:::

【2019 Application Example】 Smart agriculture and fisheries digital twin: A highly efficient and sustainable agriculture and fisheries upgrade solution. How did the AI technology called "digital twin" triple the output of aquaculture?

Relying on nine types of sensors to detect water quality, while monitoring the growth of the farmed species and fishermen's behavioral decisions, the artificial intelligence (AI) solution "Smart Agriculture and Fisheries Digital Twin" can significantly increase production by 300%. The “Happy Harvest” - style high-tech integrated solution allows novices to get started quickly. It significantly reduces the reliance of agriculture and fisheries on experience, and makes it more appealing for young people to return to their hometowns to work in agriculture and fisheries.

There was a time when Facebook games were just starting to become popular, and everyone could be called a farmer due to the popular game “Happy Harvest.” Office workers took out their mobile phones one by one during their lunch breaks and started living the life of a happy farmer life on their mobile phones. Some people were naughty, secretly went on Facebook during work hours to steal the harvest from their colleagues. The game was so therapeutic that some people actually went into the fields to become farmers during the holidays. If I said that "Happy Harvest" really exists, would you believe me? THE "Digital Twin" -"Smart Greenhouse" and "Smart Farm" solutions developed by the Innovative DigiTech-Enabled Applications & Service Institute (IDEAS). Institute for Information Technology (III) are "Happy Harvest" and "Happy Fish: Dream Aquarium" in real life.

Here, nine sensors based on IoT will continuously monitor the "facility factors" of the crop/aquaculture growth environment, such as water quality, and upload them to the cloud through the control box. The AI robot in the cloud will continue to simulate a digital twin in the system, receiving "facility factors" such as water temperature and dissolved oxygen, and continuously collecting "growth factors" for the growth status of crops/farmed species. A simulated "digital twin" of the fisherman is created in the cloud system, and the AI robot will also calculate appropriate "behavioral decisions" based on the successful strategies of past fishermen.

When the oxygen content is low and the water temperature exceeds the standard, AI will suggest you to make behavioral decisions, such as turning on the water wheel, turning on the aerator, or using medication. Fishermen use their own experience or knowledge to decide whether to follow the suggestion. Afterwards, the system will compare the results of the decision, and fishermen can also judge based on the results whether the decision made by a real person is better than the behavioral decision made by the “digital twin.”

In addition, the digital twin AI of smart agriculture operates in the background around the clock, silently recording and analyzing the corresponding "behavioral decisions" of fishermen in response to various "facility factors" and "growth factors" in smart farms. Decision-making", slowly establishing the best solution model for the farming strategies. Slowly, AI silently learns these "tacit knowledge" from fishermen like a little apprentice at their side, so that this knowledge will not be lost when the fishermen retire.

Moreover, this technology can not only be used to "farm fish," but also "farm vegetables." These optimized farming models can become a precious database. Even novices who have just entered the industry can skip the process of exploration and directly become a master.

The greatest challenges currently faced are: insufficient manpower, aging population, loss of experience, and high cost of new technologies

Taiwan is famous for its agricultural technologies and farming technologies. However, small farmers generally have a shortage of manpower and aging workers. Digital transformation is imperative. The cost of new technologies is too high for 80% of small farmers and fishermen. Since there are too many uncertainties in environmental factors, such as climate change, and water quality changes, they are all highly dependent on experience. Therefore, the most severe challenge comes from farmers and fishermen retiring before young farmers and fishermen can take over, and many years of experience are lost because they cannot be passed on.

Smart agriculture and fisheries digital twin allow continuous optimization without downtime

"Digital twin" is an emerging technology that combines AI and HI craftsman wisdom, and was rated by Gartner as one of the top ten key technologies for the future for three consecutive years. The Department of Industrial Technology, Ministry of Economic Affairs began to engage in R&D of digital twin in 2016. It believes that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning. In the field of aquaculture, the "digital twin" of AIoT (Artificial Internet of Things) for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen. Using the analysis of "facility factors" constructed from different types of water quality data and “growth factors” such as fish and shrimp images and disease symptom images, as well as the "behavioral decisions" of fishermen, to train AI can produce optimized models for water quality management, aquatic product growth management, and aquatic disease management.
智慧養殖魚電共生魚塭示意圖▲The "digital twin" of AIoT for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen

These AI management models are combined to create a smart farming solution with high survival rate and high feed conversion rate. The entire farming process has digital monitoring data and quality that can be analyzed. Traceability can reach the initial stage of farming, greatly improving the quality, value, and output of aquatic products.

Despite promising prospects, there are still many challenges

The III IDEAS first become involved in “digital twin” due to a forward-looking technology project supported by the Department of Industrial Technology, Ministry of Economic Affairs in 2018. At that time, the Department of Industrial Technology believed that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning.

Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan subsequently supported the application of "digital twin" in smart agriculture. "The application of digital twin technology in agriculture helps small farmers digitally accumulate experience, and improves their agricultural skills through the interaction of group experience and AI, resolving the greatest challenge of intelligent agriculture.” Intelligent agriculture digital twin technology is expected to increase production efficiency by 30% after commercialization and is quite promising.

Interview picture of Qiu Jingming, team leader of the Service Innovation Institute
▲Team leader Qiu Jingming: "The behavioral decisions made by powerful fishermen are three times better than those of ordinary fishermen in terms of results."

 

Digital Twin: Aqua-Solution

Digital Twin: Aqua-Solution

After working with technology-based aquaculture companies and gaining support from an industry project of the Industrial Development Bureau, Ministry of Economic Affairs, III IDEAS applied digital twin technology in the field of "smart fish farms." The field application team responsible for aquaculture pointed out: “In fish farms, fishermen often make different behavioral decisions when facing various environmental changes. The behavioral decisions made by experienced fishermen are three times better than ordinary fishermen in terms of results. For example, the survival rate of white shrimps is generally about 10%, but some fishermen can achieve a yield of up to 30%. This reduced production costs and tripled profits.
Digital twin technology can pass on the tacit knowledge of these experts and ultimately upgrade the entire industry."

The "digital twin" is composed of 9 sensors, fish images, and fishermen's behavioral decisions

9 sensors, constantly monitoring "facility factors" such as water quality

IDEAS uses nine sensors to monitor water quality,  including dissolved oxygen, water temperature, pH, salinity, turbidity, ammonia nitrogen, nitrate, chlorophyll a, and ORP (Oxidation-Reduction Potential), in order to obtain the environmental data of various farms. These factors are also known as “facility factors.”

In addition, fishermen will regularly take fish and shrimp out of the pond, or use submersible cameras to take pictures of farmed species underwater. This is used to determine the current size of the farmed species and its growth condition, which is also called "growth factor."

「設施因子」、「成長因子」再加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。

▲"Facility factors," "growth factors" plus "behavioral decisions" made by fishermen in different situations can create a "digital twin" in the cloud server. (Source of diagram: Taiwan Salt Green Energy Co., Ltd. commissioned Sanyi Design Consultants Co., Ltd. to design) 

With these two factors plus "behavioral decisions" made by fishermen in different situations, a "digital twin" can be created in the cloud server.

In this game-like "digital twin," we can simulate as much as we want to find the best "behavioral decision" under different "facility factors" and obtain the optimal "growth factor.”

To put it in a way that is easier to understand, readers can try to imagine that we have a game called "Happy Fish Farm." The environmental parameters of the fish farm are all recorded from actual situations. We also record the behavioral decisions made by each "Happy Fish Farm" player under different environmental parameters and the final results. When the number of recorded data sets is sufficient, a digital twin of the fish farm can be obtained from machine learning, and then real-time data is simulated to obtain optimal combinations. This simulated world is the "digital twin" of "Happy Fish Farm."

How is the issue of sensors easily being damaged resolved?

However, there will always be challenges in the R&D process. For example, underwater sensors such as water temperature and dissolved oxygen sensors are often damaged due to algae growth. Underwater cameras that record the size of fish are often blurred and unrecognizable due to sediment or algae pollution on the bottom of the pond.

There are two solutions for overcoming the issue with sensor damage. One is to regularly scoop water out from the pond and pass it through the sensor for detection. The other is to make the sensor into a box and put it into the pond every day to detect the water quality.

As for the growth condition of fish and shrimp, fishermen only need to fish them out of the pond every day to take pictures and measure them. Low cost and effective.

Team leader Chiu said: "We are currently developing a 9-in-1 water quality detection box. After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee."

Team leader Chiu of IDEAS of the III said: "The issue with sensor damage is the cost. Even though it provides great benefits, it would be meaningless if fishermen are not willing to use it due to high cost. We are currently developing a 9-in-1 water quality detection box. After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee. We are now very close to completing the integration, and welcome companies to discuss cooperation.”

Difficulties in recording fishermen’s behavioral decisions

Another challenge comes from fishermen. Some fishermen will consciously record the water quality and environmental indicators they observe every day, and record their own operating strategies and results. However, not every fisherman will do this. This is why it is necessary to use GAN (generative adversarial network) technology, which is very important in AI.

GAN will generate possible strategies of fishermen based on past data, i.e., it "guesses" the fishermen's decisions to supplement the behavioral decisions that the fishermen do not input. If it is completed by fishermen afterwards, it will not affect the training data set.

After the award-winning technology is put into mass production, 300% production efficiency will no longer be out of reach

Current applications of "digital twin" technology worldwide are mostly in aerospace and manufacturing. Taiwan and the Netherlands are the first to engage in the R&D of digital twin in intelligent agriculture. Therefore,the "Intelligent Agriculture Digital Twin" winning the U.S. R&D 100 Awards is proof of Taiwan’s technological leadership. We are currently completing the integrated water quality monitoring box and total solution, and the product is expected to increase production efficiency by 300%.

In the future, "digital twin" technology will not only be used in agriculture and fisheries, but can also be extended to industries that originally relied on "tacit knowledge", such as tea making, fisheries, etc. Due to the digitization of the entire process, quality no longer relies on experience and the weather. This can upgrade farmers' technology for "AI monitoring" and "precision production." In addition to improving the productivity of traditional agriculture and fisheries, it also has a good chance of achieving sustainable operations, upgrading the entire industry, and making it more appealing for young people to return to their hometowns to work in agriculture and fisheries.

Reference materials: A key piece of the puzzle of smart manufacturing! Innovative sensing technology that accelerates the realization of "digital twin" - Digital era

Recommend Cases

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
Preventing Problems Before They Arise: Leadtek Research Develops AI Technology for Early Detection of Heart Failure Symptoms

With the increase in the elderly population, the incidence of various chronic diseases is rising daily Among these, heart failure is not only a silent killer it has a very long disease course with a high recurrence rate, leading to increased burden on healthcare personnel However, by using medically certified electrocardiography acoustics devices, coupled with AI predictive assessment of heart failure risk and remote care systems, diagnosis can be aided significantly, helping doctors make accurate diagnoses for subsequent patient medical care or referrals Heart failure has a lengthy course and medical expenditure is five times that of diabetes If you find yourself short of breath even with minimal movement, or if you wake up from sleep needing to sit up to feel comfortable, or if you have symptoms such as swollen lower limbs, anxiety, restlessness, fatigue, or a loss of appetite, be cautious These could be signs of heart failure According to statistics, there are about 60 million people with heart failure worldwide, with 5 million new cases every year In China, nearly 290 million people suffer from cardiovascular diseases, accounting for the second leading cause of death among urban residents around 12 million of these are heart failure patients, accounting for over 59 of cardiac-related deaths The disease course of heart failure is exceptionally long, and both its recurrence and rehospitalization rates are exceedingly high, resulting in medical costs that are twice that of hypertension and five times those of diabetes According to US research statistics, the 30-day mortality rates for patients with myocardial infarction and heart failure are respectively 166 and 111, and the rehospitalization rates within 30 days are 199 and 244 The symptoms of heart failure, because they are similar to those of other diseases such as chronic obstructive pulmonary disease and asthma, have an 185 misdiagnosis rate, which poses a challenging problem for healthcare institutions Leadtek, a major graphics card manufacturer, has been investing in the medical and healthcare sector since 2000 Following two heart attacks in 2011 and 2015 experienced by Chairman Lu Kunshan, Leadtek has focused on health big data, independently developing AI technology for heart failure recognition This AI application reads patients' electrocardiograms and phonocardiograms to perform anomaly detection and model prediction of heart failure risk, enabling early detection of disease symptoms Leadtek independently developed heart failure AI recognition technology to predict medical history and risk Leadtek's independently developed heart failure AI recognition technology has the following three judgment functions 1 Prediction of heart failure history Classifies electrocardiogram and phonocardiogram data into 'with hospitalization history of heart failure' and 'no history of heart failure' 2 Risk prediction of heart failure Provides a predictive risk value of heart failure occurrence based on the electrocardiogram and phonocardiogram data 3 Prediction of heart failure recurrence risk For patients with heart failure, it reads their phonocardiogram and electrocardiogram data, assessing the risk prediction of heart failure recurrence Leadtek states that the application of heart failure AI recognition technology can assist doctors in making more efficient and accurate diagnoses, facilitating subsequent medical treatment or referrals for patients As an instance, in studies of heart failure patients discharged from Taipei Veterans General Hospital, using the EMAT Electromechanical Activation Time index and SDI Systolic Dysfunction Index calculated by the synchronized electrocardiography-acoustic device as treatment guidelines resulted in a higher survival rate compared to those treated based on traditional symptoms This research has also been published in the authoritative international cardiology journal JACC, receiving recognition in the international market System manufacturers can apply heart failure AI recognition technology for other value-added applications Leadtek states that cooperating system manufacturers can choose to build their own heart failure AI risk prediction engine, uploading their system's electrocardiogram and phonocardiogram data to Leadtek's heart failure AI risk prediction engine, which then returns risk prediction values for integration by system manufacturers cooperating manufacturers as a value-added application input Not just for clinical use, the heart failure AI risk prediction engine can also be extended for use at home or in the workplace Additionally, this system can be extended to other applications, including One, hospital outpatient screening Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to conduct a 10-second rapid test in outpatient and emergency departments to assess a patient's cardiac history and heart failure risk Two, discharge risk assessment Doctors can use the electrocardiogram and phonocardiogram recorder along with the heart failure AI risk prediction model to assess the heart failure risk during a patient's hospital stay The test data can serve as a pre-discharge risk assessment and prognostic indicator Three, continuous home care Patients can use the electrocardiogram and phonocardiogram recorder, wearable electrocardiogram recorder, and transmit through a home transmission box gateway to measure electrocardiogram and phonocardiogram signals at home and upload them to the amor health cloud platform for heart failure AI risk prediction analysis Patients can manage their health autonomously via an APP, reviewing historical physiological trends disease management nurses can manage member health through the health management backend Web Four, home rehabilitation training Patients can wear a health bracelet to monitor activity, fatigue, circulation, and sleep, autonomously managing their health through the mobile APP and observing the risk of heart failure, engaging in exercise and rehabilitation training to aid in swift recovery The heart failure AI recognition technology system can also be extended to employee home care applications Additionally, in factories or offices, this system can also achieve employee health management goals, with applications including One, workplace safety units Provide employees with wearable electrocardiogram recorders before they start work duties Two, physiological monitoring for business executors While executing business duties or training, employees wear wearable electrocardiogram recorders for fatigue warnings, signaling whether physiological conditions allow continued execution of tasks Task segments can use data transmission boxes or apps to upload physiological monitoring information to the health management platform, assessing the heart failure risk for operations staff, with test data serving as an indicator for enterprise resource human units and public safety Three, workplace physiological monitoring center care The workplace physiological monitoring center can inspect and record employees' historicalphysiological trends through the health cloud platform Four, workplace nursing units Nursing units receiving instructions from the physiological monitoring center can provide health management advice based on employees' physiological trends nursing centers can manage employee health through the health management backend Web Five, employees can wear health bracelets to monitor activity, fatigue, circulation, and sleep, autonomously managing their health and observing the risk of heart failure through the mobile APP, engaging in exercise and rehabilitation training to aid in rapid recovery Workplace application of heart failure cloud care and big data center diagram「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
Transforming into a Large-Scale AIoT Technology Playground: The Spectacular Makeover of the National Museum of Marine Science & Technology

Taiwan is a maritime nation When you visit the Badozi Fishing Port or Tidal Park in Keelung, do you also explore the mysteries of the ocean world at the 48-hectare National Museum of Marine Science amp Technology To get more people closer to marine technology, Keelung's Marine Museum has introduced technological services, transforming the venue into a large technology playground that delights both children and adults, fully utilizing the 'learning through play' approach After a lengthy planning process, Northern Taiwan's largest marine science museum in Keelung opened in January 2014 The museum focuses on marine education and technology, boasting Taiwan's largest IMAX 3D ocean theater The unique themes and modern viewing facilities should make it a well-known landmark in Keelung However, the original exhibition planning was static and highly specialized, lacking sufficient interaction with the public Visitors who have attended the museum also reported that the exhibits were limited and quite boring, leading to poor overall consumer experience ratings The top three dissatisfactions with the museum were weak connections to surrounding attractions, unengaging display content, and lack of exhibit material According to statistics from the Marine Museum, the ratio of local to visiting guests is approximately 64, with most foreign visitors coming from the north transportation is primarily by car and bus common types of visits include family, parent-child, and friends and the stay duration is generally 1 to 2 hours Upon deeper investigation, the top three visitor complaints were weak linkages to surrounding attractions, unengaging display content, and insufficient number of exhibits The museum analyzed potential reasons, including some displays being too specialized, making it difficult for the public to understand, and a lack of interactive elements, making the exhibition boring and the visit hurriedly brief Analysis of visitor profiles revealed that since half of the museum's visitors are locals, and accessing the museum is not so easy for out-of-towners who must travel by car or public transport, the design of the venue and exhibitions must incorporate more interactivity and intrigue to encourage locals to return and extend the duration of visitors' stays while using technological services to highlight the museum's unique features Through a recommendation from the Information Software Association, part of the Ministry of Economic Affairs' Industrial Bureau AI team, the Marine Museum commissioned Jugu Technology to resolve the issue of uninspiring venue attractions Preliminary interviews by Jugu Technology revealed that many visitors were attracted by the architectural design of the museum, notices posted on nearby walls, flags, or events being held the most interesting feature for visitors was the 3D ocean theater, indicating that content presented through audio-video and physical scenic methods was more engaging Seven major AI technologies lead to a boost in regional tourism at the Marine Museum Through the introduction of technology services, Jugu Technology designed the 48-hectare site with seven major services AI voice tours, treasure hunt puzzle games, AI exhibit interactive revitalization, AI space exhibition interactive experience, AI crowd control, Face AI interactive experience, and AI voice customer service system By utilizing AIoT and cloud technology, they made the exhibition more interesting, not only solving the issue of boring static viewings for children but also doubling the learning efficiency and dramatically improving public perception of the Marine Museum, thus increasing visitor intent and boosting regional tourism The National Museum of Marine Science and Technology introduced seven major technological application services including AI voice guide Jugu Technology aimed to improve the space optimization of the Marine Museum, using the special exhibition of coastal birds in northern Taiwan as a prototype, integrating 'face', 'limb', 'crowd' as three main axes to enhance functionality and assist in improving the museum's application of AI Practically, the Marine Museum and Jugu Technology selected the on-site special exhibits to avoid any installation of water and electricity works or pipelines in active exhibits, thereby maintaining the quality of the viewing experience Instead, they selected exhibits that were not yet open to introduce a series of technological services tailored to the unique characteristics of the exhibits In the coastal bird special exhibition inside the Marine Museum, initial construction discussions with the curators utilized Bella X1 for a welcoming interactive introduction at the exhibition entrance This was followed by an AI-powered smart guide in both Chinese and English using X1 for narration, coupled with a fun treasure hunting stamp-collecting activity - APP X1, allowing visitors to participate in challenges Subsequently, bird species within the bird exhibition were brought to life interactively using X1, and AR scenarios X1 were introduced into the exhibition space to add elements of fun and entertainment Finally, Face AI was used to interactively test facial expressions and score smiles The gorgeously transformed Marine Museum will become the best travel destination for families with children ImageMarine Museum FB Page The AIoT services introduced by the Marine Museum could be extended to various exhibition-type museums and even static art galleries in the future, tailored to the unique characteristics of different venues They could also be promoted through government projects and related plans, aiding in rural revitalization, making visits more than just sightseeing in rural areas, and breaking free from stereotypes associated with different venues The applications of these services are broad「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
HRT Technology Improves Production Efficiency by 20% Through AOI Detection of Defects in VCSEL Packaging

In 2017, the launch of the iPhone X made 3D sensor technology used in Face ID highly popular, which drove the development of VCSEL, a core component in the 3D sensor module In the detection of defects in incoming packaged VCSEL, the use of AI inference models can solve the industry's issue with low yield and improve reliability to 95 VCSEL technology currently can be used in many applications and various end consumer markets, including robots, mobile devices, surveillance, drones, and ARVR VCSELs are a good solution in applications that require high-speed modulation capabilities, such as cameras and biometrics VCSEL technology has a wide range ofnbsp applications, including in drones Pictured Zoyi Technology's Agricultural Drone VCSEL technology has a wide range of applications, AI technology assists in defect detection HRT Technology stated that the packaged VCSEL market is also facing strong price competition from competitors, and needs to further reduce costs and enhance product competitiveness One of the key problems is the replacement of glass lens with epoxy resin lens The production of traditional glass lenses has high yield, but the cost is higher than that of epoxy resin lenses Due to the cutting process of epoxy resin, the side wall of cutting lines can easily have rough edges, causing it to be oversized The release of stress caused by heat during the mounting process will directly cause the optical lens to break HRT Technology pointed out that the incoming inspection of VCSEL epoxy resin lenses is very important Under the constraints of packaging space, the space for fitting the package and optical lens is limited Moreover, the optical lenses will be confined to a metal frame If the dimensional tolerances are properly controlled, stress release due to heat during mounting can easily cause the optical lens to break, resulting in a yield loss of up to 10 in the VCSEL package reliability verification, resulting in an increase in production costs In order to solve the problems above, HRT Technology hopes to use AI to monitor the size and appearance defects of epoxy resin components in the VCSEL epoxy resin lens incoming stage, verifying whether their dimensions meet specifications, whether the cutting edges are smooth, and whether there are any defects in their appearance Since traditional incoming material inspection requires a rough visual inspection by humans to distinguish the quality The problem of image collection needs to be solved first to successfully collect image data Therefore, HRT Technology first developed an Automated Optical Inspection AOI device, which includes X, Y, Z three-axis motion, high-resolution cameras, and related control software to automatically record images After collecting the image data, opencv aligns the test image and a normal image to determine differences between the two images, and then pixel mapping is used to compare the pixel area to complete initial screening Manual labeling is carried out according to the image classification above, including samples that are normal, have defects in appearance, or have different shape characteristics, and then algorithm training and verification is carried out Residual neural network ResNet or other related algorithms are used for deep learning to identify the quality of lenses Implementation of AOI inspection improves production efficiency by 20 and above Comparing the differences before and after the implementation of AI image inspection, the incoming VCSEL lens inspection before implementation only involved manual inspection of the appearance The lens is packaged on the VCSEL package that has completed die bonding After passing the general light up test, the final reliability test high temperature reflow is performed Failed samples go into the rework process However, after the implementation of AOI inspection, it can screen defective lenses sooner and reduce the cost of subsequent materials input, it can also reduce the need for rework due to failure, improving yield to 95 and above in the reliability verification This is expected to help companies reduce production costs by 10 and increase production efficiency by 20 and above The difference before and after implementing AI image detection HRT Technology pointed out that this technology is an AI application developed based on tiny images It uses deep learning algorithms to identify defects in the images The trained network automatically classifies image data to predetermined categories Defect categories can be determined through reference images, so cumbersome programming is not required In the industrial machine vision environment, deep learning is mainly used for classification tasks in applications, such as inspection of industrial products or identification of parts In the future, with the development of IoT wearable devices and the trend of energy saving, the size of optoelectronic components will continue to shrink This technology can be applied to the detection of defects in the appearance of other tiny optoelectronic components in the future