:::

【2024 Application Example】 Using Plant Growth Chambers as an Example - Standardizing Electronic Device Procedures Based on Imaging

In recent years, global climate change and environmental issues have become increasingly severe, causing major impacts on agricultural production. Traditional agriculture heavily relies on weather conditions, facing challenges such as unstable crop quality, plummeting yields, and difficult pest control. Particularly in Taiwan, agricultural biotech companies and farmers have suffered continuous losses, creating an urgent need for innovative solutions. Meanwhile, Taiwan's plant factory industry faces many challenges: high equipment and labor costs, an incomplete industrial chain diminishing international competitiveness, and a lack of cooperation among enterprises, all of which limit industry development. Additionally, COVID-19the pandemic has highlighted the importance of remote monitoring and management. Traditional manual inspections and data collection methods no longer meet the needs of modern agricultural production. These issues collectively underline the urgent need for smart agricultural solutions, driving companies like Taiwan's HaiBoTe to develop innovative projects integrating IoT, cloud computing, and artificial intelligence technologies.

 

HaiBoTe Cloud Data Integration and Analysis Platform
HaiBoTe Cloud Data Integration and Analysis Platform

 

Facing these challenges, the agricultural sector urgently needs a system that can precisely control growth environments, improve resource efficiency, enable remote monitoring, and facilitate intelligent management. Existing plant factory equipment often requires complete replacement, with poor compatibility with older equipment, and sensors and camera systems may require different interfaces, making them inconvenient to use. Therefore, there is a need for a flexible solution that can integrate various equipment and technologies, providing real-time monitoring and data analysis, and automatically adjusting environmental parameters based on plant growth conditions. This demand exists not only in Taiwan but is also a global trend in the development of smart agriculture. By incorporating artificial intelligence, more scientific evaluation standards can be established, optimizing production processes, improving yield and quality, while reducing energy consumption and environmental impact. Additionally, such smart solutions can attract more young people to participate in agricultural production, promoting industry upgrading and sustainable development. Overall, the demand for smart agricultural solutions stems from the urgent requirements to address climate change, enhance production efficiency, reduce costs, and achieve precise management, and this is exactly the problem companies like Taiwan's HaiBoTe are striving to solve.

 

 

Taiwan's plant factory operators are facing a series of severe challenges, which are gradually eroding their competitiveness and survival space. Firstly, the high cost of equipment and operations is their biggest burden. Each electricity bill feels like a heavy blow, forcing them to balance between ensuring product quality and controlling costs. Secondly, the unpredictability brought by climate change has become their nightmare. Sudden extreme weather events can destroy their carefully nurtured crops in a short time, causing massive economic losses. What's worse, they find themselves increasingly at a disadvantage in international market competition. In contrast, large overseas plant factories, with their advanced automation technology and well-organized supply chains, can produce stable-quality agricultural products at lower costs, putting unprecedented pressure on Taiwan's operators.

On the technical level, they also face numerous challenges. Compatibility issues between new and old equipment often put them in a bind, encountering various technical obstacles when trying to integrate different systems. Lack of precise data analysis and forecasting capabilities also makes it difficult for them to make production decisions and accurately determine the best growth conditions for each crop. Existing monitoring systems provide data that is often disorganized, difficult to interpret and apply. Human resource challenges are also severe, with young people generally lacking interest in agricultural work, making it difficult for them to recruit employees with modern agricultural skills. Even existing employees often feel exhausted from tedious manual operations and monitoring tasks. These problems are intertwined, creating a complex dilemma that leaves plant factory operators confused and anxious. They urgently need a comprehensive solution that can enhance factory operational efficiency, reduce costs, and improve product competitiveness, helping them overcome difficulties and regain their footing in the fierce market competition.

 

 
 

 

In facing the various challenges of plant factory operators, Taiwan's HaiBoTe company has demonstrated exceptional technical innovation and a flexible customer-oriented development strategy. They deeply understand that the solution must be able to seamlessly integrate existing equipment while providing highly intelligent management functions. To this end, HaiBoTe's R&D team adopted a modular design approach to develop a system that can be flexibly configuredIoT(IoT) system. The core of this system is a smart control hub that can communicate with various sensors and actuators. During development, HaiBoTe worked closely with customers, deeply understanding their specific needs and operational environments. They even dispatched engineers onsite to observe the daily operations of the plant factories, ensuring that the developed system actually solves practical problems. This in-depth cooperation not only helped HaiBoTe optimize their product design but also established a close relationship with customers, laying the foundation for subsequent continuous improvements.

HaiBoTe's innovation is not just reflected in hardware design but also in their developed intelligent software system. This system integrates advanced machine learning algorithms, capable of precise forecasts and optimal control of plant growth conditions based on large amounts of historical data and real-time monitoring information. To help customers overcome technical barriers, HaiBoTe designed an intuitive and easy-to-use user interface, which even non-technical operators can master easily. Additionally, they provide comprehensive training and tech support services, ensuring customers can fully utilize all functions of the system. When facing challenges, HaiBoTe's technical team can quickly identify problems through remote diagnostics and provide solutions. In one incident, during a serious equipment failure emergency faced by a customer, HaiBoTe's engineers guided the customer through system remote access, successfully instructing them on repairs and avoiding potential massive losses. This full-range service not only solves customers' immediate difficulties but also strengthens their confidence in intelligent management, driving the entire industry toward more efficient and sustainable development.

 

HaiBoTe's developed smart agriculture solution not only brought revolutionary changes to plant factories but also painted an encouraging picture for the future of the entire agricultural industry. The excellence of this system is evident in several aspects: firstly, it achieves precise control of the plant growth environment, significantly improving crop yield and quality stability. Through advanced artificial intelligence algorithms, the system can forecast and adjust optimum growth conditions based on historical data and real-time monitoring information, ensuring each plant grows in the ideal environment. Secondly, it significantly reduces energy consumption and operational costs, improving resource efficiency. The intelligent management system optimizes water, electricity, and nutrient supply, reducing waste and lowering manpower costs. Additionally, the system's modular design and strong compatibility allow it to seamlessly integrate various new and old equipment, providing a flexible solution for gradual upgrades of plant factories. Most importantly, the system injects a sense of technology and modernity into agricultural production, helping to attract the younger generation to the field and injecting new vitality into the industry.

Looking ahead, HaiBoTe's smart agriculture system has broad application prospects and expansion potential. In addition to plant factories, this system can also be applied to traditional greenhouse cultivation, urban agriculture, and even home gardening. In the field of aquaculture, similar technology can be used to monitor and optimize the breeding environments for fish or shrimp. In the food processing industry, similar intelligent monitoring and forecasting systems can be used to optimize production processes and enhance food safety. Even in the pharmaceutical industry, this type of precise environmental management system could be applied to drug research and production processes. To further promote this system, HaiBoTe could adopt a multifaceted strategy. Firstly, they could collaborate with agricultural colleges and research institutions to establish demonstration bases, allowing more people to experience the benefits of smart agriculture firsthand. Secondly, they could develop customized solutions tailored to different scales and types of agricultural production, expanding the applicability of their products. Furthermore, they could raise awareness and acceptance of smart agriculture within the industry by hosting forums, online seminars, and sharing success stories. Lastly, they could explore collaborations with government departments to integrate this system into policies supporting the modernization and sustainable development of agriculture, thereby promoting the widespread adoption of smart agriculture on a larger scale. Through these efforts, HaiBoTe not only can expand its market share but also make a significant contribution to the sustainable development of global agriculture, truly realizing the vision of technology empowering agriculture.

 

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-12-09」

Recommend Cases

這是一張圖片。 This is a picture.
AI-Based PCBA Surface Defect Detection Improvements

With the introduction of theAOIAIWith the introduction of the system, we can improve product yield, reduce costs, and from a business perspective, increase customer trust and sales revenue Moreover, AIit has advantages that are difficult to imitate, unlike other equipment that can be bought with money, making it hard for our competitors to catch up with us Our company's current development We are committed toIOTsmart manufacturing our systems already include smart materials systems, environmental humidity control systems, anti-miscarriage systems, smart procurement computation systems, smart inventory systems, solder paste management systems, and production management systems We have asked other manufacturers about the possibility ofAIinspectingPCBAsurface defects, each hoping that we would purchase their equipment, but none were effective upon verification After discussing with IT service providers, we defined it asAOIAIa feasible operational model Tzuhong Technology has invested inAOIAIan inspection plan to checkSMTtext on components, solder joints, polarity, missing partsand usingAIto replace manual learningAOIand define the 'potentially defective' parts, enhancing productivity and reducing misjudgment rates Industry pain points Taiwan faces a severe labor shortage, especially those willing to perform visual inspections are few and typically older, increasing the frequency of missed inspections Thus, the most critical bottleneck in the pursuit of high-quality electronics has become post-production inspections Previous consumer products with undetected anomalies were acceptable within a certain ratio However, in the automotive industry today, undetected defects could lead to fatalities hence, the automotive industry has extremely high quality demands To survive in the automotive supply chain, we must address the issue of undetectable anomalies Moreover, as wages in Taiwan continue to rise, we can only endeavor toAIreplace traditional manpower with technology, otherwise, even if the anomaly leakage problem is resolved, the relatively high labor costs will still prevent competitiveness in this industry Application technology and explanation Initially,Figure 1,PCBUpon emerging,Reflowsystem, it will undergoAOIwill undergo inspection, dividing into 'suspected defective' and good products At this point, the 'suspected defective' portion accounts for20manual review for these20parts, further classifying the 'suspected defective' portion into good and defective products With We aim to leverageAItechnology, to shift from manual re-inspection of these20technology, we aim to replace manual review of 'suspected defective' products withAIand after review, the results still yield 'good' and 'suspected defective' products, but now 'suspected defective' comprises only3thus reducing the workload of Tzuhong's employees from20down to only3In theory, it isAOIIn theory, after inspection, it is further reviewed byAIbut it appears to go throughAOIonly, so we call this technologyA0IAIDetectionFigure 2。 The original AOI inspection process The operator will place the testPCBboard intoAOIthe inspection equipment, outputtingAOI information on defective products, then manually re-inspect one by one to determine if they are defective AOIAI inspection process The operator will place the testPCBboard intoAOIthe inspection equipment, outputtingAOIinformation on defective products after, then proceed byAIfirst performingAOIre-assessment of defective products, outputtingAIinformation on defective products afterward, then manually re-inspect one by one to determine if they are defective Process differences By introducing theAOIAIsystem, not only can we enhance the efficiency and yield of visual inspection personnel, we also have this timeAIexperience in system introduction, we will also incorporateAIthe use of big data into Tzuhong's existing smart manufacturing systems, further enhancing the performance of our smart manufacturing systems and reducing the pressure on employees Difference between pre and post-introduction Promotion strategy 1 Similar field diffusion allSMTmanufacturers face bottlenecks in inspections leading to shipment delays introducing this system can solve the severe labor shortage issue and enhance shipment speed and quality, allowing self-promotion to customers or through equipment dealers to cater to relevant needs 2 Cross-industry expansion plans negotiate withAOImanufacturers to directly integrateAIthe system intoAOItheir systems, enhancing their market competitiveness Profit strategy 1 In collaboration withAOImanufacturers, collect licensing fees 2 Direct sales toSMTthe manufacturing industryAIsystems 3 ProvideSMTmanufacturing industryAOIAIsystem subscription model「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-09」

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
Transforming into a Large-Scale AIoT Technology Playground: The Spectacular Makeover of the National Museum of Marine Science & Technology

Taiwan is a maritime nation When you visit the Badozi Fishing Port or Tidal Park in Keelung, do you also explore the mysteries of the ocean world at the 48-hectare National Museum of Marine Science amp Technology To get more people closer to marine technology, Keelung's Marine Museum has introduced technological services, transforming the venue into a large technology playground that delights both children and adults, fully utilizing the 'learning through play' approach After a lengthy planning process, Northern Taiwan's largest marine science museum in Keelung opened in January 2014 The museum focuses on marine education and technology, boasting Taiwan's largest IMAX 3D ocean theater The unique themes and modern viewing facilities should make it a well-known landmark in Keelung However, the original exhibition planning was static and highly specialized, lacking sufficient interaction with the public Visitors who have attended the museum also reported that the exhibits were limited and quite boring, leading to poor overall consumer experience ratings The top three dissatisfactions with the museum were weak connections to surrounding attractions, unengaging display content, and lack of exhibit material According to statistics from the Marine Museum, the ratio of local to visiting guests is approximately 64, with most foreign visitors coming from the north transportation is primarily by car and bus common types of visits include family, parent-child, and friends and the stay duration is generally 1 to 2 hours Upon deeper investigation, the top three visitor complaints were weak linkages to surrounding attractions, unengaging display content, and insufficient number of exhibits The museum analyzed potential reasons, including some displays being too specialized, making it difficult for the public to understand, and a lack of interactive elements, making the exhibition boring and the visit hurriedly brief Analysis of visitor profiles revealed that since half of the museum's visitors are locals, and accessing the museum is not so easy for out-of-towners who must travel by car or public transport, the design of the venue and exhibitions must incorporate more interactivity and intrigue to encourage locals to return and extend the duration of visitors' stays while using technological services to highlight the museum's unique features Through a recommendation from the Information Software Association, part of the Ministry of Economic Affairs' Industrial Bureau AI team, the Marine Museum commissioned Jugu Technology to resolve the issue of uninspiring venue attractions Preliminary interviews by Jugu Technology revealed that many visitors were attracted by the architectural design of the museum, notices posted on nearby walls, flags, or events being held the most interesting feature for visitors was the 3D ocean theater, indicating that content presented through audio-video and physical scenic methods was more engaging Seven major AI technologies lead to a boost in regional tourism at the Marine Museum Through the introduction of technology services, Jugu Technology designed the 48-hectare site with seven major services AI voice tours, treasure hunt puzzle games, AI exhibit interactive revitalization, AI space exhibition interactive experience, AI crowd control, Face AI interactive experience, and AI voice customer service system By utilizing AIoT and cloud technology, they made the exhibition more interesting, not only solving the issue of boring static viewings for children but also doubling the learning efficiency and dramatically improving public perception of the Marine Museum, thus increasing visitor intent and boosting regional tourism The National Museum of Marine Science and Technology introduced seven major technological application services including AI voice guide Jugu Technology aimed to improve the space optimization of the Marine Museum, using the special exhibition of coastal birds in northern Taiwan as a prototype, integrating 'face', 'limb', 'crowd' as three main axes to enhance functionality and assist in improving the museum's application of AI Practically, the Marine Museum and Jugu Technology selected the on-site special exhibits to avoid any installation of water and electricity works or pipelines in active exhibits, thereby maintaining the quality of the viewing experience Instead, they selected exhibits that were not yet open to introduce a series of technological services tailored to the unique characteristics of the exhibits In the coastal bird special exhibition inside the Marine Museum, initial construction discussions with the curators utilized Bella X1 for a welcoming interactive introduction at the exhibition entrance This was followed by an AI-powered smart guide in both Chinese and English using X1 for narration, coupled with a fun treasure hunting stamp-collecting activity - APP X1, allowing visitors to participate in challenges Subsequently, bird species within the bird exhibition were brought to life interactively using X1, and AR scenarios X1 were introduced into the exhibition space to add elements of fun and entertainment Finally, Face AI was used to interactively test facial expressions and score smiles The gorgeously transformed Marine Museum will become the best travel destination for families with children ImageMarine Museum FB Page The AIoT services introduced by the Marine Museum could be extended to various exhibition-type museums and even static art galleries in the future, tailored to the unique characteristics of different venues They could also be promoted through government projects and related plans, aiding in rural revitalization, making visits more than just sightseeing in rural areas, and breaking free from stereotypes associated with different venues The applications of these services are broad「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
CCTV Intelligent Video Search System

Search for a specific person, find someone with a suitcase entering the factory in Gao'an area Color features of the person and the object confirmed, person in blue and black top, suitcase in black color, throughCCTV the intelligent video search system, by setting object and color retrieval conditions, it can successfully locate three video clips containing the target subject This greatly aids operational staff in finding the target items, and through this system, search speed can far surpass manual effort6fold Pain Points The CSE-Kaohsiung Plant is densely equippedCCTVto monitor every corner of the plant area, but when an incidenthappens, it's impossible within a limited time throughCCTVvideo playback to find the incident, the implications and risks behind this are self-evident Many areas that are usually unmanned can easily become security blind spots Thus, how to monitor a vast plant area more intelligently and effectively is one of the crucial aspects of building a smart plant for the semiconductor industry The AES Plant in Kaohsiung covers a vast area, with many important sites requiring monitoring of personnel movements to ensure corporate secrets and employee safety 1 Automated production lines and warehouses In semiconductor enterprises’ automated production lines and warehouses, oftenAGV(Automated Guided VehicleAGVs automated guided vehicles travel at high speeds if plant personnel inadvertently enterAGVthe moving area and cannot issue a warning to the person, then the regrettable accidents that occur will be too late to reverse 2 Material and product storage areas Materials used in semiconductor-related processes are costly if areas storing materials or products are breached, there is a risk of loss of high-value materialsproducts 3 High-security areas Trade secrets relate to the core technological competitiveness of semiconductor-related enterprises if someone breaches the high-security areas, there is a risk of corporate secrets being leaked The safety of trade secrets has always been one of the most critical issues for semiconductor enterprises 4 Loading docks At AESLButthe dock area often has loading vehicles coming and going if someone intrudes into the dock area, there is a risk of vehicle collisions and accidents Additionally, goods awaiting shipment at the dock area could be stolen or potentially damaged from collisions, thus causing significant reputation and financial losses for the company, further leading to production and shipping inconvenience When an abnormal event occurs, how to quickly search for the relevant key footage from massive data Many important locations within the AES Kaohsiung Plant need to be equippedCCTVfor safety checks, butCCTVWith thousands to tens of thousands of cameras, manually searching through footage for an event requires laborious frame-by-frame review which is time-consuming and inefficient In light of advancements in computer vision, it's beneficial to utilizeAIto replace manual playback and searching Problem Scenario Object Detection The data source for object detection comprises two parts Open-source datasetsOIDv4and AES Kaohsiung PlantCCTVImage files For these files, search for usable data, specificallyOIDv4image files For these files, extract the defined nine major categories of objects for training data among them, two object categories, knives and gasoline barrels, were not found inOIDv4found usable data for knives and gasoline barrels, while the remaining seven categories of objects are available fromOIDv4useful training data found for the remaining seven categories of objects, all marked Regarding the Kaohsiung PlantCCTVimage files, select some frames Frame of the footage, and manually annotate the objects to be_detected for training and testing data Nine Major Objects Color Recognition The data source for color recognition is divided into two partsInternet image screenshots, and Kaohsiung PlantCCTVimage files Currently, no publicly available open-source datasets specifically for color recognition applications have been found, so images are collected from the web Search the web for images of the defined nine major object categories, save the images after separating the objects from the background, keeping only the object sections, and mark the images according to color Additionally, for the Kaohsiung PlantCCTVimage files, use the already-markedbounding boxextractCCTVimage files from variousFramesections of objects identified by color, and finally, visually identifiable images are marked according to color Each object category has its specific color definition, depending on the usual colors seen in these objects in real life Dynamic Ignore during Training FromOIDv4during the training of the object detection pilot model, since each image in this dataset is only marked for a single category, but the image may contain other desired detection categories unmarked For such cases, dynamic ignore techniques will be employed during training to avoid confusion Next, use the extracted training data from the Kaohsiung Plant toFine-Tuneenhance the detection rate of the object in specific designated areas Finally, select the model that computes the lowest loss value in the test set during the training process as the main object_detection model Dynamic Ignoring AIHelp You View CCTV The intelligent video search system primarily serves as an assistive system for searching surveillance footage, capable of speeding up the process of finding target events by setting search conditions for objects By simply defining the search conditions, you can quickly produce thumbnails of critical objects and playback for review, shortening the time required for manual case retrieval of the past The search time is quickly6doubled, allowing the front-end security unit to use this platform to strengthen the first line of risk management supervision and take timely preventive measures 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」