:::

【2021 Application Example】 Unmanned Intelligent Vending Machines - Black Wo Coffee Creates Boutique Coffee in a Minute

Technology also carries the aroma of coffee!

Situated on Gaogong Road in the Southern District of Taichung, the original Black Wo Coffee store covers a space of 28 ping, filled with the scent of coffee mixed with cultural creativity and technology. Since its establishment in October 2016, Black Wo Coffee has expanded to 7 directly managed stores and 28 franchise stores across Taiwan. Among the 15,000 coffee sellers nationwide, Black Wo Coffee has risen uniquely through the use of AI technology to create an unmanned intelligent vending machine that brews exquisite and aromatic coffee in just one minute.

Black Wo Coffee's physical store creates a culturally creative and fashionable atmosphere (Image: Black Wo Coffee official website)

▲ Black Wo Coffee's physical store creates a culturally creative and fashionable atmosphere (Image: Black Wo Coffee official website)

According to the International Coffee Organization (ICO), Taiwanese people consume 2.85 billion cups of coffee annually, with the market size exceeding 70 billion NT dollars; Ambitiously, as per Starbucks' survey, by 2018 the overall Taiwanese coffee market reached 72 billion NT dollars and rose to 90 billion by 2020. Over the last five years, the Taiwanese coffee market has expanded annually by about 20%, showing remarkable growth potential.

Coffee demand presents incredible business opportunities, growing at a rate of 20% annually

With coffee now being a symbol of fashionable consumption in Taiwan, aside from first-tier coffee shops like Starbucks and Louisa, there are convenience stores like 7-11 and FamilyMart, and numerous boutique coffee houses scattered through the streets and alleys. How to capture consumer attention and stand out in the 'red ocean' of the coffee market requires flexibility and creativity, understanding consumer needs and tastes, which are also essential for cultivating brand loyalty.

Beyond physical storefronts, Black Wo Coffee is also actively developing digital channels. Its ecommerce platform includes the official website, PChome, momo, and group-buying hosts, providing multiple channels and ensuring steady growth in performance. Even so, the founder of Black Wo Coffee, Lin Pei-ni, continually seeks innovation. Due to the passive and scattered situation with franchise stores in the first three years, it was difficult to actively grasp market trends and the company noticed a certain lag in communicating with consumers and keeping up with brand dynamics, making it challenging to cultivate loyal brand advocates.

▲ Artisan boutique coffee is deeply beloved by consumers. (Image: Black Wo Coffee official website)

Through the AI Eagle Eye System, market intelligence costs are significantly reduced

To address the dual challenges of not being able to quickly capture market trends and high market research costs, Black Wo Coffee introduced the AI Eagle Eye System in 2020 to scout market intelligence. By comprehensively crawling articles from social websites, news platforms, and forums, automatically tagging, and suitably filtering, this system scanned 4,858 articles using 24,290 keywords, enabling precise insights into consumer preferences at minimal costs.

At the same time, after launching new products, not only can franchise stores be notified promptly, but the acceptance level of consumers can also be assessed through social platforms. It serves as a reference for whether to promote aggressively. Through the collection of data and analysis by AI algorithms, consumer-preferred flavors are selected, reducing the risks associated with new launches and increasing the success rate of new products. Therefore, in 2021, Black Wo Coffee boldly explored new markets by introducing the world's first AIoT smart coffee innovative concept in collaboration with Pxmart for the first 'Intelligent Supermarket', integrating Black Wo Coffee to create an unmanned intelligent hand-drip coffee machine for consumers to enjoy a unique flavor experience.

Insight into consumer tastes leads to the creation of AIoT Unmanned Intelligent Vending Machines

Taiwan's first Pxmart 'Intelligent Supermarket' in Neihu, Taipei introduces the world's first AIoT smart coffee concept store, able to interact with the AI smart coffee vending machine, AI hand-washing coffee machine, and AI vacuum cold brew machine through a mobile app, meeting three different coffee technology experiences in one place. The self-service area features the only unmanned intelligent coffee vending machine in Taiwan that uses chilled milk to make milk foam, selecting Black Wo's 5A grade milk, and completing the payment, grinding, and brewing all within one minute.

The first Pxmart 'Intelligent Supermarket' was established on Ruiguang Road in Neihu District, Taipei. (Image: Pxmart FB fan page)

▲ The first Pxmart 'Intelligent Supermarket' was established on Ruiguang Road in Neihu District, Taipei. (Image: Pxmart FB fan page)

The Pxmart Intelligent Supermarket features an AI smart coffee vending machine, which is operated using an app to enjoy aromatic coffee. (Image: Pxmart FB fan page)

▲ The Pxmart Intelligent Supermarket features an AI smart coffee vending machine, which is operated using an app to enjoy aromatic coffee. (Image: Pxmart FB fan page)

Now, with the addition of AI technology elements, drinking coffee is not just about having coffee; it also brings more brand-new tech experiences and conveniences to consumers.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
Preventing Problems Before They Arise: Leadtek Research Develops AI Technology for Early Detection of Heart Failure Symptoms

With the increase in the elderly population, the incidence of various chronic diseases is rising daily Among these, heart failure is not only a silent killer it has a very long disease course with a high recurrence rate, leading to increased burden on healthcare personnel However, by using medically certified electrocardiography acoustics devices, coupled with AI predictive assessment of heart failure risk and remote care systems, diagnosis can be aided significantly, helping doctors make accurate diagnoses for subsequent patient medical care or referrals Heart failure has a lengthy course and medical expenditure is five times that of diabetes If you find yourself short of breath even with minimal movement, or if you wake up from sleep needing to sit up to feel comfortable, or if you have symptoms such as swollen lower limbs, anxiety, restlessness, fatigue, or a loss of appetite, be cautious These could be signs of heart failure According to statistics, there are about 60 million people with heart failure worldwide, with 5 million new cases every year In China, nearly 290 million people suffer from cardiovascular diseases, accounting for the second leading cause of death among urban residents around 12 million of these are heart failure patients, accounting for over 59 of cardiac-related deaths The disease course of heart failure is exceptionally long, and both its recurrence and rehospitalization rates are exceedingly high, resulting in medical costs that are twice that of hypertension and five times those of diabetes According to US research statistics, the 30-day mortality rates for patients with myocardial infarction and heart failure are respectively 166 and 111, and the rehospitalization rates within 30 days are 199 and 244 The symptoms of heart failure, because they are similar to those of other diseases such as chronic obstructive pulmonary disease and asthma, have an 185 misdiagnosis rate, which poses a challenging problem for healthcare institutions Leadtek, a major graphics card manufacturer, has been investing in the medical and healthcare sector since 2000 Following two heart attacks in 2011 and 2015 experienced by Chairman Lu Kunshan, Leadtek has focused on health big data, independently developing AI technology for heart failure recognition This AI application reads patients' electrocardiograms and phonocardiograms to perform anomaly detection and model prediction of heart failure risk, enabling early detection of disease symptoms Leadtek independently developed heart failure AI recognition technology to predict medical history and risk Leadtek's independently developed heart failure AI recognition technology has the following three judgment functions 1 Prediction of heart failure history Classifies electrocardiogram and phonocardiogram data into 'with hospitalization history of heart failure' and 'no history of heart failure' 2 Risk prediction of heart failure Provides a predictive risk value of heart failure occurrence based on the electrocardiogram and phonocardiogram data 3 Prediction of heart failure recurrence risk For patients with heart failure, it reads their phonocardiogram and electrocardiogram data, assessing the risk prediction of heart failure recurrence Leadtek states that the application of heart failure AI recognition technology can assist doctors in making more efficient and accurate diagnoses, facilitating subsequent medical treatment or referrals for patients As an instance, in studies of heart failure patients discharged from Taipei Veterans General Hospital, using the EMAT Electromechanical Activation Time index and SDI Systolic Dysfunction Index calculated by the synchronized electrocardiography-acoustic device as treatment guidelines resulted in a higher survival rate compared to those treated based on traditional symptoms This research has also been published in the authoritative international cardiology journal JACC, receiving recognition in the international market System manufacturers can apply heart failure AI recognition technology for other value-added applications Leadtek states that cooperating system manufacturers can choose to build their own heart failure AI risk prediction engine, uploading their system's electrocardiogram and phonocardiogram data to Leadtek's heart failure AI risk prediction engine, which then returns risk prediction values for integration by system manufacturers cooperating manufacturers as a value-added application input Not just for clinical use, the heart failure AI risk prediction engine can also be extended for use at home or in the workplace Additionally, this system can be extended to other applications, including One, hospital outpatient screening Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to conduct a 10-second rapid test in outpatient and emergency departments to assess a patient's cardiac history and heart failure risk Two, discharge risk assessment Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to assess the heart failure risk during a patient's hospital stay The test data can serve as a pre-discharge risk assessment and prognostic indicator Three, continuous home care Patients can use the electrocardiogram and phonocardiogram recorder, wearable electrocardiogram recorder, and transmit through a home transmission box gateway to measure electrocardiogram and phonocardiogram signals at home and upload them to the amor health cloud platform for heart failure AI risk prediction analysis Patients can manage their health autonomously via an APP, reviewing historical physiological trends disease management nurses can manage member health through the health management backend Web Four, home rehabilitation training Patients can wear a health bracelet to monitor activity, fatigue, circulation, and sleep, autonomously managing their health through the mobile APP and observing the risk of heart failure, engaging in exercise and rehabilitation training to aid in swift recovery The heart failure AI recognition technology system can also be extended to employee home care applications Additionally, in factories or offices, this system can also achieve employee health management goals, with applications including One, workplace safety units Provide employees with wearable electrocardiogram recorders before they start work duties Two, physiological monitoring for business executors While executing business duties or training, employees wear wearable electrocardiogram recorders for fatigue warnings, signaling whether physiological conditions allow continued execution of tasks Task segments can use data transmission boxes or apps to upload physiological monitoring information to the health management platform, assessing the heart failure risk for operations staff, with test data serving as an indicator for enterprise resource human units and public safety Three, workplace physiological monitoring center care The workplace physiological monitoring center can inspect and record employees' historicalphysiological trends through the health cloud platform Four, workplace nursing units Nursing units receiving instructions from the physiological monitoring center can provide health management advice based on employees' physiological trends nursing centers can manage employee health through the health management backend Web Five, employees can wear health bracelets to monitor activity, fatigue, circulation, and sleep, autonomously managing their health and observing the risk of heart failure through the mobile APP, engaging in exercise and rehabilitation training to aid in rapid recovery Workplace application of heart failure cloud care and big data center diagram「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
CCTV Intelligent Video Search System

Search for a specific person, find someone with a suitcase entering the factory in Gao'an area Color features of the person and the object confirmed, person in blue and black top, suitcase in black color, throughCCTV the intelligent video search system, by setting object and color retrieval conditions, it can successfully locate three video clips containing the target subject This greatly aids operational staff in finding the target items, and through this system, search speed can far surpass manual effort6fold Pain Points The CSE-Kaohsiung Plant is densely equippedCCTVto monitor every corner of the plant area, but when an incidenthappens, it's impossible within a limited time throughCCTVvideo playback to find the incident, the implications and risks behind this are self-evident Many areas that are usually unmanned can easily become security blind spots Thus, how to monitor a vast plant area more intelligently and effectively is one of the crucial aspects of building a smart plant for the semiconductor industry The AES Plant in Kaohsiung covers a vast area, with many important sites requiring monitoring of personnel movements to ensure corporate secrets and employee safety 1 Automated production lines and warehouses In semiconductor enterprises’ automated production lines and warehouses, oftenAGV(Automated Guided VehicleAGVs automated guided vehicles travel at high speeds if plant personnel inadvertently enterAGVthe moving area and cannot issue a warning to the person, then the regrettable accidents that occur will be too late to reverse 2 Material and product storage areas Materials used in semiconductor-related processes are costly if areas storing materials or products are breached, there is a risk of loss of high-value materialsproducts 3 High-security areas Trade secrets relate to the core technological competitiveness of semiconductor-related enterprises if someone breaches the high-security areas, there is a risk of corporate secrets being leaked The safety of trade secrets has always been one of the most critical issues for semiconductor enterprises 4 Loading docks At AESLButthe dock area often has loading vehicles coming and going if someone intrudes into the dock area, there is a risk of vehicle collisions and accidents Additionally, goods awaiting shipment at the dock area could be stolen or potentially damaged from collisions, thus causing significant reputation and financial losses for the company, further leading to production and shipping inconvenience When an abnormal event occurs, how to quickly search for the relevant key footage from massive data Many important locations within the AES Kaohsiung Plant need to be equippedCCTVfor safety checks, butCCTVWith thousands to tens of thousands of cameras, manually searching through footage for an event requires laborious frame-by-frame review which is time-consuming and inefficient In light of advancements in computer vision, it's beneficial to utilizeAIto replace manual playback and searching Problem Scenario Object Detection The data source for object detection comprises two parts Open-source datasetsOIDv4and AES Kaohsiung PlantCCTVImage files For these files, search for usable data, specificallyOIDv4image files For these files, extract the defined nine major categories of objects for training data among them, two object categories, knives and gasoline barrels, were not found inOIDv4found usable data for knives and gasoline barrels, while the remaining seven categories of objects are available fromOIDv4useful training data found for the remaining seven categories of objects, all marked Regarding the Kaohsiung PlantCCTVimage files, select some frames Frame of the footage, and manually annotate the objects to be_detected for training and testing data Nine Major Objects Color Recognition The data source for color recognition is divided into two partsInternet image screenshots, and Kaohsiung PlantCCTVimage files Currently, no publicly available open-source datasets specifically for color recognition applications have been found, so images are collected from the web Search the web for images of the defined nine major object categories, save the images after separating the objects from the background, keeping only the object sections, and mark the images according to color Additionally, for the Kaohsiung PlantCCTVimage files, use the already-markedbounding boxextractCCTVimage files from variousFramesections of objects identified by color, and finally, visually identifiable images are marked according to color Each object category has its specific color definition, depending on the usual colors seen in these objects in real life Dynamic Ignore during Training FromOIDv4during the training of the object detection pilot model, since each image in this dataset is only marked for a single category, but the image may contain other desired detection categories unmarked For such cases, dynamic ignore techniques will be employed during training to avoid confusion Next, use the extracted training data from the Kaohsiung Plant toFine-Tuneenhance the detection rate of the object in specific designated areas Finally, select the model that computes the lowest loss value in the test set during the training process as the main object_detection model Dynamic Ignoring AIHelp You View CCTV The intelligent video search system primarily serves as an assistive system for searching surveillance footage, capable of speeding up the process of finding target events by setting search conditions for objects By simply defining the search conditions, you can quickly produce thumbnails of critical objects and playback for review, shortening the time required for manual case retrieval of the past The search time is quickly6doubled, allowing the front-end security unit to use this platform to strengthen the first line of risk management supervision and take timely preventive measures 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data