:::

【109年 應用案例】 台資科翻轉傳統專利分析曠日廢時的致命缺點, 研發「企業專利監控之 AI 數據分析平台」,一鍵搞定!

如何有效率地分析海量增長的專利資訊,挖掘潛在價值?

專利是技術、市場和競爭資訊的寶貴來源。然而,公開的專利文獻總數已高達 1.2 億件,僅去年一年就新增 630 萬件。如何才能讓這些海量專利文獻為己所用?

專利分析為充分挖掘專利資訊的價值,提供了一條不可或缺且切實可行的途徑。通 過專利分析,我們可以瞭解自身與競爭對手各自專利組合所具有的優勢、存在的不足和 蘊含的機會,以及全球專利申請趨勢、技術全景、哪些地方可能存在空白領域等等。

然而專利分析要求透徹理解底層資料,這些資料的用法和用途,以及能夠解決的問 題,如何才能有效率地運用及分析海量資訊,正是最讓人頭痛的問題……

非結構化的資料型態,只能透過人工閱讀整理,十足惱人!

「專利說明書」係融合法律與科技用語的一種具有法律效力的文件,屬於非結構化 之資料形態,過去的各項檢索或分析都是以人工之方式閱讀內文與整理,實乃曠日廢 時,且經常發生追趕不上訴訟時程之情況。在協助企業進行專利佈局時,常面臨無法量 化競爭對手與客戶之訴訟風險程度,也難以量化專利之品質與價值,造成受輔導單位新 聚能科技股份有限公司(以下簡稱「新聚能科技」)之業務範圍無法進一步地擴大,也 無法促進外界對專利加值應用之瞭解程度。

近年來,新聚能科技也開始協助企業中負責創新與研發的人員,提前掌握影響產業 未來發展的重要科技及其專利競爭情報,使得相關人員更從容地進行專利佈局,並提高 專利品質與價值。然而,新聚能科技大部份業務範圍在於代理專利軟體,對於知識產權 運營管理資訊系統 (IPServ) 主要協助企業或個人的智慧財產權做管理,但目前並無提 供企業或個人提供專利監控等數據分析相關的服務。

台資科-股市與專利大數據間的連結

▲台資科-股市與專利大數據間的連結

這些專利軟體包含專利檢索、管理與維護,而專利大數據是否能夠成功輔助企業掌 握市場現況、專利價值、訴訟威脅以及監控競爭對手的不法侵權行為,基本上全是仰賴 於專利數據之取得。由於專利數據之清理非常費時,所以一直是個讓人頭痛不已的問 題,直到台資科研發「企業專利監控之 AI 數據分析平台」,才終於出現曙光……

傳統專利分析曠日廢時,改用「企業專利監控之 AI 數據分析平台」, 一鍵搞定!

本計畫的發想是使用專利申請的案件中之專利編碼與公司產業別等具鑑別力的影響 因子,透過大數據分析,並增加相關新聞以機器學習透過 AI 輔助專家,分析市場現 況、避免訴訟威脅以及監控競爭對手的不法侵權行為。這些最後萃取出來的因子也將影 響個股的表現,對此可以根據不同的企業屬性和發展方向,朝向客製化大數據分析提升 企業的戰略位置。希望透過平台的搜尋可以快速的讓企業於新增產品線時,了解競爭對 手的專利佈局,避免侵權的情況發生;或者廠商要找合作夥伴時可以從有高度研發的公 司來篩選,將此平台作為競合關係的好工具。

投資組合最佳化

▲投資組合最佳化

傳統上專利分析曠日廢時,需透過人工檢索專利、閱讀專利資料,才能產出一份專 利分析報告,藉由本專案的「企業專利監控之數據分析平台」 (以下簡稱「專利監控平 台」),使用者可輸入某年度或自己與競爭對手的公司名稱,經過系統分析後,即可給出 該年度及公司間的技術布局、變化趨勢監控等結果,節省作業時間及人力。例如,若要知 道市場上對於物理、化學、電學的相關技術發展現況,可分析 IPC 專利號碼檢視哪些公 司的持有專利有群聚現象,藉此研判該群聚專利為相關技術或相互依賴的技術,了解公 司之間在專利布局上的相似度、產業趨勢,縮短決策時間,搶先布局或作專利迴避設計。

透過人工智慧改善傳統的人工專利檢索的作業以提高工作效能,「專利監控平台」 的設計係用於幫助專利分析人員更方便了解特定技術領域的專利發展現況,以預測未來 技術研發方向。專利布局是企業針對專利組合,透過整合市場、產業、法律等因素,構 建嚴密的保護網,形成有利的研發方向、降低侵權風險。嚴謹的專利布局可幫助公司在 戰略規劃時避開地雷區,避免不必要的訴訟戰;或是透過搶先申請專利及購買專利,擴 大自身技術的保護範圍。而要達成此目的,關鍵是經由分析大量的專利資料,領先同業 找出趨勢。以本公司開發之產品線人流資訊流天線為例,專利監控平台可針對產品之專 利組合,達到上述目標。

人流資訊流天線產品圖

▲人流資訊流天線產品圖

未來,將針對專利文件內容之標題與摘要進行文字探勘(Text Mining)。前期人工 輔助,後期採機器學習方式建立專利詞庫自動斷詞系統。應用斷詞系統將標題與摘要進 行斷詞,計算字詞頻率(TF)與反轉文件頻率(IDF)。透過統計方法(如相關相數), 擷取專利文件特徵,找出專利之間強關聯性之相關字詞。提升探勘專利之相似度,更進 一步了解專利訴訟之風險。

經由呈現「平台網絡圖」可以讓公司或事務所快速看到,其相關的產業公司佈局在 哪些專利上面。對於專利,各公司可以思索全由自家研發申請或者是從產業龍頭單獨購 買專利授權。對於公司產品,要商品化時可因應時代變遷採取不同的策略,前幾年也許 是敵對的,隨著產品發展的差異而是今日的盟友。

台資科專利指數的獨特性與優勢

▲台資科專利指數的獨特性與優勢

關於「公司交叉比對」,可一次選擇多年,對於和主要公司相似度較高的對比公 司,從年度變化可了解雙方是否發展太過相似的專利,而使二者處於高風險侵權的風暴 範圍之中。當數據庫資料更多時,可以進一步計算專利風險率,讓習慣讀數字或讀表的 使用者從另一角度快速知彼知己。甚至未來增添更多參數後,可以估計侵權金額,但取 得參數內容,還需與專利業者協同合作,一同打造更便利的專利風險監控平台。

專利大數據-預測台灣上市櫃公司獲利能力

▲專利大數據-預測台灣上市櫃公司獲利能力

推薦案例

這是一張圖片。 This is a picture.
實現無人商店夢想 喜鵲生活建構智能機產業未來

「喜鵲生活的DNA不會只有販賣機,我們相信販賣機結合科技、通路、人文,才能帶來令我們歡欣鼓舞的成果。」這是喜鵲生活官網上的一句話,讓販賣機帶來愉悅的生活,建構貼心、科技、永續的智能機產業未來,也是喜鵲生活創立的初衷。 成立於2018年的喜鵲生活,在成立4個月之後,即推出臺灣第一台自有品牌結合行動支付掃碼感應、藉由螢幕觸碰完成消費體驗、POS系統管理、數據聚集於後台的喜鵲U1智販機,讓消費者能同步世界的新零售腳步,體驗購買便利性、結帳安全性、視覺娛樂性、提升物流補貨效率的全新零售消費體驗。 傳統販賣機缺乏資訊可見度 AI技術協助資訊透明化 此次,喜鵲智能販賣機更搭載AI技術,提供可調整貨架空間、搭配工業電腦與大尺寸觸控顯示螢幕之自動販賣機,達成無店面商店之目的。 喜鵲生活表示,傳統販賣機最大問題即是缺乏資訊可見度。想要檢查庫存,就必須由補貨人員實際檢查每一部機器,這種做法既費時,成本也高。而當機器故障時,一般更是會長時間無法運作。大多數故障均無人通報,直到下次補貨人員抵達補貨才會發現。接著還必須等待維修技師排行程,而一等就可能需要數週的時間。 傳統販賣機缺乏即時互動性,當消費者投幣後遇到狀況時廠商無法當下處理。此外,傳統販賣機更缺乏彈性,無法應消費者偏好變化而調適。 傳統販賣機存在僅限零錢購物、支付工具單一;商品擺放數量有限,選擇性少等缺點。 受到COVID-19疫情影響,消費習慣轉為非接觸式的方式,致使無人化商店市場升溫。一般自動販賣機僅能擺放較單純的商品如飲料、食品等等。可販售的產業有限。而喜鵲開發出的專利販賣機可調整貨架空間,搭配升降貨梯,適用在各種類型的商品。此外,機台搭配工業電腦與大尺寸觸控顯示螢幕,能同時達到廣告託播的需求,預計朝無店面商店的方向邁進。 根據喜鵲生活觀察發現,近兩年來的消費者市場趨勢,消費者訴求便利生活、飲食消費型態重視餐飲體驗簡單快速,並且搭配手機連網訂購模式,而且熱飲及鮮食外送是兩大趨勢重點。而設置地點、販售品項、食用方式及多元付款方式是智能販售機的市場成長重點。 就便利性而言,臺灣消費者購買自動販賣機食品仍以車站、機場、學校、商業區公司附近為最高,多樣的付款方式也更獲得消費者支持,顯示未來自動販賣機可朝品項多元和支付方式多元兩大方向展開。 AI銷售預測技術整合後台管理 達到精準行銷目的 由於商品種類繁多,難以得知商品在不同因素如季節、市場情形、促銷活動等影響下的需求,容易造成缺貨或庫存過剩的狀況,喜鵲生活特別開發「AI銷售預測技術」,整合至後台管理系統,期能透過數據分析鎖定客戶購買偏好及意願,進而達到精準行銷之目的,進而做出精準的商業決策,有效分配有限資源。 導入AI系統可達精準行銷、庫存管理及供應鏈管理三大目標。 此一系統為專為供應鏈管理人員設計的調補貨決策輔助工具,透過 AI 預測未來銷量需求,協助企業有效優化產能、庫存及配貨策略。 其整體系統架構包括: 1資料探索性分析功能:針對資料內缺失值提供自動化補值、自動編碼及自動特徵篩選功能。 2建模功能 : 1提供迴歸Regression、時間序列Time Series Forecast共兩類預測問題類型之模型訓練功能。nbsp 2支援 Auto ML 自動建模,並由系統推薦提供最佳模型,亦可建立集成模型提升模型準度。nbsp 3支援多種演算法類型:Random Forest, XGBoost, GBM等演算法。nbsp 4支援多種時間序列模型:指數平滑、ARIMA、ARIMAX、間歇性需求、動態複迴歸等模型。nbsp 5支援多種模型評估指標:R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification等指標。nbsp 6支援自動切割訓練資料集及Holdout驗證資料集,並可手動調整比例。nbsp 7支援自動模型集成學習 Stacked Ensemble、平衡函數學習 Balancing Classes、早停法 Early Stopping。nbsp 8支援同時建立多個模型,系統將依照建模需求配置資源,讓建模、預測等任務擁有獨立的運算資源且互不影響,在整體伺服器空間有上限的情況下,運算資源能有效率被利用。nbsp 9具有記憶體運算In-memory computing功能,可藉由大容量及高速的記憶體進行運算,避免大量從硬碟中讀寫檔案,提高運算效能。 3資料串接功能: 運用API嫁接,採用完整的資料串接自動化,不需要手動匯入資料,提高使用者體驗。 4圖表分析功能:針對商品銷量提供視覺畫圖表及基本統計值。 AI數據分析解決方案具備兩大優勢: 1創業機台租售 低成本開設無人實體店與連鎖零售業合作,透過智能機讓創業者以低於店面租金的成本經營零售生意。提供機台買賣及租賃兩種合作模式,依業者評估選擇。 2多型態商品上架 24小時隨時隨地販售商品,可上架達60多種多樣化商品,透明大櫥窗提升商品能見度,定期補貨及追蹤商品販售狀況,依需求調整產品類型。 近來網路與實體界線模糊化,顧客互動方式大幅改變,消費需求多變且個性化,零售業面臨前所未有的挑戰和不確定性,掌握數據成為關鍵。AI 數據分析解決方案能幫助零售業快速活化大量資料,打造無縫的個人化體驗,最佳化營運價值鏈並提升效率,強化企業核心競爭力。

這是一張圖片。 This is a picture.
CCTV 智能影像搜索系統

查找某特定人物,尋找攜行李箱入廠人物進入高安區。人物及物件顏色特徵確定,人物藍黑色上衣,行李箱顏色黑色,透過CCTV 智能影像搜索系統,做物件與顏色檢索條件設定,可以成功搜尋到三段縮圖有出現關鍵標的影片,可以有效解決作業人員查找物件標的物,透過此系統查詢速度可比人工快6倍。 需求痛點 日月光高雄廠區內密布CCTV能及時監控廠區中的各個角落,但若在事件事故發生時,無法在有限的時間可透過CCTV影像回放被找到,其背後之意涵與其中蘊藏之巨大風險自是不言而喻,而許多平時無人的區域也很容易成為治安上的死角。故如何更智能、更有效的監控占地龐大的廠區是全體半導體企業打造智慧廠區之一大重點。日月光高雄廠占地遼闊,其中有許多重要的場域需要監控人員進出以確保企業機密與員工安全。 1 自動化生產線與自動倉儲:半導體企業之自動化生產線與自動倉儲中常有AGV(Automated Guided Vehicle)無人車高速行駛,若有廠區人員不慎誤入AGV移動區域且無法對該人員發出警告,則當憾事發生將追悔莫及。 2 材料與產品存放區域:半導體相關製程之材料價值不菲,若存放材料或產品之區域遭人入侵則有損失高價材料、產品之風險。 3 高機密管制區:營業秘密關乎半導體相關企業之核心技術競爭力,若有人員侵入高機密管制區則有企業營業秘密外洩之風險,而營業秘密安全防護一直以來都是半導體相關企業最最重視之議題。 4 卸貨碼頭區:日月光L但碼頭區常有卸貨車輛進出,若人員闖入碼頭區則有發生人車擦撞、碰撞意外之風險。甚至堆放在碼頭區待出貨的貨物有失竊以及因人員碰撞後,貨物倒塌造成損毀,因而造成公司具大的信譽、金錢損失。更進一步的造成生產出貨的不便。 異常事件發生時,如何在海量數據中,快速搜尋符合條件的關鍵影像 日月光高雄廠有許多重要的場域都需要架設CCTV為安全把關,但CCTV的數量動輒上千支、上萬支,一旦發生事件要去搜索影像時,都要用人眼一一回放查找、搜索,耗時耗力效益不彰。有鑑於現今電腦視覺的發展,遂利用AI來替代人眼回放查找。 問題情境 物件偵測 物件偵測資料來源分成兩個部份 開源資料集OIDv4、以及日月光高雄廠CCTV影像檔案。針對OIDv4中,取出符合定義的九大類別物件訓練資料,其中有二類物件未能於OIDv4中搜索到可用資料,分別為刀子與汽油桶,其餘七種類別物件皆可從OIDv4中取出可用訓練資料,此訓練資料皆已有標記。而針對高雄廠CCTV影像檔案,從中抽取部分幀(Frame)的影像,並且對欲偵測的物件進行人工標記以做為訓練與測試資料。 九大物件 顏色辨識 顏色辨識資料來源分成兩個部份網路圖像截圖、以及高雄廠CCTV影像檔案。目前並沒有找到針對顏色辨識應用的公開可下載的開源資料集,因此只能從網路蒐集圖像,於網路上搜索符合定義的九大類別物件的圖像,儲存圖像後將物件與背景分割,只保留物件的區塊,最後將圖像依照顏色做類別標記。另外針對高雄廠CCTV影像檔案,則使用物件偵測資料已標記好的bounding box擷取CCTV影像檔案中各個Frame的物件所在區塊之圖像,最後將肉眼可辨其顏色之圖像依照顏色做類別標記。針對每種物件類別皆有其專屬顏色定義,各種物件類別的顏色定義取決於此物件類別於現實生活中常見之顏色。 動態忽略免除混淆訓練 從OIDv4訓練專案的物件偵測雛型模型時,因為此資料集的每張影像中,皆只有針對單一類別做標記,但影像中有可能包含其他欲偵測之類別未被標記,故針對此種情況,訓練時會使用動態忽略之技術使其不會有混淆訓練的情況。接著使用高雄廠取出的訓練資料用來Fine-Tune雛型模型提高物件於特定指定場域下的辨識率。最終選取訓練過程中於測試集計算之損失值最低的模型做為主要物件偵測模型。 動態忽略 AI幫你看 CCTV 智能影像搜索系統主要是做為監控影像的搜尋輔助系統,可以藉由設定搜尋物件條件來加速達到從影片找出目標事件的功能,僅需定義搜尋條件,即可快速產出關鍵物件的縮圖影片並進行回放確認,縮短昔日以人工調閱案件所須時間,查找時間快6倍,前端安全單位運用此平台可強化風險管理第一道防線之自行監督功能以及早採取因應措施。

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構