters, a GDP container shift schedule is generated At the same time, developing a Hsinchu Transport medical material scheduling system allows Hsinchu Transport's medical transport units to compile suitable schedules through the Interchange Item Tables Under the same level of service, it's estimated that this can reduce transportation costs by 5, saving medical material businesses millions in construction costs for GDP warehouses and distribution Due to its requirements for sanitation, temperature, and its fragility, the transportation and transshipment of medical materials should be minimized to reduce exposure and risk However, logistics efficiency and costs must still be considered AI designs the most efficient route for each cargo from its origin to destination, effectively completing daily transportation tasks In response to the future high development demand of industrial logistics, distribution and transshipment AI optimization will be a key issue Through this project, a dedicated project promotion organization will be established, staffed with AI technology, IT, and process domain talents After accumulating implementation experience, the application of AI will gradually expand, comprehensively optimizing and transforming Hsinchu Transport's operational system, and partnering with AIOT and various AI domain partners to accelerate and expand the achievement of benefits「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI Can Make Coffee! Autonomous Coffee Roasters Relying on AI for Precise Location Setting and Cultivating Loyal Customers

Have you had your morning coffee yet Over the past decade, Taiwan has gradually formed a coffee drinking culture With the advancement of AI technology, autonomous coffee roasters can now rely on AI for precise location setting while also cultivating a loyal customer base Let's see how this is done According to the International Coffee Organization ICO, Taiwanese consume approximately 285 billion cups of coffee annually, with the coffee market in Taiwan estimated at 80 billion TWD, growing about 20 each year In recent years, the 'drinking coffee' culture in Taiwan has become synonymous with popularity, with coffee being the most frequently chosen daily beverage by 65 of the population Coffee enthusiasts, particularly the more avid ones, are willing to pay more for coffee beans that suit their tastes An increasing number of unmanned drink kiosks have also begun to appear in the Taiwanese beverage market Unmanned coffee beverage shops face difficulties in expanding quickly, primarily due to two major issues one is the appropriateness of customer flow and machine placement locations which still rely on manual analysis the second is penetrating the market of mid to high-end coffee lovers accurately AI resolves two major challenges for autonomous coffee roasters suitable placement and cultivating a loyal customer base To tackle these issues and help autonomous coffee roasters quickly break into the market, Raysharp Electronics intends to implement AI for people flow counting analysis and unfamiliar face recognition These technologies aim to calculate the crowd size at potential roaster locations and classify consumers by gender and age for more precise market analysis They also provide multiple choices for the roasting of raw coffee beans, offering a more customized service tailored to the needs and tastes of professional coffee aficionados with a pack of 'high-quality roasted beans' Since 2018, the rise of unmanned stores has been mainly due to owners wanting to reduce persistently rising rent and personnel costs However, the initial assessment of store locations still requires hourly labor expenses for manual estimation of customer flow, leading to possible miscalculations of both on-site consumers and passerby traffic These inaccuracies may prevent precise real-time analysis of customer flow, or even misguided estimations of operational efficacy after a trial run, thus missing the optimal timing for loss-preventing location retraction Raysharp Electronics introduces autonomous coffee roasters equipped with AI-based people counting analysis and facial recognition Raysharp Electronics combines AI people counting analysis and facial recognition with the coffee trend known as 'black gold', addressing the preferences of numerous coffee connoisseurs in Taiwan who enjoy personally selecting coffee beans at bulk stores and frequenting high-quality grinding cafes or chain coffee shops A new concept for the first autonomous coffee roaster offering choices based on the origin, variety, and roasting methods of coffee beans has emerged AI coffee roasters enhance customer loyalty and materials management efficiency by 20 For the advanced development of autonomous coffee roasters, Raysharp Electronics engineers have equipped the AI NVIDIA development platform on the basis of TCNNFacenet Through AI, tens of thousands of images related to gender and age are used for sample training, allowing even first-time coffee roasting customers to be easily classified using unfamiliar face recognition This gains consumer trust, enhances willingness to use, and allows for recording purchase information and future product recommendations, leading to consumer purchase behavior analysis This information helps owners tailor future material preparation based on consumer preferences for different coffee beans, reducing raw material transportation and storage issues, and improving material management efficiency by 20 Moreover, by placing these autonomous coffee roasters in high-traffic areas, owners can use cameras to capture the crowd and assess whether the machine location has an adequate customer base, quickly analyzing whether to reposition the machines, and more easily targeting the best locations for middle and high-end coffee lovers The unmanned coffee roaster features a professional roasting mode interface, providing options based on the origin and variety of coffee beans, their roasting methods light, medium, deep, and related temperature, wind speed, and timing settings If improvement needs arise during the process, engineers can adjust firmware parameters and also assist in integration with the owner's ordering system Staff members briefly describe the operation of the autonomous coffee roaster 'Black Gold' penetrates deeper into coffee shops, science parks, and commercial buildings through AI This autonomous coffee roaster targets coffee connoisseurs and can be placed in middle to high-end coffee shops to roast more customized coffee beans than those available in bulk stores Upon completing a batch of coffee beans, it immediately provides them to professional technicians within the coffee shops for grinding and manual brewing The remaining roasted beans can also be taken home for brewing and enjoyment It also adds value to coffee shops by better understanding consumer preferences for coffee beans and launching more customer-attracting drink promotions and appropriate inventory management In addition to coffee shops, the autonomous coffee roaster can also utilize AI-based people counting analysis to precisely set up near scientific parks and commercial buildings, offering high-quality coffee beans for office brewing to internal employees with high coffee consumption needs Furthermore, implementing a physical membership system can initiate coffee bean purchase promotions or periodic payment incentives, thus attracting new clients and cultivating existing customer loyalty and retention The operation interface of the smart autonomous coffee roaster「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
[2023 Case Study] AI Steps into Philanthropy: Stylish Tech at Food Banks

Taiwan Food Bank AssociationHereinafter referred to as 'the Association'With the mission of providing food aid, poverty relief, reducing food waste, and building a hunger-free network, there are locations across Taiwan that gather donations from wholesalers, intermediaries, retailers, manufacturers, and even generous individuals These sites also rescue food that would otherwise be discarded, properly allocate and distribute it to needy households, thus aiding local vulnerable families55Food banks at various locations collect daily donations from wholesale stores, intermediaries, retailers, manufacturers, and even benevolent individuals from all over Taiwan These places also rescue about-to-be-discarded edible materials, properly sort them, and distribute to needy households, assisting local vulnerable populations However, each location requires significant human and volunteer resources to manage daily operations using traditional methods of communication with non-profit organizations and donors After receiving donations, these resources are then allocated to needy families or individuals There is a potential issue of uneven distribution of resources due to a lack of digitalization and integrated information management in these processes Warehouse and Transportation Centers and Mini Food Banks Distributing Resources to the Disadvantaged The location under validation by the Kaohsiung Charitable Organizations Association,Hereinafter referred to as 'Kaohsiung Charity' In109year6month24Officially inaugurated Taiwan's first 'Food Bank-Warehouse and Transportation Center' at a location measuring200square meters, enhancing the efficiency of food resource redistribution, proper storage, and management So far, nearly two hundred tons of vegetables and fruits have been saved, serving over a hundred organizations and benefiting over5thousand vulnerable households, and continues to serve19mini food banks, with planned completion across multiple districts in Kaohsiung, distributing food resources to over10ten thousand vulnerable families Kaohsiung Charity 'Food Bank-Warehouse and Transportation Center' in the Dasha Community Photo Source Kaohsiung Charitable Organizations Association Challenges in Labor and Food Resource Management Facing the needs of a large number of economically disadvantaged families, the management of the 'Food Bank-Warehouse and Transportation Center' is particularly critical During procurement, tasks such as sorting, purging, and bookkeeping must be performed, while during shipment, food resource needs suggested by social workers must be followed These activities rely on manual judgment and accumulated experience Many volunteers involved are elderly and have limited physical strength, making warehouse tasks physically demanding and recruitment challenging If a large batch of food resources arrives, space and manpower are consumed in sorting and inventory management, raising concerns about the effective use of resources and turnover rate This highlights the challenge of scaling up food bank services while lacking corresponding labor and material management systems At the same time, food bank resources come from various donations, thus they vary greatly in type, shelf life, standards, and quantity Volunteers at mini food banks, mostly also elderly, must handle multiple responsibilities such as case services, food resource management,resource allocation, and resource development Sometimes they must also explain and accept immediate, large quantities of specific resources, such as adults receiving baby formula 'Food Bank-Warehouse and Transportation Center' Resource Inventory Relies Entirely on Manual Labor Mini Food Bank Volunteers Handle Multiple Responsibilities Photo Source Taiwan Food Bank Association Reducing Scrap Resources60 Increasing Speed of Resource Transfer80 To enhance resource management and ensure effective use of materials, and to address personnel shortages, this field validation case has introduced 'Food Bank Warehouse Resource CollectionAITo advance resource management, ensure effective use of resources, and solve manpower shortages, this validation site has implemented an 'Automated Early Warning Needs Assessment System' for the food bank's warehouse resource gathering The first part involves building a classification model, setting up and collecting warehouse information at the site, andAItraining the model Past sitewarehouse information is collected and stored in a database, allowingAIfor preprocessing, classification, and other tasks At the same time, depending on the dependency conditions of the types of goods as features, algorithms are introduced for computation and modeling, and the data collected is used for retraining, ultimately validating the field and organizing data for the five most common types of goods into training and test datasets as required The second part involves constructing the classification model using AI techniques further use of reinforcement learning constructs the management mechanism for the food bank's warehouse, perfecting the classification of donated goodsRNNTechnical construction of classification models further use of reinforcement learning constructs food bank warehouse management mechanisms, making the classification of donated goods perfectlike white rice, instant drinks, noodles, instant noodles, and canned goodscan then be automatically assigned storage based on storage assignment principles AI Service System Process and Description Source Taiwan Food Bank Association AtAIUnder forecasts, it can optimize the speed of resource transfer and allocation, effectively and accurately match resource donations reducing the loss in the donation process, increase the accuracy of resource distribution, and improve the service rate—the successful donation rate—reducing the waste of resources due to incorrect items, and enabling instant monitoring of food resource stock, ensuring operators can respond quickly to needs, effectively providing resource assistance WithAIthe system's introduction and the establishment of data intelligence, it helps the operations of the warehouse and transportation center, allowing more time for the allocation of donated goods The introduction aims to accelerate the digital service rollout for social welfare organizations, thoroughly addressing the needs of the overall vulnerable segments of society Using the system for resource allocation and dispatching Photo Source Kaohsiung Charitable Organizations Association Following this field validation, it is possible to expand the system to other food bank service pointsAIThe system can also collaborate with more non-profit organizations, public welfare groups, and charitable organizations, expanding 'Food Bank Warehouse Resource CollectionAIAutomated Early Warning Demand Assessment System' application range such as medical supply distribution, helping more organizations manage and distribute more intelligently, reducing resource wastage, and enhancing social welfare 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」