:::

【2020 Application Example】 Dynamic License Plate Recognition System: Time-Saving and Convenient for Management

Jiude Songyi Company, with 40 years in motor-related equipment manufacturing, introduced a dynamic license plate recognition system with an accuracy rate of 98.9% to effectively monitor vehicles entering and exiting the factory area. The system uses AI technology, making vehicle management both time-efficient and effortless.

License plate recognition systems are a fundamental application of intelligent image analysis. Using cameras to capture images of license plates, the system then analyzes and processes these images to recognize the plates. Kangqiao Technology, established in 2008 by a team of LED developers and software engineers, specializes in LED product applications, developed license plate recognition and Etag integrated systems, primarily for domestic and international public works projects.

Recently, the III AI Team collaborated with the Taiwan Energy Technology Service Industry Development Association to explore real-world applications of license plate recognition technology. They identified three major issues faced by Jiude Songyi Company at this stage:

1) Currently, the company gate has no barrier machine or other control equipment. Vehicle entry and exit rely entirely on manual control and recording. If no personnel are present, vehicle movements cannot be controlled

2) When issues arise, the existing surveillance system has to slowly search for data to locate the problematic vehicle, which is very time-consuming and inconvenient

3) When the footage is found, it is often difficult to clearly identify the license plate, and even if found, it is not possible to verify the vehicle owner

Solving Three Major Problems, Providing Four Major Functions

After understanding the actual needs of the enterprise, according to the license plate recognition system architecture established by Kangqiao Technology, real-world validation was conducted on-site, with monitoring computers set up in the control room.

Kangqiao Technology License Plate Recognition System Architecture

▲ Kangqiao Technology License Plate Recognition System Architecture

After installation, the main functionalities of the license plate recognition system are as follows:

1) When vehicles enter or exit, high-resolution smart cameras can identify license plates and capture images, recording the license number and vehicle status

2) When file retrieval is needed, vehicle data can be searched by time or license plate information, allowing quick access to the required video files, saving considerable time

3) The use of high-resolution smart cameras significantly improves image quality, which helps in clear identification in case of incidents

4) With registered license plate data, a blacklist and whitelist database can be set up, facilitating the management by security personnel

The advantage of license plate recognition is that it fully automates vehicle entry and exit control, reducing labor costs. The software helps to prevent misuse of license plates and eliminates the issues of remote control, induction buckle loss, and borrowing by unauthorized persons. Vehicles can enter and exit without using a remote control or rolling down the window. The long-distance license plate recognition allows gates to open while the vehicle is still moving, eliminating the waiting time for parking.

Kangqiao Technology License Plate Recognition System Setup in the Management Room

▲ Kangqiao Technology License Plate Recognition System Setup in the Management Room

The III AI Team states continually collaborating with relevant associations, from identifying corporate needs, setting topics, linking teams, introducing real-world validations, to systematically assisting enterprises in need to adopt AI technology and solve industrial problems, aiming for the AI transformation of industries. In the future, it will continue to help enterprises harness technology tools to overcome business challenges.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

【導入案例】救命急如星火 AI病危系統監測掌握黃金搶救期
Life-saving is as urgent as a spark AI critical illness system monitors and grasps the golden rescue period

60-year-old Mr Huang was admitted to the hospital due to a stroke After lying in the intensive care unit for two weeks, his condition suddenly took a turn for the worse After rescue, he was lucky enough to survive In fact, with the assistance of AI critical illness early warning technology, hospitals can detect signs and take timely and accurate medical measures 6-8 hours before a patient's heart stops, which can greatly reduce the chance of death in the hospital The deterioration of the condition is a process that evolves over time, and its subtle changes are by no means without context Previous research reports show that about 60 to 70 of inpatients who experience unexpected in-hospital cardiac arrest had symptoms 6 to 8 hours before their cardiac arrest, but only a quarter of them were recognized by clinical staff Detection and discovery, therefore, there is a need for a risk warning tool or system that can be used earlier and continuously to monitor the condition, alert medical staff to pay attention to subtle changes in the patient's condition at any time, and take timely and accurate intervention measures before the condition progresses to effectively reduce adverse events or the risk of serious adverse events Unexpected deterioration cannot be detected early Acute and severe patients often undergo unpredictable changes, and timely detection or prediction of potential acute and severe patients is an important issue The currently commonly used clinical assessment method is Modified Early Warning Score MEWS, which uses simple physiological parameter assessment including heartbeat, respiratory rate, systolic blood pressure, body temperature, urine output and state of consciousness to screen out high-risk patients, and has been proven to be predictive Patient clinical prognosis MEWS is a scoring mechanism with a single time point and a standardized formula However, the AI crisis warning system developed by Boxin Medical Electronics - Hospital Emergency and Critical Care Early Warning Index System EWS is designed to predict patient status with immediate response , collect the physiological data of patients over time for deep learning, find the best prediction model, and improve the overall accuracy Boxin Medical Electronics uses a big data analysis model to build an early warning system EWS, IoT Internet of Things and 5G communication technology, allowing medical staff to remotely monitor the physiological status of patients through communication equipment, and monitor emergency and severe cases quickly The patient's condition changes and the golden rescue period of 6-8 hours before cardiac arrest can be grasped After Boxin Medical Electronics introduces AI visual interpretation, unmanned operation can greatly reduce medical manpower The AI technology developed by Boxin Medical Electronics is the Gradient Boosting Ensemble Learning System GBELS to build an early warning system It is a learning-based EWS prediction algorithm developed by the company, which is an integrated learning Ensemble Learning and is classified as supervised learning, providing the following three functions 1 Early warning risk notification is used to analyze representative data using GBELS to provide an early risk score so that medical staff can conduct immediate clinical assessment and provide appropriate medical treatment 2 Reduce medical manpower Collect continuous physiological monitoring data, such as heartbeat, respiration, blood pressure and blood oxygen concentration, etc, to reduce the time for medical staff to write cases 3 Combine IOT logistics network and 5G communication technology to quickly transmit medical data such as monitoring parameters and imaging data, and assist medical staff to monitor changes in patients' condition remotely through communication equipment AI critical illness system monitoring to master the golden treatment period Boxin Medical Electronics stated that assessing the severity of the disease in acute and severe patients is a complex task, and patients often experience unpredictable changes Clinical medical staff often judge the condition based on their own clinical experience or intuition, which lacks science and objectivity, resulting in the inability to correctly identify and timely detect potentially acute and severe patients, resulting in or misdiagnosis leading to increased in-hospital mortality of patients The introduction of an AI early critical illness warning system can assist emergency and critical care medical staff to correctly predict the patient's condition and allow patients to receive the care they need immediately This can reduce the manpower arrangement of the emergency and critical care ward at the same time and reduce labor costs In addition, the easy-to-carry design will help the system be introduced into ambulances, home care and other places in the future, so that emergency patients can receive appropriate care earlier Other departments within the hospital can also develop new applications around this system, which can effectively accelerate the development and promotion of smart medical technology With the COVID-19 epidemic still raging in many countries around the world, this system can also help hospitals in various places to operate more effectively Caring for and monitoring the condition of critically ill patients In addition to AI critical illness warning, Boxin Medical Electronics has also developed AI image interpretation - Medical Physiological Monitor Life Cycle Compliance Testing AVS, which uses AI image interpretation technology to develop automated quality inspection of life support medical equipment The instrument solves the time-consuming problem of medical instrument testing It can reduce testing time by 70, increase the number of tests by 3 times, and effectively reduce labor costs by 50 At the same time, it is 100 compliant with regulatory requirements, and gradually solves the shortage of manpower and medical resources in the medical field , medical work overload and other issues It has now taken root in mainland China and is actively preparing for its launch in Europe It will develop towards the Japanese and American markets in the future Boxin Medical Electronics develops AI image interpretation-medical physiological monitor life cycle compliance testing AVS to solve the time-consuming problem of medical instrument testing and can reduce testing by 70 time At this stage, Boxin Medical's smart medical technology has been introduced into medical hospitals including Hsinchu MacKay, Changkei, Dongyuan General Hospital, Kaohsiung University of Technology Affiliated Hospital, Zhenxin Hospital, Hsintai Hospital, Taipei Medical University Affiliated Hospital, etc GE HealthcareInc, an internationally renowned medical materials manufacturer, and Mindray Medical, China's largest medical materials manufacturer, are both representative customers of Boxin Medical Electronics 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】汙水處理的救星 結合大數據與AI技術打開環保產業另一片天
Savior of Wastewater Treatment: Combining Big Data and AI Technology Opens Another Horizon in the Environmental Industry

As water resources deplete and environmental protection needs increase, wastewater treatment plants have increasingly adopted AI technology to assist in monitoring and warning systems Zhongxin行's integration of big data and AI technology has opened up new possibilities in the environmental industry In the future, besides boosting the technological momentum of the wastewater treatment industry, it can also be promoted to other industries to foster technological and economic development Founded in year 1980 as Zhongxin Engineering later renamed to Zhongxin行 Company Limited, it is one of the largest and most technically equipped environmental companies in the domestic operation and maintenance field Zhongxin行's achievements in the operation and maintenance of sewer systems span across Taiwan, including science parks, industrial zones, international airports, schools, collective housing, national parks, and factories Introduction of AI systems in wastewater plants Precisely reduces medication addition times and lowers the risk of penalties for water quality violations At the wastewater treatment plant in Hsinchu Science Park, Zhongxin行 introduced the 'AOMBR Carbon Source and Aeration Intelligent Enhancement Control System Development,' which accurately predicts air volume control and reduces medication times, thus lowering the risk of hefty fines Zhongxin行 points out that with the vigorous development of advanced industries and increasingly strict effluent standards, a slight misalignment in equipment control can lead to major discrepancies in water quality In recent years, many wastewater treatment facilities have incorporated automatic control functions, yet onsite conditions often deviate slightly from theoretical expectations, causing situations where good treatment technologies must continuously adapt and adjust to achieve effective effluent water quality control 'The better the quality of the effluent, the greater the pressure on the operators This is the biggest pain point for Zhongxin行,' said a senior manager candidly Regular water quality testing and equipment maintenance ensure that effluent water stays below legal standards This means that operators need to be on top of equipment and water quality conditions daily If there are sudden anomalies in influent water quality or equipment malfunctions, linked issues can lead to pollution Therefore, besides performing regular maintenance and testing, it is critical to constantly monitor the dashboard to ensure system stability, consuming both manpower and mental energy Zhongxin行's on-site operators work 24-hour shifts, constantly monitoring effluent water quality Combined with laboratory water testing and analysis, if the wastewater treatment values do not meet requirements, they face both administrative and contractual fines from environmental agencies and granting authorities, which also create significant psychological pressure on the employees Over the years, Zhongxin行 has built up a vast database of water quality information and invaluable experience passed down among employees, allowing a comprehensive understanding of the entire system's operational characteristics Moreover, by analyzing equipment or water quality data for key signals, problems in the treatment units can be pinpointed If AI technology could be adopted to replace manual inspections of wastewater sources and generate pre-warning signals for systematic assessment, it would significantly alleviate the pressure on staff Response time reduced from 8 hours to 4 hours, saving half the time By implementing 'AOMBR Carbon Source and Aeration Intelligent Enhancement Control System Development,' Zhongxin行 utilizes accumulated wastewater data along with verbal recounts of operator experiences on-site With the support of AI technology and environmental engineering principles, key parameters in the biological treatment unit such as carbon source dosages and aeration can be effectively controlled Through the AI transformation of wastewater treatment, a balance is achieved among pollutant removal, microbial growth, equipment energy conservation, and operation economization, achieving rationalized control parameters Carbon source and aeration parameter adjustment steps range from data collection, model training to prediction verification In the long run, incorporating historical data calculations, AI can operate within known boundary conditions, not only recording past water quality and equipment operational characteristics far more accurately, but also developing predictive models to find optimal solutions that offer the best results in terms of chemical use, energy saving, reduced greenhouse gas emissions, and pollutant removal According to Zhongxin行's estimates, originally due to human parameter adjustments leading to errors, controlling response time would take about 8 hours With the introduction of AI technology, not only can measurement errors be reduced, but also the control response time can be shortened to 4 hours, saving around half the time This enhancement increases the turnover rate of personnel and effectively reduces the risks of penalties due to operator errors and thus markedly reducing the pressure on employees Dashboard digital display panel illustration「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

【導入案例】峰漁運用AI知識化養魚 有效提升10水產產量
Fongyu Uses AI Knowledge-based Fish Farming to Effectively Increase Aquatic Production by 10%

Fisheries is an important industry in an island economy However, the fish farming industry has faced severe challenges in recent years, including climate change, labor shortage, and rising costs In particular, nearly 110,000 workers in agriculture will retire due to old age over the next 10 years For this reason, the need for aquaculture to move towards smart farming is becoming increasingly urgent Founded in 2014, Fongyu Corp Ltd has developed a unique eco-friendly farming model based on its own fish farming It uses AI knowledge-based fish farming to effectively increase aquatic product production by 10, and reduced labor cost by 15 The word "Fongyu" has a profound meaning "Fong" represents good mountains and "Yu" represents good water, and is the hope that companies will allow Taiwan to always have good mountains and good waterIt is also a homophone for "having a full figure," expressing the hope that products will give consumers a full and healthy body and mind The founder of the company, Liu Chien-Shen, has been through the difficult entrepreneurial journey of becoming an apprentice in fish farming, raising funds, renting fish farms, establishing a fish farming company, building a brand, and expanding sales Labor shortage and aging workers are hidden worries in the fish farming industry Currently, fish farms in Taiwan are still mainly traditional fish farms, and farming techniques are still passed down through word-of-mouth In addition, the labor shortage and average age of workers exceeding 60 years old has made it impossible to effectively stably improve productivity and yield This farming method makes it difficult to prevent and control diseases, and greatly increases the possibility of excessive use of drugs, environmental pollution, and water quality and ecological damage, creating a vicious cycle that lowers the quality of fish farming In addition, 651 of workers in Taiwan's fish farming industry are inadequately skilled With limited support from IoT sensors, traditional fish farmers still mainly rely on their own experience and knowledge for water quality management, feeding, and disease detection Fish farming management relies heavily on the ability of individual fishermen Once experienced workers retire, the industry will not only face the issue of succession, but also the difficult of stably supplying a certain amount of harvest that meets quality standards This may cause a dilemma for the entire industry from fish farming to sales In order to improve the pain point of inability to pass on experience in fish farming, and at the same time create a "digital" foundation for fish farming, the top priority must be to collect farming behavior data and develop AI services as an important starting point Fishery digital twin technology helps fishermen transition to smart farming With the assistance of the Institute for Information Technology III, Fongyu implemented the "fishery digital twin" technology to dynamically adjust the farming schedule In other words, the fish farming schedule is adjusted according to the species, habits, and variables of the fish The use of AI in fish farming not only effectively increase aquatic production by 10, but also reduced labor cost by 15 In terms of specific methods, we first digitalized the fish ponds, feed, and decision-making behavior for each species, such as sea bass and Taiwan tilapia, and recorded the seasonal temperature changes from releasing seedlings to harvesting, all of which were digitalized, gradually recording the experience and methods of experienced workers into a rich database Based on the recorded data, we analyzed the compound variables to find the best farming behavior and generate a dynamic farming schedule The records for each pool provide data on workers' experience However, fish farming behavior generally relies on rules of thumb Even experienced fish farmers cannot ensure that they will find the best solution Therefore, new methods are proposed to solve this issue That is, "to determine the best fish farming behavior by predicting the interaction with water quality and past data on feeding, and evaluating fish farming behavior based on water quality and fish farming," and provide fishermen with the most intuitive recommendations through daily schedules To continue optimizing the dynamic fish farming calendar on a rolling basis, iterations of the model will be developed through the three-step cycle 1 Input the current fish farming calendar into the model 2 The model predicts the future environment 3 Shortcomings of the fish farming calendar are corrected based on the future environment to obtain a new version of the fish farming calendar In the process, the experience of aquaculture experts is used to establish the causal relationship between fish farming behavior and the environment The establishment of a dynamic fish farming process and technology-based fish farming recommendation services provide a traceable and detailed fish farming process It is one of the few technologies that can digitalize fish farming Fishermen can quickly and easily record their daily behaviors to build knowledge without taking up too much time, but in the long run it can reduce labor cost by 15 and increase output and revenue by an average of 10 Smart fish farming has achieved outstanding results, reducing labor cost by 15 and increasing output by 10 At the same time, the fish farming calendar can also be extended to different aquatic species, such as white shrimp, milkfish, clams, and Taiwan tilapia, to produce fish farming schedules for ponds with different specifications, and the harvested aquatic species can be traced according to different specifications, establishing vertically integrated services for safe food products Fongyu's main products are divided into two categories One is aquaculture modules, including fry, feed, materials and probiotics, production planning and processes, and monitoring, which can be sold separately or exported as modules The high-quality aquatic products produced by Fongyu have repeatedly won awards Figure Fongyursquos official website The other category is high-quality aquatic products, including seabass fillets, seabass balls, oil-free seabass balls, seabass dumplings, and seabass soup The products have won various awards, including the top ten souvenirs in Pingtung in 2017, "Barramundi Fillet" won the 2017 Eatender of the Council of Agriculture COA, "Oil-Free Barramundi Fillet" won the 2018 Eatender Gold Food Award of the COA, and "Dumplings of Barramundi" and "Barramundi Broth" won the 2019 Eatender of the COA The consecutive awards represent that the "quality" of Fongyursquos aquatic products can be seen and eaten with peace of mind In addition, Fongyu has exclusive fingerlings that meet international needs, such as Pure seawater cultured tilapia fingerlings and seawater Taiwan tilapia fingerlings from selective breeding FY-01 are items that aquaculture companies in many countries are looking forward to The company also has aquaculture modules, disease monitoring tools, and feeding materials designed in accordance with the environment, in order to provide customers with more stable income