:::

【2020 Application Example】 "Intelligent Agriculture and Big Data Application Platform" effectively reduces fertilizer use by 50%!

Life is tough for lettuce village farmers who are at the mercy of the elements

Global market trends are volatile. In terms of agriculture, it must compete with cities for land and water, and also face other crises, such as: mitigating climate change and protecting natural habitats. In particular, climate change makes it more difficult for farmers to plan cultivation in traditional ways. For organic lettuce exporters, they have to overcome problems such as climate and pests to ensure that the lettuce can meet the standards of overseas customers. This is an issue that the industry is facing...

Difficulties and needs of Taiwan Lettuce Village

Although Taiwan Lettuce Village currently uses an internationally certified standard process (G.GAP) for cultivation, and also uses the "Intelligent Agriculture Management System" developed by Info-Link Services for cultivation management, it still faces the dilemma of not being able to control crop yields and quality due to climate abnormalities.

Efforts to solve pests and production problems in recent years not only consumes labor, but also doubled the use of pesticides. However, using cultivation and production models of the past will cause the industry to stagnate or even face elimination.

Therefore, it hopes to add value through AI, and make the lettuce village can be more information-based, intelligent, analytical, and predictive in cultivation, so as to expand the industry’s exports and diversify the industry's development in the future.

Current Demand of the Lettuce Village

The agriculture industry in Taiwan Lettuce Village currently only implements "information management." Even though it has the concept of data application, there are no implementation methods and direction, and fields are still manually inspected and the dosage of pesticides is determined based on experience. Since crop production varies due to environmental factors each season, the accumulated temperature conditions required for lettuce growth can be estimated by comparing crop yield and harvest date based on historical meteorological data, thereby establishing an accumulated temperature calculation module to estimate the cultivation schedule, allows the system to automatically analyze and make prediction based on the current temperature and humidity of the overall environment. During the crop harvesting period, it assists field personnel in optimizing their work, reducing the need for daily inspections to determine when to schedule the next task.

Agricultural information system + AI allows lettuce to grow smoothly

"The stability of the cultivation environment" plays an important role in the growth process of crops. Understanding the growing conditions of crops can greatly increase production and maintain a certain level of quality. Combined with "smart equipment in the field" and "linebot," field management can be carried out and warnings can be received at any time, allowing managers to respond quickly to reduce potential losses, and assist in disease prevention, growth period, and harvest prediction. It can be further integrated with data from the Central Weather Administration to establish a "cultivation database," and conduct agricultural analysis through data collection, such as: fertilizer dosage planning, analysis of lettuce growth days in different months, analysis of the quality and weight of lettuce output based on temperature, and even disease prevention predictions.

Comparison of differences before and after digitization

▲ Comparison of differences before and after digitization

Compiled the cultivation data collected by the Lettuce Village from field equipment and external data , such as: temperature, humidity, sunlight, and farmland fertility, and applied the data in four aspects, including:

1. establishing crop progress and growth obstacle information, analyzing the temperature ranges that are suitable for growth and hinder growth, importing open data (real-time and future weather forecast data) to establish forecast standards, and using weather sensing equipment for field monitoring, in order to achieve real-time warning notifications and preventive effects.

2. Utilize cultivation data for growth predictions, in order to achieve the goal of estimating harvest date.

3. Using mobile phones for weather monitoring achieves the goal of real-time control and adjustment of field operations, allowing Lettuce Village to effectively manage manpower, material costs, and crop quality.

4. Compiled farmland fertility data to provide the fertilizer ratios for suitable for farmland and reduce the frequency of fertilization, improving farmland fertility while improving the overall environment.

Description of Data Applications

▲ Description of Data Applications

The system will continue to be optimized and promoted it to more units

The "Intelligent Agriculture Big Data Application Platform" allows farmers in Lettuce Village to no longer be limited to the traditional agricultural business model, achieve systematic cultivation and production management, and standardize specifications to improve quality, stabilize output, and reduce labor consumption and material costs.

Improved pest and disease detection accuracy from 80% to 100%

In the future, we hope to increase the accuracy of pest and disease detection, so that farmers can monitor the status of crops in real time, making the system more complete. We also hope to apply this system model to more crops, and allow more farmers to consistently grow high-quality crops at low cost through government promotion.

Recommend Cases

這是一張圖片。 This is a picture.
[2023 Case Study] AI Steps into Philanthropy: Stylish Tech at Food Banks

Taiwan Food Bank AssociationHereinafter referred to as 'the Association'With the mission of providing food aid, poverty relief, reducing food waste, and building a hunger-free network, there are locations across Taiwan that gather donations from wholesalers, intermediaries, retailers, manufacturers, and even generous individuals These sites also rescue food that would otherwise be discarded, properly allocate and distribute it to needy households, thus aiding local vulnerable families55Food banks at various locations collect daily donations from wholesale stores, intermediaries, retailers, manufacturers, and even benevolent individuals from all over Taiwan These places also rescue about-to-be-discarded edible materials, properly sort them, and distribute to needy households, assisting local vulnerable populations However, each location requires significant human and volunteer resources to manage daily operations using traditional methods of communication with non-profit organizations and donors After receiving donations, these resources are then allocated to needy families or individuals There is a potential issue of uneven distribution of resources due to a lack of digitalization and integrated information management in these processes Warehouse and Transportation Centers and Mini Food Banks Distributing Resources to the Disadvantaged The location under validation by the Kaohsiung Charitable Organizations Association,Hereinafter referred to as 'Kaohsiung Charity' In109year6month24Officially inaugurated Taiwan's first 'Food Bank-Warehouse and Transportation Center' at a location measuring200square meters, enhancing the efficiency of food resource redistribution, proper storage, and management So far, nearly two hundred tons of vegetables and fruits have been saved, serving over a hundred organizations and benefiting over5thousand vulnerable households, and continues to serve19mini food banks, with planned completion across multiple districts in Kaohsiung, distributing food resources to over10ten thousand vulnerable families Kaohsiung Charity 'Food Bank-Warehouse and Transportation Center' in the Dasha Community Photo Source Kaohsiung Charitable Organizations Association Challenges in Labor and Food Resource Management Facing the needs of a large number of economically disadvantaged families, the management of the 'Food Bank-Warehouse and Transportation Center' is particularly critical During procurement, tasks such as sorting, purging, and bookkeeping must be performed, while during shipment, food resource needs suggested by social workers must be followed These activities rely on manual judgment and accumulated experience Many volunteers involved are elderly and have limited physical strength, making warehouse tasks physically demanding and recruitment challenging If a large batch of food resources arrives, space and manpower are consumed in sorting and inventory management, raising concerns about the effective use of resources and turnover rate This highlights the challenge of scaling up food bank services while lacking corresponding labor and material management systems At the same time, food bank resources come from various donations, thus they vary greatly in type, shelf life, standards, and quantity Volunteers at mini food banks, mostly also elderly, must handle multiple responsibilities such as case services, food resource management,resource allocation, and resource development Sometimes they must also explain and accept immediate, large quantities of specific resources, such as adults receiving baby formula 'Food Bank-Warehouse and Transportation Center' Resource Inventory Relies Entirely on Manual Labor Mini Food Bank Volunteers Handle Multiple Responsibilities Photo Source Taiwan Food Bank Association Reducing Scrap Resources60 Increasing Speed of Resource Transfer80 To enhance resource management and ensure effective use of materials, and to address personnel shortages, this field validation case has introduced 'Food Bank Warehouse Resource CollectionAITo advance resource management, ensure effective use of resources, and solve manpower shortages, this validation site has implemented an 'Automated Early Warning Needs Assessment System' for the food bank's warehouse resource gathering The first part involves building a classification model, setting up and collecting warehouse information at the site, andAItraining the model Past sitewarehouse information is collected and stored in a database, allowingAIfor preprocessing, classification, and other tasks At the same time, depending on the dependency conditions of the types of goods as features, algorithms are introduced for computation and modeling, and the data collected is used for retraining, ultimately validating the field and organizing data for the five most common types of goods into training and test datasets as required The second part involves constructing the classification model using AI techniques further use of reinforcement learning constructs the management mechanism for the food bank's warehouse, perfecting the classification of donated goodsRNNTechnical construction of classification models further use of reinforcement learning constructs food bank warehouse management mechanisms, making the classification of donated goods perfectlike white rice, instant drinks, noodles, instant noodles, and canned goodscan then be automatically assigned storage based on storage assignment principles AI Service System Process and Description Source Taiwan Food Bank Association AtAIUnder forecasts, it can optimize the speed of resource transfer and allocation, effectively and accurately match resource donations reducing the loss in the donation process, increase the accuracy of resource distribution, and improve the service rate—the successful donation rate—reducing the waste of resources due to incorrect items, and enabling instant monitoring of food resource stock, ensuring operators can respond quickly to needs, effectively providing resource assistance WithAIthe system's introduction and the establishment of data intelligence, it helps the operations of the warehouse and transportation center, allowing more time for the allocation of donated goods The introduction aims to accelerate the digital service rollout for social welfare organizations, thoroughly addressing the needs of the overall vulnerable segments of society Using the system for resource allocation and dispatching Photo Source Kaohsiung Charitable Organizations Association Following this field validation, it is possible to expand the system to other food bank service pointsAIThe system can also collaborate with more non-profit organizations, public welfare groups, and charitable organizations, expanding 'Food Bank Warehouse Resource CollectionAIAutomated Early Warning Demand Assessment System' application range such as medical supply distribution, helping more organizations manage and distribute more intelligently, reducing resource wastage, and enhancing social welfare 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
Advancing to Smart Logistics 5.0: Hsinchu Logistics Delivers Medical Materials with Ultra-High Efficiency

After incorporating AI technology, traditional logistics companies have seen significant improvements in transportation efficiency and reductions in transportation costs, especially in the transfer of medical materials which involves timely service and rights of hospitals and patients The implementation of intelligent logistics can save medical material businesses the cost of constructing GDP warehouses and other expenses up to millions A major domestic logistics leader, Hsinchu Transport HCT, owns a fleet of 3,500 vehicles and a storage area of 60,000 square meters, providing customized logistics solutions including logistics, commerce, finance, information, distribution, storage, and processing The company handles up to 580,000 parcels per day, with a maximum capacity reaching 900,000 parcels, making the enhancement of transshipment efficiency crucial for HCT Medical materials transportation at hospitals need optimization of current operational processes and enhancements in systematization and intelligence Especially the transportation of hospital medical materials, which encounters various challenges Medical materials suppliers need to cater to varying customer product demands, temperature requirements, and delivery times through multiple logistics providers This highly depends on the experience and careful control of operations staff Whether it is the product shipment or actual logistics process, each step must be interconnected Any human errors can impact the service timing and rights of the hospitals and patients Thus, all concerned businesses, along with the government and hospitals, are working to optimize current operational processes and elevate the level of systematization, automation, and intelligence to minimize service errors and cost losses HCT's distribution process prior to AI implementation Currently, with the government's push for standardized platform operations on the demand side of hospitals, supply-side businesses collaborate through data coordination to improve the accuracy and efficiency of product shipments, enhancing operational quality and management benefits at the demand side At the same time, some businesses are also investing in the standardization and systematization of internal operational processes, thus enhancing operational efficiency and quality In the freight logistics sector, logistics companies' warehouse staff need to expend labor to control different logistics shipment operations If they often receive emergency task notifications for shipments to medical facilities, they usually depend on small regional logistics providers to provide customized delivery services Although this improves delivery times, it does not allow for integrated informational services The new GDP regulations for medical materials require suppliers to undergo GDP compliance certification Therefore, Hsinchu Transport, assisted by the Ministry of Economic Affairs' AI coaching program, not only extends existing logistics services compliant with GDP regulations but will also use data integration and optimized AI technologies to help medical material businesses streamline and improve their logistics operations Complex logistics issues are solved using the Simulated Annealing SA algorithm To meet the 'Good Distribution Practices for Medical Devices,' Hsinchu Transport is not only actively introducing new logistics vehicles but will also implement artificial intelligence-based mathematical optimization technologies to assist in intelligent scheduling at nationwide business points and transshipment stations They aim to optimize the routing of medical materials between business points or regions thereby enhancing efficiency in the distribution process Currently, during the transshipment process of medical materials at Hsinchu Transport, detachable tractor heads and containers are used Each business point and transshipment station differ in location design and staffing, impacting the throughput per unit of time Furthermore, daily cargo conditions size, destination vary, and due to these fluctuating and distinct demands, the deployment of tractor heads and containers changes accordingly Under these circumstances, Hsinchu Transport relies on past experiences to schedule departures at each satellite depot and adjusts daily according to the cargo needs Due to the reliance on empirical scheduling, it is often difficult to consider all variables and considerations, leaving room for improvement in the current departure schedules The cargo delivery planning inherently constitutes an NP-Hard problem, difficult to solve with traditional analytical methods Hsinchu Transport, in collaboration with Singular Infinity, utilizes the Simulated Annealing SA algorithm to find solutions The new logistic service introduced by Hsinchu Transport is 'GDP Container Shift Planning' This planning involves estimating future volumes of medical materials between stations and scheduling container truck shifts accordingly, ensuring timely and quality delivery of medical materials while maximizing operational benefits and reducing travel distances Hsinchu Transport introduces AI-optimized shift planning, constructing the most efficient route from its origin to destination Hsinchu Transport introduces 'Optimized Shift Planning' service, reducing transportation costs by 5 The introduction method involves using cloud software services Hsinchu Transport regularly inputs 'Interchange Item Tables' from station to station into the 'Optimized Shift Planning' service After setting the algorithm parameters, a GDP container shift schedule is generated At the same time, developing a Hsinchu Transport medical material scheduling system allows Hsinchu Transport's medical transport units to compile suitable schedules through the Interchange Item Tables Under the same level of service, it's estimated that this can reduce transportation costs by 5, saving medical material businesses millions in construction costs for GDP warehouses and distribution Due to its requirements for sanitation, temperature, and its fragility, the transportation and transshipment of medical materials should be minimized to reduce exposure and risk However, logistics efficiency and costs must still be considered AI designs the most efficient route for each cargo from its origin to destination, effectively completing daily transportation tasks In response to the future high development demand of industrial logistics, distribution and transshipment AI optimization will be a key issue Through this project, a dedicated project promotion organization will be established, staffed with AI technology, IT, and process domain talents After accumulating implementation experience, the application of AI will gradually expand, comprehensively optimizing and transforming Hsinchu Transport's operational system, and partnering with AIOT and various AI domain partners to accelerate and expand the achievement of benefits「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
Massive Digital Engineering AOI Intelligent Robotic Arm Inspection System Significantly Improves Defect Detection Accuracy

Taiwan is known as a manufacturing powerhouse, yet quality defect detection has always been a chronic sore point in production lines While AOI equipment is available to assist, most use fixed machinery which are limited by angles, resulting in less precise diagnostics and high false positive rates Massive Digital Engineering introduced an AOI intelligent robotic arm detection system that effectively reduces false positives and increases the accuracy of defect detection Generally, the yield rate of products affects the costs for enterprises and the return rate for customers The quality defect detection process in the manufacturing industry often necessitates a substantial amount of quality inspection labor Although there is AOI equipment to assist, these tools are mostly fixed detection machines Fixed cameras are easily limited by angles, resulting in less precise diagnostics and high false positive rates Thus, personnel need to re-screen and inspect afterwards, often manually visual inspection misses defects on average about 5, and can be as high as 20 Three major pain points in manufacturing quality detection Robotic Arm AOI with dynamic multi-angle inspection helps to solve these issues According to the practical understanding by Massive Digital Engineering, there are three main pain points in detecting product quality within the manufacturing industry Pain point one, manual inspection of product quality is prone to errors Currently, the manufacturing industry largely relies on human labor to inspect product appearance, but human judgment often entails errors, such as surface scratches, color differences, solder appearance, etc The error rate in defect judgment is high, and can only be inspected at the finished product stage, often leading to whole batch rejections and high costs in labor and production Pain point two, inability to quantify and record data from quality inspections Traditional manual inspections do not maintain inspection data, which makes it difficult to assign responsibility when quality disputes occur Moreover, high-end contract manufacturing orders from overseas brands often require traceability and corresponding defect records, which traditional human inspection methods struggle to meet Pain point three, limitations of traditional AOI visual inspection systems Current manufacturing uses AOI visual inspection systems, which due to the limitations of visual software technology, employ fixed cameras, fixed lighting, and single-angle operations This method may handle flat or linear-shaped products like rectangular or square items at a single inspection point However, it is more challenging to implement for products with complex shapes eg, irregular automotive parts, requiring multi-point and multi-degree inspections Massive Digital Engineering developed an AOI intelligent robotic arm detection system, effectively improving the accuracy of defect detection To address the pain points in quality inspection in manufacturing, Massive Digital Engineering initiated the concept of developing a multi-angle, movable inspection device, starting with the combination of two representative technologies in factory automation - robotic arms and machine vision By integrating robotic arms with AOI for dynamic multi-angle AI real-time quality inspection, the limitations of fixed inspection systems are addressed, and visual inspection techniques are enhanced by leveraging artificial intelligence, further elevating the sampling of images from flat to multi-dimensional and multi-angular Selected the automotive industry as the real-world testing ground to quickly respond to customer needs The AOI intelligent robotic arm detection system, utilizing AI technology including unsupervised learning, supervised learning, and semi-supervised learning, allows operators to use unsupervised deep learning techniques to learn about good products even when initial samples are incomplete or there are no defective samples, applying it in the visual inspection of automatic welding of car trusses This can solve issues of limited angles with fixed machinery before implementation, less precise diagnostics, and high false positive rates Automotive components are high in unit price and demand a stricter defect detection accuracy In industries that have adopted AI services, the automotive manufacturing sector was chosen as the real-world testing ground Massive Digital Engineering states that the automotive industry mainly consists of related component manufacturers and components typically have a higher unit price, hence requiring more in terms of quality inspection and yield rates, and demanding stricter accuracy Therefore, the automotive sector was chosen as the area for introduction By using a robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection, not only can the defect quality error rate of automotive components be improved, but the fixed-point AOI optical inspection can be enhanced to meet the measurement needs of most industries and finally, establishing a third-party system platform to build an integrated monitoring system platform, enabling immediate response and action when issues arise This system allows for recording and storing important data of products leaving the factory, serving as a basis for future digital production lines and virtual production At the same time, in the event of defects, it can immediately connect to Massive's MES monitoring system, quickly responding to the relevant manufacturing decision-making department, subsequently utilizing ERP systems for project management and reviews, effectively improving production efficiency and reducing production costs Helps to reduce communication costs and aims to become an industry standard In terms of industry integration, it provides a foundational standard for data continuity among upstream and downstream businesses, reducing communication costs within the supply chain Through certification of the contract manufacturers and brand owners, there is a chance to become the industry standard configuration Through the data database established by this project, operators can further optimize their supply chain management solutions using big data analysis Data Analysis, based on data, establish forecast planning, and utilizing technology to link upstream and downstream data of the supply chain, accurately controlling product quality In the future, when interfacing with European, American, and Japanese markets, which demand highly fine-tuned orders, operators can respond and integrate the industry supply chain Supply Chain more swiftly Ultimately, through the benchmark demonstration industry's field verification, such as with the automotive component manufacturing industry used as the benchmark demonstration field, by implementing the robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection system project, the supply chain connection between automotive contract manufacturers and OEMs can be optimized, becoming the industry standard Further seeking more AI teams to join the cross-industry development on the field collaboration platform, driving the overall ecosystem combining AI innovation with field application Self-driving vehicle developed by Massive Digital Engineering「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」