:::

【2019 Application Example】 Smart agriculture and fisheries digital twin: A highly efficient and sustainable agriculture and fisheries upgrade solution. How did the AI technology called "digital twin" triple the output of aquaculture?

Relying on nine types of sensors to detect water quality, while monitoring the growth of the farmed species and fishermen's behavioral decisions, the artificial intelligence (AI) solution "Smart Agriculture and Fisheries Digital Twin" can significantly increase production by 300%. The “Happy Harvest” - style high-tech integrated solution allows novices to get started quickly. It significantly reduces the reliance of agriculture and fisheries on experience, and makes it more appealing for young people to return to their hometowns to work in agriculture and fisheries.

There was a time when Facebook games were just starting to become popular, and everyone could be called a farmer due to the popular game “Happy Harvest.” Office workers took out their mobile phones one by one during their lunch breaks and started living the life of a happy farmer life on their mobile phones. Some people were naughty, secretly went on Facebook during work hours to steal the harvest from their colleagues. The game was so therapeutic that some people actually went into the fields to become farmers during the holidays. If I said that "Happy Harvest" really exists, would you believe me? THE "Digital Twin" -"Smart Greenhouse" and "Smart Farm" solutions developed by the Innovative DigiTech-Enabled Applications & Service Institute (IDEAS). Institute for Information Technology (III) are "Happy Harvest" and "Happy Fish: Dream Aquarium" in real life.

Here, nine sensors based on IoT will continuously monitor the "facility factors" of the crop/aquaculture growth environment, such as water quality, and upload them to the cloud through the control box. The AI robot in the cloud will continue to simulate a digital twin in the system, receiving "facility factors" such as water temperature and dissolved oxygen, and continuously collecting "growth factors" for the growth status of crops/farmed species. A simulated "digital twin" of the fisherman is created in the cloud system, and the AI robot will also calculate appropriate "behavioral decisions" based on the successful strategies of past fishermen.

When the oxygen content is low and the water temperature exceeds the standard, AI will suggest you to make behavioral decisions, such as turning on the water wheel, turning on the aerator, or using medication. Fishermen use their own experience or knowledge to decide whether to follow the suggestion. Afterwards, the system will compare the results of the decision, and fishermen can also judge based on the results whether the decision made by a real person is better than the behavioral decision made by the “digital twin.”

In addition, the digital twin AI of smart agriculture operates in the background around the clock, silently recording and analyzing the corresponding "behavioral decisions" of fishermen in response to various "facility factors" and "growth factors" in smart farms. Decision-making", slowly establishing the best solution model for the farming strategies. Slowly, AI silently learns these "tacit knowledge" from fishermen like a little apprentice at their side, so that this knowledge will not be lost when the fishermen retire.

Moreover, this technology can not only be used to "farm fish," but also "farm vegetables." These optimized farming models can become a precious database. Even novices who have just entered the industry can skip the process of exploration and directly become a master.

The greatest challenges currently faced are: insufficient manpower, aging population, loss of experience, and high cost of new technologies

Taiwan is famous for its agricultural technologies and farming technologies. However, small farmers generally have a shortage of manpower and aging workers. Digital transformation is imperative. The cost of new technologies is too high for 80% of small farmers and fishermen. Since there are too many uncertainties in environmental factors, such as climate change, and water quality changes, they are all highly dependent on experience. Therefore, the most severe challenge comes from farmers and fishermen retiring before young farmers and fishermen can take over, and many years of experience are lost because they cannot be passed on.

Smart agriculture and fisheries digital twin allow continuous optimization without downtime

"Digital twin" is an emerging technology that combines AI and HI craftsman wisdom, and was rated by Gartner as one of the top ten key technologies for the future for three consecutive years. The Department of Industrial Technology, Ministry of Economic Affairs began to engage in R&D of digital twin in 2016. It believes that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning. In the field of aquaculture, the "digital twin" of AIoT (Artificial Internet of Things) for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen. Using the analysis of "facility factors" constructed from different types of water quality data and “growth factors” such as fish and shrimp images and disease symptom images, as well as the "behavioral decisions" of fishermen, to train AI can produce optimized models for water quality management, aquatic product growth management, and aquatic disease management.
智慧養殖魚電共生魚塭示意圖▲The "digital twin" of AIoT for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen

These AI management models are combined to create a smart farming solution with high survival rate and high feed conversion rate. The entire farming process has digital monitoring data and quality that can be analyzed. Traceability can reach the initial stage of farming, greatly improving the quality, value, and output of aquatic products.

Despite promising prospects, there are still many challenges

The III IDEAS first become involved in “digital twin” due to a forward-looking technology project supported by the Department of Industrial Technology, Ministry of Economic Affairs in 2018. At that time, the Department of Industrial Technology believed that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning.

Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan subsequently supported the application of "digital twin" in smart agriculture. "The application of digital twin technology in agriculture helps small farmers digitally accumulate experience, and improves their agricultural skills through the interaction of group experience and AI, resolving the greatest challenge of intelligent agriculture.” Intelligent agriculture digital twin technology is expected to increase production efficiency by 30% after commercialization and is quite promising.

Interview picture of Qiu Jingming, team leader of the Service Innovation Institute
▲Team leader Qiu Jingming: "The behavioral decisions made by powerful fishermen are three times better than those of ordinary fishermen in terms of results."

 

Digital Twin: Aqua-Solution

Digital Twin: Aqua-Solution

After working with technology-based aquaculture companies and gaining support from an industry project of the Industrial Development Bureau, Ministry of Economic Affairs, III IDEAS applied digital twin technology in the field of "smart fish farms." The field application team responsible for aquaculture pointed out: “In fish farms, fishermen often make different behavioral decisions when facing various environmental changes. The behavioral decisions made by experienced fishermen are three times better than ordinary fishermen in terms of results. For example, the survival rate of white shrimps is generally about 10%, but some fishermen can achieve a yield of up to 30%. This reduced production costs and tripled profits.
Digital twin technology can pass on the tacit knowledge of these experts and ultimately upgrade the entire industry."

The "digital twin" is composed of 9 sensors, fish images, and fishermen's behavioral decisions

9 sensors, constantly monitoring "facility factors" such as water quality

IDEAS uses nine sensors to monitor water quality,  including dissolved oxygen, water temperature, pH, salinity, turbidity, ammonia nitrogen, nitrate, chlorophyll a, and ORP (Oxidation-Reduction Potential), in order to obtain the environmental data of various farms. These factors are also known as “facility factors.”

In addition, fishermen will regularly take fish and shrimp out of the pond, or use submersible cameras to take pictures of farmed species underwater. This is used to determine the current size of the farmed species and its growth condition, which is also called "growth factor."

「設施因子」、「成長因子」再加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。

▲"Facility factors," "growth factors" plus "behavioral decisions" made by fishermen in different situations can create a "digital twin" in the cloud server. (Source of diagram: Taiwan Salt Green Energy Co., Ltd. commissioned Sanyi Design Consultants Co., Ltd. to design) 

With these two factors plus "behavioral decisions" made by fishermen in different situations, a "digital twin" can be created in the cloud server.

In this game-like "digital twin," we can simulate as much as we want to find the best "behavioral decision" under different "facility factors" and obtain the optimal "growth factor.”

To put it in a way that is easier to understand, readers can try to imagine that we have a game called "Happy Fish Farm." The environmental parameters of the fish farm are all recorded from actual situations. We also record the behavioral decisions made by each "Happy Fish Farm" player under different environmental parameters and the final results. When the number of recorded data sets is sufficient, a digital twin of the fish farm can be obtained from machine learning, and then real-time data is simulated to obtain optimal combinations. This simulated world is the "digital twin" of "Happy Fish Farm."

How is the issue of sensors easily being damaged resolved?

However, there will always be challenges in the R&D process. For example, underwater sensors such as water temperature and dissolved oxygen sensors are often damaged due to algae growth. Underwater cameras that record the size of fish are often blurred and unrecognizable due to sediment or algae pollution on the bottom of the pond.

There are two solutions for overcoming the issue with sensor damage. One is to regularly scoop water out from the pond and pass it through the sensor for detection. The other is to make the sensor into a box and put it into the pond every day to detect the water quality.

As for the growth condition of fish and shrimp, fishermen only need to fish them out of the pond every day to take pictures and measure them. Low cost and effective.

Team leader Chiu said: "We are currently developing a 9-in-1 water quality detection box. After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee."

Team leader Chiu of IDEAS of the III said: "The issue with sensor damage is the cost. Even though it provides great benefits, it would be meaningless if fishermen are not willing to use it due to high cost. We are currently developing a 9-in-1 water quality detection box. After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee. We are now very close to completing the integration, and welcome companies to discuss cooperation.”

Difficulties in recording fishermen’s behavioral decisions

Another challenge comes from fishermen. Some fishermen will consciously record the water quality and environmental indicators they observe every day, and record their own operating strategies and results. However, not every fisherman will do this. This is why it is necessary to use GAN (generative adversarial network) technology, which is very important in AI.

GAN will generate possible strategies of fishermen based on past data, i.e., it "guesses" the fishermen's decisions to supplement the behavioral decisions that the fishermen do not input. If it is completed by fishermen afterwards, it will not affect the training data set.

After the award-winning technology is put into mass production, 300% production efficiency will no longer be out of reach

Current applications of "digital twin" technology worldwide are mostly in aerospace and manufacturing. Taiwan and the Netherlands are the first to engage in the R&D of digital twin in intelligent agriculture. Therefore,the "Intelligent Agriculture Digital Twin" winning the U.S. R&D 100 Awards is proof of Taiwan’s technological leadership. We are currently completing the integrated water quality monitoring box and total solution, and the product is expected to increase production efficiency by 300%.

In the future, "digital twin" technology will not only be used in agriculture and fisheries, but can also be extended to industries that originally relied on "tacit knowledge", such as tea making, fisheries, etc. Due to the digitization of the entire process, quality no longer relies on experience and the weather. This can upgrade farmers' technology for "AI monitoring" and "precision production." In addition to improving the productivity of traditional agriculture and fisheries, it also has a good chance of achieving sustainable operations, upgrading the entire industry, and making it more appealing for young people to return to their hometowns to work in agriculture and fisheries.

Reference materials: A key piece of the puzzle of smart manufacturing! Innovative sensing technology that accelerates the realization of "digital twin" - Digital era

Recommend Cases

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
Maintaining the reputation of the “Kingdom of Yachts” - Kha Shing Enterprise introduces the first domestic FRP ultrasonic smart inspection of composite materials

The Kaohsiung-based Kha Shing Enterprise Co, Ltd was established over 40 years ago, and is Taiwan's largest customized yacht company with customers all over America, Europe, Asia, and Australia, earning Taiwan the reputation of the "Kingdom of Yachts" Current FRP hull inspection still relies on traditional methods, such as visual inspection and knocking sounds, which is time-consuming and labor-intensive Kha Shing has applied PAUT array ultrasonic inspection to hull FRP composite materials for the first time, and combined it with AI to interpret ultrasound images, develop complete intelligent solutions, and create emerging markets for inspection companies Kha Shing Enterprise Co, Ltd was formerly Kha Shing Wood Industry Co, Ltd, and was a factory specializing in wood import in Kaohsiung Linhai Industrial Park when it was first established It began to design, manufacture, and sell yachts in 1977 After the second-generation successor of the company, President Kung Chun-Hao entered the company, he made a breakthrough in the previous manufacturing model that relied mainly on the skills of master craftsmen, introduced digital manufacturing to accelerate shipbuilding, and began to make larger yachts, ranking in the top 20 manufacturers worldwide among manufacturers of large yachts over 24 feet It also set a record of delivering 94 yachts within one year, earning Taiwan the reputation of "Kingdom of Yachts" Defect detection ensures yacht quality, using AI to replace humans to achieve higher efficiency Defect detection is very important to ensuring yacht quality At present, the yacht industry still uses very traditional defect detection methods The hull structure is usually made by hand lay-up or the vacuum infusion process, using visual inspection or knocking and the frequency of the sound to determine defects It requires time-consuming manual inspection If there are any defects, they must be reworked and repaired, and a gel coat subsequently sprayed The hull must be constructed in sections to facilitate inspection For large yachts over 24 meters long, construction in sections is very time-consuming and labor-intensive To shorten the time of the yacht manufacturing process, Kha Shing Enterprise will first carry out the gel coating process for the hull, and then perform the hand lay-on process The hull manufacturing process has two types of composite material test specimen structures In terms of 54-foot yacht hulls, the hull contains gel coat, core material, fiber and resin, and the total thickness is about 32cmplusmn01cm, which is twice the total thickness of FRP hull without core material of about 16cmplusmn01cm Defects such as incomplete impregnation of glass fiber or residual air bubbles between glass fiber and resin occasionally occur during the manufacturing process The types of defects include insufficient resin, voids, and delamination Once defects occur, the supply of hull materials will be insufficient and yacht delivery will be delayed Schematic diagram of types of FRP hull In order to solve this problem, Kha Shing Enterprise has engaged in technical cooperated with the metal materials industry and the AI technology industry, combining the ultrasonic inspection expertise of the metal materials industry with AI technologies developed by the AI technology industry in recent years to help solve issues of Kha Shing Enterprise with defect detection The method uses PAUT on the composite material structure of yachts, conducts FRP ultrasonic evaluation to determine the thickness of the yacht hull and material properties, and evaluates the ultrasonic probe frequency applicable to the hull structure based on professional ultrasonic experience After testing, a frequency of 5MHz and a probe width of 45mm can successfully find the location and size of defects in the simulated defect test specimen The three parties jointly found defect detection solutions from array ultrasonic evaluation, AI technology model development, and actual application in yachts The image inspected is an ultrasound image The image displays different colors based on the ultrasonic feedback signal An AI model that automatically identifies defective parts is established through the YOLO algorithm If the amount of abnormal data collected is insufficient for training, the CNN-based Autoencoder algorithm is used to collect normal image data for training and construct an AI model for abnormality detection The object detection YOLO model is trained by inputting image data marked as having defects, while the abnormality detection model is trained by inputting image data without defects Simulated defective specimen corresponding to PAUT results Defect detection by and AI system can shorten the construction period by 15 months and speed up determination by 50 After the development of this AI system is completed, it will be validated on actual 54-foot yachts of Kha Shing Enterprise, and can effectively resolve issues with defects The application of AI technology in ultrasonic inspection for intelligent determination is expected to accelerate determination by approximately 50, and will also shortens the construction period by 15 months, effectively improving the speed and quality of the yacht manufacturing process As Taiwan develops larger and more refined yachts, it will create opportunities for industry optimization and transformation, as well as opportunities for the development of key technologies The application of an AI ultrasonic inspection solution for composite materials is the first of its kind in the yacht industry, and is expected to attract more yacht manufacturers with inspection needs The AI ultrasonic inspection solution for composite materials has three major competitive advantages 1 Professional inspection experience and digital database to facilitate process management and analysis 2 Automatic AI determination and identification quickly identifies defects and provides immediate feedback to process engineers 3 High-efficiency process inspection provides defect repair recommendations, reduces damage rate, and improves the strength and quality of composite materials The application of AI technology can optimize the yacht manufacturing process, reduce manual inspection, create added value through the application of AI in Taiwanrsquos yacht industry, increase international purchase orders, and allow Taiwan yachts to continue to enjoy a good reputation in the world Furthermore, this business model has also spread to fields of application related to composite materials, increasing cross-sector market usage It is estimated to contribute approximately NT14 to NT2 billion in economic benefits to Taiwan's equipment maintenance and non-destructive testing market

這是一張圖片。 This is a picture.
AI-Based PCBA Surface Defect Detection Improvements

With the introduction of theAOIAIWith the introduction of the system, we can improve product yield, reduce costs, and from a business perspective, increase customer trust and sales revenue Moreover, AIit has advantages that are difficult to imitate, unlike other equipment that can be bought with money, making it hard for our competitors to catch up with us Our company's current development We are committed toIOTsmart manufacturing our systems already include smart materials systems, environmental humidity control systems, anti-miscarriage systems, smart procurement computation systems, smart inventory systems, solder paste management systems, and production management systems We have asked other manufacturers about the possibility ofAIinspectingPCBAsurface defects, each hoping that we would purchase their equipment, but none were effective upon verification After discussing with IT service providers, we defined it asAOIAIa feasible operational model Tzuhong Technology has invested inAOIAIan inspection plan to checkSMTtext on components, solder joints, polarity, missing partsand usingAIto replace manual learningAOIand define the 'potentially defective' parts, enhancing productivity and reducing misjudgment rates Industry pain points Taiwan faces a severe labor shortage, especially those willing to perform visual inspections are few and typically older, increasing the frequency of missed inspections Thus, the most critical bottleneck in the pursuit of high-quality electronics has become post-production inspections Previous consumer products with undetected anomalies were acceptable within a certain ratio However, in the automotive industry today, undetected defects could lead to fatalities hence, the automotive industry has extremely high quality demands To survive in the automotive supply chain, we must address the issue of undetectable anomalies Moreover, as wages in Taiwan continue to rise, we can only endeavor toAIreplace traditional manpower with technology, otherwise, even if the anomaly leakage problem is resolved, the relatively high labor costs will still prevent competitiveness in this industry Application technology and explanation Initially,Figure 1,PCBUpon emerging,Reflowsystem, it will undergoAOIwill undergo inspection, dividing into 'suspected defective' and good products At this point, the 'suspected defective' portion accounts for20manual review for these20parts, further classifying the 'suspected defective' portion into good and defective products With We aim to leverageAItechnology, to shift from manual re-inspection of these20technology, we aim to replace manual review of 'suspected defective' products withAIand after review, the results still yield 'good' and 'suspected defective' products, but now 'suspected defective' comprises only3thus reducing the workload of Tzuhong's employees from20down to only3In theory, it isAOIIn theory, after inspection, it is further reviewed byAIbut it appears to go throughAOIonly, so we call this technologyA0IAIDetectionFigure 2。 The original AOI inspection process The operator will place the testPCBboard intoAOIthe inspection equipment, outputtingAOI information on defective products, then manually re-inspect one by one to determine if they are defective AOIAI inspection process The operator will place the testPCBboard intoAOIthe inspection equipment, outputtingAOIinformation on defective products after, then proceed byAIfirst performingAOIre-assessment of defective products, outputtingAIinformation on defective products afterward, then manually re-inspect one by one to determine if they are defective Process differences By introducing theAOIAIsystem, not only can we enhance the efficiency and yield of visual inspection personnel, we also have this timeAIexperience in system introduction, we will also incorporateAIthe use of big data into Tzuhong's existing smart manufacturing systems, further enhancing the performance of our smart manufacturing systems and reducing the pressure on employees Difference between pre and post-introduction Promotion strategy 1 Similar field diffusion allSMTmanufacturers face bottlenecks in inspections leading to shipment delays introducing this system can solve the severe labor shortage issue and enhance shipment speed and quality, allowing self-promotion to customers or through equipment dealers to cater to relevant needs 2 Cross-industry expansion plans negotiate withAOImanufacturers to directly integrateAIthe system intoAOItheir systems, enhancing their market competitiveness Profit strategy 1 In collaboration withAOImanufacturers, collect licensing fees 2 Direct sales toSMTthe manufacturing industryAIsystems 3 ProvideSMTmanufacturing industryAOIAIsystem subscription model「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-09」

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
Even the United Nations is on board! Yoyo Data Application captures global business opportunities with agricultural data

Nearly 2,000 days in the fields have made Yoyo Data Application a top player in Taiwan’s agricultural data sector Their comprehensive grasp of crop yields, production periods, and prices has enabled them to collaborate with the United Nations The service area for agricultural land skyrocketed from 24 hectares to over 6,000 hectares in less than three years—a 250-fold increase For Wu Junxiao, founder and CEO of Yoyo Data Application, aligning with global environmental trends and becoming a data company at the intersection of climate technology and the green economy to serve the global market is his ultimate entrepreneurial goal Wu Junxiao, originally an engineer, joined the Industrial Technology Research Institute in 2010, where he honed his profound technical and data science analytic skills 'At that time, I was working in data analysis engineering, and almost all data-related materials would be directed to me Additionally, I worked on indoor cultivation boxes, planting vegetables and mushrooms, hence planting the seed of entrepreneurship by integrating agriculture with data analysis,' Wu recalls Since 2016, Wu Junxiao has been frequently visiting farms to 'embed' himself among farmers and agricultural researchers, chatting and sharing information systematically, which quickly established his agricultural know-how Solid data analysis capabilities have even convinced the United Nations In 2017, he left the Institute to start his own business and founded Yoyo Data Application in 2019 Today, many agricultural businesses are his clients, with service areas rapidly climbing from 24 hectares to over 6,000 hectares, expected to surpass 7,000 hectares in 2022 His clientele includes markets in Japan, Central America, and even entities under the United Nations like the World Farmers Organization, which utilizes the 'Yoyo Crop Algorithm System' supported by Yoyo Data How exactly does Yoyo Data Application manage to impress even UN agencies The 'Yoyo Crop Algorithm System' developed by Yoyo Data Application accurately predicts the production period, yield, and prices Firstly, due to Wu Junxiao's precise mastery over agricultural data, Yoyo Data Application's clients don't necessarily need sensors or other hardware devices 'Sensors are expensive and if you buy cheap devices, you just collect a lot of noise or flawed data, which is useless,' Wu explains He continues, 'Collecting data doesn't necessarily require sensors our data solutions can solve problems more directly and effectively' For instance, one of Yoyo Data Application's products, the Yoyo Money Report Agri-price Linebot, developed in collaboration with LINE in 2020, gathers data on origin, wholesale, and terminal prices spanning over 10 years, driven by Yoyo Data’s proprietary AI algorithms This enables the system to autonomously learn about agricultural product trading prices, using big data and AI to perform price prediction analysis, thereby helping buyers reduce transaction risks and expanding the data application to the entire agricultural supply chain Regarding banana prices, the accuracy of price predictions increased from the original 70 to 998 Wu Junxiao notes that both buyers and farmers are very sensitive to prices Now, through the Yoyo Money Report service, both buyers and farmers can precisely understand the fluctuations in agricultural product prices Yoyo Data can also provide customers with optimal decision-making advice based on predictive models for crop growth, yield, and price estimations Currently, price predictions cover 28 types of crops Precise estimates of production periods and price fluctuations allow Yoyo Data to provide differentiated services based on data analysis The 'Yoyo Crop Algorithm System' provided by Yoyo Data Application incorporates a 'Parameter Bank', usually collecting 200-300 parameters, not just straightforward data like temperature and humidity, but also data divided according to the physiological characteristics of the crops Through effective dynamic data algorithms, it can accurately calculate when crops will flower and when they can be harvested, what the yield will be, and so forth For instance, the prediction accuracy of the broccoli production period is 0-4 days, with the flowering period predicted this year to be precisely 0 days, perfectly matching the actual flowering time in the field In these dynamic calculations, a 7-day range is considered reasonable, and the average error value of Yoyo Data's predictions typically ranges from 2-4 days, with most crop production period accuracies above 80 Through effective dynamic data algorithms, over 120 global crops can have their production periods and yields accurately estimated Using these effective dynamic data algorithms can set estimates for production quantities, helping adjust at the production end Yoyo Data Application's clientele primarily includes exporters of fruit crops like pineapples, bananas, guavas, mangos, pomelos, sugar apples, Taiwan's agricultural production is highly homogenized, often leading to a rush to plant the same crops and resulting in price crashes Yoyo Data Application helps clients differentiate their offerings Thus, Wu Junxiao positions his company as a boutique digital consultant, carefully selecting clients for quality over quantity He notes that Taiwanese agricultural clients focus on how to improve yield rates, even categorizing yield rates by quality, aiming for high-quality, specialized export markets whereas international clients prioritize maximizing per-unit yields, showing different operational approaches in domestic and international markets In addition to agricultural fruit, Yoyo Data Application has also extended its services to the fisheries sector, including species like milkfish, sea bass, and white shrimp, all using the same system to establish various parameters related to the growth of fish and shrimp, such as when to feed and when to harvest, and the anticipated yield, timing, and prices Yoyo Data Application harnesses the power of data to create miracles in smart agriculture In response to the company's rapid development, Yoyo Data Application introduced venture capital funds in 2021 to expand its staff and promote its business Wu Junxiao states that in response to the global trend towards net zero carbon emissions by 2050, he plans to help clients plant carbon in the soil, effectively retaining carbon in the land while also connecting clients to carbon trading platforms, creating environmental business opportunities together Wu Junxiao says that from the start of his entrepreneurial journey, he positioned the company as a global entity, thus continuous international collaborations are planned As a data company serving a global clientele and focused on climate technology and the green economy, this represents Wu’s expectations for himself and his company's long-term goals Yoyo Data Application founder and CEO Wu Junxiao「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」