:::

【2020 Application Example】 AI Fingerprint Recognition Model, Using AI to Digitize and Recognize Fingerprints at the Scene, Making Case Investigation More Immediate!

Accurate and fast fingerprint identification, restoring innocence to the innocent

'Fingerprints' are one of the indispensable pieces of evidence at crime scenes. At such scenes, numerous fingerprints are collected, including those of victims, related persons, and suspects. After forensics collects 'suspicious fingerprints', it is crucial to exclude 'related persons' or 'victims' to prevent matching innocent individuals and thus, wasting forensic resources.

Initial fingerprint evaluations are labor-intensive and time-consuming

According to a certain city's annual police statistics report for 2018, there were 43,558 criminal cases. Automated Fingerprint Identification Systems are expensive to set up (the NEC fingerprint recognition system currently used domestically can cost tens of millions). As such, investing huge assets solely for fingerprint exclusion is not feasible. Thus, forensic officers continue to manually compare fingerprints with the naked eye for exclusion, and only after exclusions are confirmed, the excluded items are logged into the 'Crime Scene Investigation and Evidence Room Management Information System' for future control before matching the fingerprints of 'suspected criminals'.

Based on current case data statistics, 90% of crime scenes involve 1 to 2 related persons and 1 to 5 suspicious fingerprints collected. For a scenario with one related person and three suspicious fingerprints, it takes 1.5 to 3 hours to complete the exclusion process. Considering the number of criminal cases in 2018, the exclusion process alone consumes a significant amount of time.

AI fingerprint reading leaves no place for criminals to hide!

The 'AI Fingerprint Recognition Model' developed jointly by Xinyang Technology Ltd. and Glory Technology AI team imports all fingerprint evidence collected by forensics at the scene into the 'Crime Scene Investigation and Evidence Room Management Information System'. Then, 'AI fingerprint comparison' is executed. The AI fingerprint reading program automatically detects fingerprint areas and extracts features. The system annotates the results based on the reading, confirming if the item can be 'related person excluded'. With AI, identification can be completed in just 2 to 3 seconds per case, making the fingerprint matching process at the scene faster and more automated.

The process of excluding related persons allows forensic experts to accelerate the timeline of identification

▲ The process of excluding related persons accelerates the forensic timeline

Integrating and establishing an electronic fingerprint database continues to optimize the AI fingerprint recognition model, enhancing case handling efficiency!

Through integrating and establishing an electronic fingerprint database and utilizing AI for fingerprint recognition, case handling efficiency can be significantly improved! The part of 'Fingerprint Database Integration' usually involves managing cases within a city's jurisdiction. To achieve horizontal linkage of fingerprints across all of Taiwan, it is necessary to integrate data from various municipalities, which can substantially improve the effectiveness of fingerprint technology in handling cases.

Additionally, 'Fingerprint Cards can be digitized'. Currently, fingerprints are directly pressed onto paper, then scanned into digital files for subsequent processing. If it were possible for individuals to directly press their fingerprints onto electronic collectors immediately, this would greatly enhance the timeliness of subsequent digitization.

The successes of this 'AI Fingerprint Recognition Model' are currently usable for police officers, but there are several aspects that continue to be optimized: including 'Execution Speed,' especially when used across different cases, and 'Accuracy of Judgment,' since the current AI model provides a basis for the manual judgment of police officers. Continuously fine-tuning the technology to ensure a consistent accuracy level could make it feasible to fully automate the exclusion process of related person's fingerprints.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

這是一張圖片。 This is a picture.
Testing Seat Contact Components AI Intelligent Flaw Detection

With rapid development in 5G, AIOT, automotive electronics, and other downstream sectors, the entire supply chain is expected to benefit from this consumer market As product demand momentum gradually increases, increasing production efficiency and reducing operational costs become the most important issues In order to meet the needs of customers for various packaging types, Yingwei Technology has been committed to developing highly customized test seats However, a resulting pain point is the inability to mass-produce and fully automate operations with machines some tasks still rely on manual execution In this project, the probe part of the test seat was outsourced in 2021, and under current and future large-scale demands, work hours, costs, supply, and quality are issues Yingwei faces The company achieves a defect detection rate of 9995, which seems high, but with an average inspector able to inspect 10,000 needles per day, there would still be 5 defective needles On a test seat that is only 3 cm wide with approximately 1,000 needles, just one defective needle could potentially lead to faulty testing at the customer end As the current operational mode relies on manual visual inspection, external factors such as fatigue or oversight of personnel, and subjective judgment by inspectors may lead to the outflow of defective products, which necessitates strict quality control of contact components We once sought to utilize optical inspections Rule-based for controlling the quality of appearances, but the metallic material of the contact components leads to light scattering, background noise interference, background scratches, and material issues that could result in misjudgments Therefore, we decided to look for AI technology service providers to solve our detection difficulties Developments of Dedicated AOI Line Scan Equipment To meet the needs for inspecting thousands to tens of thousands of probes within our company's IC test seats, traditional surface imaging and individual needle imaging would be too slow to achieve rapid inspection and labor-saving goals In response, the service provider proposed a trial with an AOI dedicated line scan module solution Utilizing a width of 63mm on the X-axis for reciprocal scanning of all probes on the test seat, the tests allowed for the simultaneous scanning of 8-9 probes, significantly enhancing the future detection efficiency of AOI machines This project will proceed with the aforementioned innovative Proof of Concept POC, focusing on the development of the line scanning equipment and performing imaging, learning, and training on both normal and abnormal probes provided by our company, with initial AI model training aimed at preliminary approval This project's customized line-scan imaging module Ideal future imaging result illustration A Single AI Technology Solution for MeasurementDetection Needs Unified use of AI DL CNN learning methods, instead of the current Rule-based system which necessitates defining each defect individually, to meet the needs for abrasion measurement and appearance defect detection of malfunctionsforeign objects When the same machine uses both measurement and detection technologies, not only does it increase costs, but it also affects the detection speed Hence, the service provider recommends the use of a line scan device for imaging Its resolution is sufficient for AI to simultaneously determine appearance defects and assess the condition of needle tip abrasion, as detailed below Line scan pixel imaging displaying needle tip abrasion conditions This AI detection technology meets both measurement and inspection needs for Yingwei, not only bringing more benefits to future probe testing but also introducing an innovative axis in AI technology Change the method of human inspection, enhance work efficiency and product quality After combining both hardware line scan and software AI model training approaches, we successfully ventured into new AOI detection applications Following the AI implementation POC, including the development and validation of a customized line scan module and an initial AI model, the plan is to officially develop the AOI machine next year and integrate it into the IC test seat production line Future Prospects Probe manufacturers upstream and downstream IC factory users both have needs for the AOI inspection machine upstream can ensure probe quality before leaving the factory, while downstream users can use this machine to regularly inspect the condition of numerous IC test seats in hand Given the future demands, the AOI machine is poised to have a significant positive impact on the IC testing industry in the foreseeable future 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
Maintaining the reputation of the “Kingdom of Yachts” - Kha Shing Enterprise introduces the first domestic FRP ultrasonic smart inspection of composite materials

The Kaohsiung-based Kha Shing Enterprise Co, Ltd was established over 40 years ago, and is Taiwan's largest customized yacht company with customers all over America, Europe, Asia, and Australia, earning Taiwan the reputation of the "Kingdom of Yachts" Current FRP hull inspection still relies on traditional methods, such as visual inspection and knocking sounds, which is time-consuming and labor-intensive Kha Shing has applied PAUT array ultrasonic inspection to hull FRP composite materials for the first time, and combined it with AI to interpret ultrasound images, develop complete intelligent solutions, and create emerging markets for inspection companies Kha Shing Enterprise Co, Ltd was formerly Kha Shing Wood Industry Co, Ltd, and was a factory specializing in wood import in Kaohsiung Linhai Industrial Park when it was first established It began to design, manufacture, and sell yachts in 1977 After the second-generation successor of the company, President Kung Chun-Hao entered the company, he made a breakthrough in the previous manufacturing model that relied mainly on the skills of master craftsmen, introduced digital manufacturing to accelerate shipbuilding, and began to make larger yachts, ranking in the top 20 manufacturers worldwide among manufacturers of large yachts over 24 feet It also set a record of delivering 94 yachts within one year, earning Taiwan the reputation of "Kingdom of Yachts" Defect detection ensures yacht quality, using AI to replace humans to achieve higher efficiency Defect detection is very important to ensuring yacht quality At present, the yacht industry still uses very traditional defect detection methods The hull structure is usually made by hand lay-up or the vacuum infusion process, using visual inspection or knocking and the frequency of the sound to determine defects It requires time-consuming manual inspection If there are any defects, they must be reworked and repaired, and a gel coat subsequently sprayed The hull must be constructed in sections to facilitate inspection For large yachts over 24 meters long, construction in sections is very time-consuming and labor-intensive To shorten the time of the yacht manufacturing process, Kha Shing Enterprise will first carry out the gel coating process for the hull, and then perform the hand lay-on process The hull manufacturing process has two types of composite material test specimen structures In terms of 54-foot yacht hulls, the hull contains gel coat, core material, fiber and resin, and the total thickness is about 32cmplusmn01cm, which is twice the total thickness of FRP hull without core material of about 16cmplusmn01cm Defects such as incomplete impregnation of glass fiber or residual air bubbles between glass fiber and resin occasionally occur during the manufacturing process The types of defects include insufficient resin, voids, and delamination Once defects occur, the supply of hull materials will be insufficient and yacht delivery will be delayed Schematic diagram of types of FRP hull In order to solve this problem, Kha Shing Enterprise has engaged in technical cooperated with the metal materials industry and the AI technology industry, combining the ultrasonic inspection expertise of the metal materials industry with AI technologies developed by the AI technology industry in recent years to help solve issues of Kha Shing Enterprise with defect detection The method uses PAUT on the composite material structure of yachts, conducts FRP ultrasonic evaluation to determine the thickness of the yacht hull and material properties, and evaluates the ultrasonic probe frequency applicable to the hull structure based on professional ultrasonic experience After testing, a frequency of 5MHz and a probe width of 45mm can successfully find the location and size of defects in the simulated defect test specimen The three parties jointly found defect detection solutions from array ultrasonic evaluation, AI technology model development, and actual application in yachts The image inspected is an ultrasound image The image displays different colors based on the ultrasonic feedback signal An AI model that automatically identifies defective parts is established through the YOLO algorithm If the amount of abnormal data collected is insufficient for training, the CNN-based Autoencoder algorithm is used to collect normal image data for training and construct an AI model for abnormality detection The object detection YOLO model is trained by inputting image data marked as having defects, while the abnormality detection model is trained by inputting image data without defects Simulated defective specimen corresponding to PAUT results Defect detection by and AI system can shorten the construction period by 15 months and speed up determination by 50 After the development of this AI system is completed, it will be validated on actual 54-foot yachts of Kha Shing Enterprise, and can effectively resolve issues with defects The application of AI technology in ultrasonic inspection for intelligent determination is expected to accelerate determination by approximately 50, and will also shortens the construction period by 15 months, effectively improving the speed and quality of the yacht manufacturing process As Taiwan develops larger and more refined yachts, it will create opportunities for industry optimization and transformation, as well as opportunities for the development of key technologies The application of an AI ultrasonic inspection solution for composite materials is the first of its kind in the yacht industry, and is expected to attract more yacht manufacturers with inspection needs The AI ultrasonic inspection solution for composite materials has three major competitive advantages 1 Professional inspection experience and digital database to facilitate process management and analysis 2 Automatic AI determination and identification quickly identifies defects and provides immediate feedback to process engineers 3 High-efficiency process inspection provides defect repair recommendations, reduces damage rate, and improves the strength and quality of composite materials The application of AI technology can optimize the yacht manufacturing process, reduce manual inspection, create added value through the application of AI in Taiwanrsquos yacht industry, increase international purchase orders, and allow Taiwan yachts to continue to enjoy a good reputation in the world Furthermore, this business model has also spread to fields of application related to composite materials, increasing cross-sector market usage It is estimated to contribute approximately NT14 to NT2 billion in economic benefits to Taiwan's equipment maintenance and non-destructive testing market

這是一張圖片。 This is a picture.
[2023 Case Study] AI Steps into Philanthropy: Stylish Tech at Food Banks

Taiwan Food Bank AssociationHereinafter referred to as 'the Association'With the mission of providing food aid, poverty relief, reducing food waste, and building a hunger-free network, there are locations across Taiwan that gather donations from wholesalers, intermediaries, retailers, manufacturers, and even generous individuals These sites also rescue food that would otherwise be discarded, properly allocate and distribute it to needy households, thus aiding local vulnerable families55Food banks at various locations collect daily donations from wholesale stores, intermediaries, retailers, manufacturers, and even benevolent individuals from all over Taiwan These places also rescue about-to-be-discarded edible materials, properly sort them, and distribute to needy households, assisting local vulnerable populations However, each location requires significant human and volunteer resources to manage daily operations using traditional methods of communication with non-profit organizations and donors After receiving donations, these resources are then allocated to needy families or individuals There is a potential issue of uneven distribution of resources due to a lack of digitalization and integrated information management in these processes Warehouse and Transportation Centers and Mini Food Banks Distributing Resources to the Disadvantaged The location under validation by the Kaohsiung Charitable Organizations Association,Hereinafter referred to as 'Kaohsiung Charity' In109year6month24Officially inaugurated Taiwan's first 'Food Bank-Warehouse and Transportation Center' at a location measuring200square meters, enhancing the efficiency of food resource redistribution, proper storage, and management So far, nearly two hundred tons of vegetables and fruits have been saved, serving over a hundred organizations and benefiting over5thousand vulnerable households, and continues to serve19mini food banks, with planned completion across multiple districts in Kaohsiung, distributing food resources to over10ten thousand vulnerable families Kaohsiung Charity 'Food Bank-Warehouse and Transportation Center' in the Dasha Community Photo Source Kaohsiung Charitable Organizations Association Challenges in Labor and Food Resource Management Facing the needs of a large number of economically disadvantaged families, the management of the 'Food Bank-Warehouse and Transportation Center' is particularly critical During procurement, tasks such as sorting, purging, and bookkeeping must be performed, while during shipment, food resource needs suggested by social workers must be followed These activities rely on manual judgment and accumulated experience Many volunteers involved are elderly and have limited physical strength, making warehouse tasks physically demanding and recruitment challenging If a large batch of food resources arrives, space and manpower are consumed in sorting and inventory management, raising concerns about the effective use of resources and turnover rate This highlights the challenge of scaling up food bank services while lacking corresponding labor and material management systems At the same time, food bank resources come from various donations, thus they vary greatly in type, shelf life, standards, and quantity Volunteers at mini food banks, mostly also elderly, must handle multiple responsibilities such as case services, food resource management,resource allocation, and resource development Sometimes they must also explain and accept immediate, large quantities of specific resources, such as adults receiving baby formula 'Food Bank-Warehouse and Transportation Center' Resource Inventory Relies Entirely on Manual Labor Mini Food Bank Volunteers Handle Multiple Responsibilities Photo Source Taiwan Food Bank Association Reducing Scrap Resources60 Increasing Speed of Resource Transfer80 To enhance resource management and ensure effective use of materials, and to address personnel shortages, this field validation case has introduced 'Food Bank Warehouse Resource CollectionAITo advance resource management, ensure effective use of resources, and solve manpower shortages, this validation site has implemented an 'Automated Early Warning Needs Assessment System' for the food bank's warehouse resource gathering The first part involves building a classification model, setting up and collecting warehouse information at the site, andAItraining the model Past sitewarehouse information is collected and stored in a database, allowingAIfor preprocessing, classification, and other tasks At the same time, depending on the dependency conditions of the types of goods as features, algorithms are introduced for computation and modeling, and the data collected is used for retraining, ultimately validating the field and organizing data for the five most common types of goods into training and test datasets as required The second part involves constructing the classification model using AI techniques further use of reinforcement learning constructs the management mechanism for the food bank's warehouse, perfecting the classification of donated goodsRNNTechnical construction of classification models further use of reinforcement learning constructs food bank warehouse management mechanisms, making the classification of donated goods perfectlike white rice, instant drinks, noodles, instant noodles, and canned goodscan then be automatically assigned storage based on storage assignment principles AI Service System Process and Description Source Taiwan Food Bank Association AtAIUnder forecasts, it can optimize the speed of resource transfer and allocation, effectively and accurately match resource donations reducing the loss in the donation process, increase the accuracy of resource distribution, and improve the service rate—the successful donation rate—reducing the waste of resources due to incorrect items, and enabling instant monitoring of food resource stock, ensuring operators can respond quickly to needs, effectively providing resource assistance WithAIthe system's introduction and the establishment of data intelligence, it helps the operations of the warehouse and transportation center, allowing more time for the allocation of donated goods The introduction aims to accelerate the digital service rollout for social welfare organizations, thoroughly addressing the needs of the overall vulnerable segments of society Using the system for resource allocation and dispatching Photo Source Kaohsiung Charitable Organizations Association Following this field validation, it is possible to expand the system to other food bank service pointsAIThe system can also collaborate with more non-profit organizations, public welfare groups, and charitable organizations, expanding 'Food Bank Warehouse Resource CollectionAIAutomated Early Warning Demand Assessment System' application range such as medical supply distribution, helping more organizations manage and distribute more intelligently, reducing resource wastage, and enhancing social welfare 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」