:::

【109年 應用案例】 台資科翻轉傳統專利分析曠日廢時的致命缺點, 研發「企業專利監控之 AI 數據分析平台」,一鍵搞定!

如何有效率地分析海量增長的專利資訊,挖掘潛在價值?

專利是技術、市場和競爭資訊的寶貴來源。然而,公開的專利文獻總數已高達 1.2 億件,僅去年一年就新增 630 萬件。如何才能讓這些海量專利文獻為己所用?

專利分析為充分挖掘專利資訊的價值,提供了一條不可或缺且切實可行的途徑。通 過專利分析,我們可以瞭解自身與競爭對手各自專利組合所具有的優勢、存在的不足和 蘊含的機會,以及全球專利申請趨勢、技術全景、哪些地方可能存在空白領域等等。

然而專利分析要求透徹理解底層資料,這些資料的用法和用途,以及能夠解決的問 題,如何才能有效率地運用及分析海量資訊,正是最讓人頭痛的問題……

非結構化的資料型態,只能透過人工閱讀整理,十足惱人!

「專利說明書」係融合法律與科技用語的一種具有法律效力的文件,屬於非結構化 之資料形態,過去的各項檢索或分析都是以人工之方式閱讀內文與整理,實乃曠日廢 時,且經常發生追趕不上訴訟時程之情況。在協助企業進行專利佈局時,常面臨無法量 化競爭對手與客戶之訴訟風險程度,也難以量化專利之品質與價值,造成受輔導單位新 聚能科技股份有限公司(以下簡稱「新聚能科技」)之業務範圍無法進一步地擴大,也 無法促進外界對專利加值應用之瞭解程度。

近年來,新聚能科技也開始協助企業中負責創新與研發的人員,提前掌握影響產業 未來發展的重要科技及其專利競爭情報,使得相關人員更從容地進行專利佈局,並提高 專利品質與價值。然而,新聚能科技大部份業務範圍在於代理專利軟體,對於知識產權 運營管理資訊系統 (IPServ) 主要協助企業或個人的智慧財產權做管理,但目前並無提 供企業或個人提供專利監控等數據分析相關的服務。

台資科-股市與專利大數據間的連結

▲台資科-股市與專利大數據間的連結

這些專利軟體包含專利檢索、管理與維護,而專利大數據是否能夠成功輔助企業掌 握市場現況、專利價值、訴訟威脅以及監控競爭對手的不法侵權行為,基本上全是仰賴 於專利數據之取得。由於專利數據之清理非常費時,所以一直是個讓人頭痛不已的問 題,直到台資科研發「企業專利監控之 AI 數據分析平台」,才終於出現曙光……

傳統專利分析曠日廢時,改用「企業專利監控之 AI 數據分析平台」, 一鍵搞定!

本計畫的發想是使用專利申請的案件中之專利編碼與公司產業別等具鑑別力的影響 因子,透過大數據分析,並增加相關新聞以機器學習透過 AI 輔助專家,分析市場現 況、避免訴訟威脅以及監控競爭對手的不法侵權行為。這些最後萃取出來的因子也將影 響個股的表現,對此可以根據不同的企業屬性和發展方向,朝向客製化大數據分析提升 企業的戰略位置。希望透過平台的搜尋可以快速的讓企業於新增產品線時,了解競爭對 手的專利佈局,避免侵權的情況發生;或者廠商要找合作夥伴時可以從有高度研發的公 司來篩選,將此平台作為競合關係的好工具。

投資組合最佳化

▲投資組合最佳化

傳統上專利分析曠日廢時,需透過人工檢索專利、閱讀專利資料,才能產出一份專 利分析報告,藉由本專案的「企業專利監控之數據分析平台」 (以下簡稱「專利監控平 台」),使用者可輸入某年度或自己與競爭對手的公司名稱,經過系統分析後,即可給出 該年度及公司間的技術布局、變化趨勢監控等結果,節省作業時間及人力。例如,若要知 道市場上對於物理、化學、電學的相關技術發展現況,可分析 IPC 專利號碼檢視哪些公 司的持有專利有群聚現象,藉此研判該群聚專利為相關技術或相互依賴的技術,了解公 司之間在專利布局上的相似度、產業趨勢,縮短決策時間,搶先布局或作專利迴避設計。

透過人工智慧改善傳統的人工專利檢索的作業以提高工作效能,「專利監控平台」 的設計係用於幫助專利分析人員更方便了解特定技術領域的專利發展現況,以預測未來 技術研發方向。專利布局是企業針對專利組合,透過整合市場、產業、法律等因素,構 建嚴密的保護網,形成有利的研發方向、降低侵權風險。嚴謹的專利布局可幫助公司在 戰略規劃時避開地雷區,避免不必要的訴訟戰;或是透過搶先申請專利及購買專利,擴 大自身技術的保護範圍。而要達成此目的,關鍵是經由分析大量的專利資料,領先同業 找出趨勢。以本公司開發之產品線人流資訊流天線為例,專利監控平台可針對產品之專 利組合,達到上述目標。

人流資訊流天線產品圖

▲人流資訊流天線產品圖

未來,將針對專利文件內容之標題與摘要進行文字探勘(Text Mining)。前期人工 輔助,後期採機器學習方式建立專利詞庫自動斷詞系統。應用斷詞系統將標題與摘要進 行斷詞,計算字詞頻率(TF)與反轉文件頻率(IDF)。透過統計方法(如相關相數), 擷取專利文件特徵,找出專利之間強關聯性之相關字詞。提升探勘專利之相似度,更進 一步了解專利訴訟之風險。

經由呈現「平台網絡圖」可以讓公司或事務所快速看到,其相關的產業公司佈局在 哪些專利上面。對於專利,各公司可以思索全由自家研發申請或者是從產業龍頭單獨購 買專利授權。對於公司產品,要商品化時可因應時代變遷採取不同的策略,前幾年也許 是敵對的,隨著產品發展的差異而是今日的盟友。

台資科專利指數的獨特性與優勢

▲台資科專利指數的獨特性與優勢

關於「公司交叉比對」,可一次選擇多年,對於和主要公司相似度較高的對比公 司,從年度變化可了解雙方是否發展太過相似的專利,而使二者處於高風險侵權的風暴 範圍之中。當數據庫資料更多時,可以進一步計算專利風險率,讓習慣讀數字或讀表的 使用者從另一角度快速知彼知己。甚至未來增添更多參數後,可以估計侵權金額,但取 得參數內容,還需與專利業者協同合作,一同打造更便利的專利風險監控平台。

專利大數據-預測台灣上市櫃公司獲利能力

▲專利大數據-預測台灣上市櫃公司獲利能力

推薦案例

【導入案例】救命急如星火 AI病危系統監測掌握黃金搶救期
救命急如星火 AI病危系統監測掌握黃金搶救期

60歲的黃先生因中風住進醫院,在加護病房躺了兩周之後,突然病情急轉直下,經過搶救之後,才幸運撿回一命。事實上,在AI病危預警技術的輔助下,讓醫院能在病患心臟停止前的6-8小時,發現徵象並採取及時、準確的醫療措施,可大大降低病患院內死亡的機率。 病情的惡化是一個隨時間演進的過程,其細微推移變化絕非無脈絡可循。過往的研究報告顯示,發生非預期性院內心跳停止的住院病人中,約有六至七成在其心臟停止前6到8小時前已有徵象,但是卻僅有四分之一被臨床人員所偵知發覺,因此需要一種能更早期、並持續使用風險預警工具或系統監測病情,隨時警示醫護人員注意患者病情的細微變化,在病情進展前採取及時、準確的干預措施,有效減少不良事件或嚴重不良事件的發生風險。 非預期性病情惡化 無法及早偵測 急重症患者常出現不可預測的變化,及時發現或能預測潛在急重症患者為重要的課題。目前臨床常用的評估方式為Modified Early Warning Score MEWS,利用簡單的生理參數評估 包含心跳、呼吸速率、收縮壓、體溫、排尿量及意識狀態篩選出高危險群病人,已經證實可以預測病人的臨床預後。 MEWS為單一時間點且制式化公式的評分機制,然而,博鑫醫電所研發的 AI病危預警-醫院急重症病危提早預警指標系統EWS,係以即時反應預測病人狀態為目的,收集病患的連續性時間之生理資料進行深度學習,找出最佳預測模型,提高整體準確度。 博鑫醫電以大數據分析模型建置早期警訊系統EWS、IoT物聯網及5G通信技術,讓醫護人員透過通訊設備遠距離監控病患的生理狀況,監控急重症快速的病情變化,能掌握心臟停止前的6-8小時黃金搶救期。 博鑫醫電導入AI視覺判讀之後,無人化操作方式可大大降低醫護人力 博鑫醫電開發之AI技術為梯度提升集成學習系統 Gradient Boosting Ensemble Learning System, GBELS 建置早期預警系統,為該公司開發之具有學習型之EWS預測演算法,屬於集成學習 Ensemble Learning的一環,且歸類於監督式學習,提供以下三項功能: 一、早期警訊風險通知,以將具有代表性的數據,以GBELS進行分析,提供早期風險評分,讓醫護人員可即時進行臨床評估及提供適當醫療處置。 二、降低醫護人力:收集連續性生理監護數據,如心跳、呼吸、血壓及血氧濃度等,降低醫護人員書寫病例時間。 三、結合IOT物流網及5G通信技術,快速傳輸監護參數和影像資料等醫療數據,協助醫護人員透過通訊設備,遠距離監控患者的病情變化。 AI病危系統監測 掌握黃金治療期 博鑫醫電表示,急重症患者評估疾病嚴重程度是一項複雜工作,患者經常出現不可預測的變化。臨床醫護人員對病情判斷經常根據自己臨床經驗或直覺,缺乏科學、客觀,導致無法正確識別、及時發現潛在急重症患者,導致或誤診導致病患院內死亡率增加。 導入AI早期病危預警系統可輔助急重症的醫護人員正確的預判患者病情,更能讓患者即時受到需要的照料,藉此可以減少同時間急重症病房的人力安排並降低人力成本。 此外,易於攜帶的設計更有助於日後將系統導入救護車、居家照護等場所,對於急診患者可以更早得到適當的照料。院內的其他科別也可以在這套系統周邊開發新的應用,可有效加速智慧醫療技術的發展及推廣;以時下新冠疫情仍然肆虐全球多國的情況,此一系統也可以協助各地醫院更有效地照顧及監控重症患者的病情。 除了AI病危預警外,博鑫醫電也研發AI影像判讀-醫療生理監視器生命週期合規檢測AVS,也就是以AI影像判讀技術,發展生命支持類醫療器材之自動化品質檢測儀器,解決醫療儀器檢測耗時問題,可降低70的檢測時間,提高3倍的檢測數量、有效降低50的人力成本,同時100合乎法規要求,逐步解決醫療領域人力不足、醫療資源短缺、醫護工作超載等問題。目前已於中國大陸扎根,積極在歐洲為落地做準備,未來將朝日本及美國市場發展。 博鑫醫電研發AI影像判讀-醫療生理監視器生命週期合規檢測AVS,解決醫療儀器檢測耗時問題,可降低70的檢測時間。 現階段博鑫醫電的智慧醫療技術已導入包括新竹馬偕、彰基、東元綜合醫院、高雄工學大學附設醫院、振新醫院、新泰醫院、台北醫學大學附設醫院等醫療院所;國際知名醫材製造商GE HealthcareInc、中國最大醫材製造商邁瑞醫療,皆為博鑫醫電代表性客戶。

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇

綠能是未來趨勢,必帶動未來龐大商機。而風力發電是近年全球矚目綠色能源之一,將成為我國再生能源重要生力軍、幫助台灣發電量於2025年達到20的目標,以提高台灣能源自主性。隨著國內風力發電機風機組數量和電量逐年增長,如何讓儲電設備達到安全、長效性、充放電不易衰減和永續低碳又環保的技術能量顯得格外重要,同時風機設備本身的健康檢測、保養與維修也成為風場業者關注焦點。為滿足風場客戶需要,華鉬實業旗下綠能事業部門推出長效儲能的全釩液流電池電解液及風機AI預測性運維,提供100安全、長效性且可降低客戶初製成本的電力儲能設備,並透過AI預測性運維服務協助客戶降低發電度成本10,節省最多30維護保修成本。 華鉬實業成立於1998年,本業以提煉釩、鉬及稀有金屬元素等製品起家,並運用於高階鋼鐵、專業化工及特用化學品等行業,而釩更如同煉鋼的維他命可加值煉鋼的成效。其中釩、鉬相關製品為公司主力項目之一,公司看見100以釩元素為主的全釩液流電池在長效儲能上未來將是相當被看好的綠能技術主流,並且2010年以前政府已積極請法人如工研院在固態電池和全釩電池進行相關零組件材料投入研究,再加上經濟部期許再生能源在2025年發電量佔比達20目標並達15GW,基於上述考量,華鉬實業決定於2017年全力研究與投入自主開發的全釩液流電池電解液的技術開發,以藉此加速2025年再生能源的達標率。 華鉬公司指出「再生能源的電源較不穩定,而台灣本身缺乏鋰資源,在鋰電池製造上幾乎80-90電池芯必須倚賴國外採購,缺乏100國內自足自給的儲能資源與技術。」同樣地,對於本身沒有天然釩礦資源的台灣是如何克服呢 為此,華鉬實業利用獨創技術,透過石化業如中油煉油廠或台朔石化製程中的廢觸媒,其中有高達10釩離子成分可提煉出高價值的釩礦資源,藉此生產出台灣100自主自製的全釩液流電池電解液且不受資源影響,有效達到資源循環再利用。自2017起華鉬實業已成功打造出全釩液流電解液技術,並順利通過工研院和核研所及多家國際大廠的產品驗證。 台灣在儲電能量目標於2025年要達15GW,其電力分配包含500MW於台電的自動調頻系統、500MW於E-dReg及500MW於既有或新設的太陽能電廠,以太陽能電廠的用電使用為例,主要以下午4點到晚上10點用為民生用電尖峰時段,為此,能源局特別要求台電必須加強儲能設備的升級,也因此帶動市場上對全釩液流電池儲能系統設備的高度需求。另外,台灣在目前總儲備電能的建置與貢獻尚未達到100MW,距離2025年目標15GW儲電量仍差距15倍以上。 運用全釩液流電池 成功打造100安全、低碳環保又長效性儲能系統設備 相較於鋰電池的短效電力儲能,全釩液流電池的最大優勢為全球公認可長效性的儲備電能,可以長時間儲能達12小時,代表若充12小時電力,則可以釋放12小時電力。相較於一般儲能系統的計電方式也就是每日用電度數功率以千瓦為單位 x時間以小時為單位,對全釩液流電池而言,功率和小時數是各別設計,該功率又稱為電堆,是由金屬、高分子模、碳氈和石墨板等四種材料組成,而該用電時間改以電解液的量以立方體為單位來計算,因此當功率電推 x電解液的量我們每日運用全釩液流電池儲能的用電度數。 全釩液流電池儲能系統設備之產品特色方面,包含安全性、長效性、充放電不易衰減和永續低碳環保性等四大特色。全釩液流電池品質是100安全,由於電能是儲存在含釩的電解液中,能避免儲飽電的儲能系統造成任何易燃事故發生。在電池壽命上,相較於鋰電池的電池壽命短暫,全釩液流電池透過價數變化可高達20-25年以上電池壽命。對於儲能的充放電性能,不像鋰電池有一定充放電次數5000-600次,全釩液流電池的充放電次數是沒有限制性的。對於全球高度重視的零碳排放,不同於鋰電池有回收議題,全釩液流電池的電解液可永久使用,該電堆材料成分是環保的且可完全回收,以打造真正永續性又低碳環保的儲能系統。 陸域風機AI預測智慧運維 讓客戶降低發電度成本10 省下維護保修成本高達30 華鉬實業不只透過全釩液流電池儲能系統設備提高再生能源客戶長效儲電效能、協助客戶降低初置成本,更透過離岸與陸域風機AI智慧運維實證計畫在台電的陸域風場的場域實證,積極累積自家在AI預測性運維的技術經驗和能量。在經濟部工業局AI HUB計畫支持下,合作場域將以台電公司路域一期風場為主並提供6個月以上風機的智慧運轉數據進行分析。本次陸域風機的AI預測運維系統,採用機器學習方式,主要技術提供者來自英國British PetroleumBP石油集團的子公司ONYX Insight,該公司透過AI Hub分析軟體技術進行台電面臨的風機痛點分析,包含路域風機的發電量損失和陸域風機的關鍵零組件如齒輪箱、變槳軸承hellip在異常震動三維的振動頻率或異常溫度等狀態下進行損壞預測等報告產出。透過本次落地實證可有效協助台電降低發電度成本10,增加資產價值12,節省最多30維護保修成本。近三年ONYX Insight在全球已成功預測運維2萬台以上離岸或陸域風機,累積極高的AI模型準確率。相信透過與ONYX Insight建立的國際合作夥伴關係,將有效輔導並加速華鉬實業的綠能事業部在邁向成為風機AI預測性運維的獨立科技服務提供者之目標與布局。 與合作夥伴ONYX insight提供客戶AI預測運維系統,包含風機發電量損失與風機關鍵零組件之損壞預測 厚植國內風機運維的基礎 以台灣為基地 拓展到東南亞風場 離岸風機AI預測性運維未來在台灣將超過300億台幣的的市場產值,儲能市場在全球更是有千億美金以上的產值,在未來公司願景,華鉬實業期許能成為釩液流電池電解液及風機AI預測性運維的獨立技術服務提供者。而長期目標,透過累積豐厚技術及實績資本,在世界各地建立釩液流電池電解液之在地供應鏈,就近供應產業需求。