:::

【113年 應用案例】 CCTV 智能影像搜索系統

查找某特定人物,尋找攜行李箱入廠人物進入高安區。人物及物件顏色特徵確定,人物藍黑色上衣,行李箱顏色黑色,透過CCTV 智能影像搜索系統,做物件與顏色檢索條件設定,可以成功搜尋到三段縮圖有出現關鍵標的影片,可以有效解決作業人員查找物件標的物,透過此系統查詢速度可比人工快6倍。

需求痛點

日月光高雄廠區內密布CCTV能及時監控廠區中的各個角落,但若在事件/事故發生時,無法在有限的時間可透過CCTV影像回放被找到,其背後之意涵與其中蘊藏之巨大風險自是不言而喻,而許多平時無人的區域也很容易成為治安上的死角。故如何更智能、更有效的監控占地龐大的廠區是全體半導體企業打造智慧廠區之一大重點。日月光高雄廠占地遼闊,其中有許多重要的場域需要監控人員進出以確保企業機密與員工安全。

(1) 自動化生產線與自動倉儲:半導體企業之自動化生產線與自動倉儲中常有AGVAutomated Guided Vehicle)無人車高速行駛,若有廠區人員不慎誤入AGV移動區域且無法對該人員發出警告,則當憾事發生將追悔莫及。

(2) 材料與產品存放區域:半導體相關製程之材料價值不菲,若存放材料或產品之區域遭人入侵則有損失高價材料、產品之風險。

(3) 高機密管制區:營業秘密關乎半導體相關企業之核心技術競爭力,若有人員侵入高機密管制區則有企業營業秘密外洩之風險,而營業秘密安全防護一直以來都是半導體相關企業最最重視之議題。

(4) 卸貨碼頭區:日月光L!碼頭區常有卸貨車輛進出,若人員闖入碼頭區則有發生人車擦撞、碰撞意外之風險。甚至堆放在碼頭區待出貨的貨物有失竊以及因人員碰撞後,貨物倒塌造成損毀,因而造成公司具大的信譽、金錢損失。更進一步的造成生產出貨的不便。

異常事件發生時,如何在海量數據中,快速搜尋符合條件的關鍵影像

日月光高雄廠有許多重要的場域都需要架設CCTV為安全把關,但CCTV的數量動輒上千支、上萬支,一旦發生事件要去搜索影像時,都要用人眼一一回放查找、搜索,耗時耗力效益不彰。有鑑於現今電腦視覺的發展,遂利用AI來替代人眼回放查找。

問題情境
問題情境

物件偵測

物件偵測資料來源分成兩個部份: 開源資料集OIDv4、以及日月光高雄廠CCTV影像檔案。針對OIDv4中,取出符合定義的九大類別物件訓練資料,其中有二類物件未能於OIDv4中搜索到可用資料,分別為刀子與汽油桶,其餘七種類別物件皆可從OIDv4中取出可用訓練資料,此訓練資料皆已有標記。而針對高雄廠CCTV影像檔案,從中抽取部分幀(Frame)的影像,並且對欲偵測的物件進行人工標記以做為訓練與測試資料。

九大物件
九大物件

顏色辨識

顏色辨識資料來源分成兩個部份: 網路圖像截圖、以及高雄廠CCTV影像檔案。目前並沒有找到針對顏色辨識應用的公開可下載的開源資料集,因此只能從網路蒐集圖像,於網路上搜索符合定義的九大類別物件的圖像,儲存圖像後將物件與背景分割,只保留物件的區塊,最後將圖像依照顏色做類別標記。另外針對高雄廠CCTV影像檔案,則使用物件偵測資料已標記好的bounding box擷取CCTV影像檔案中各個Frame的物件所在區塊之圖像,最後將肉眼可辨其顏色之圖像依照顏色做類別標記。針對每種物件類別皆有其專屬顏色定義,各種物件類別的顏色定義取決於此物件類別於現實生活中常見之顏色。

動態忽略免除混淆訓練

OIDv4訓練專案的物件偵測雛型模型時,因為此資料集的每張影像中,皆只有針對單一類別做標記,但影像中有可能包含其他欲偵測之類別未被標記,故針對此種情況,訓練時會使用動態忽略之技術使其不會有混淆訓練的情況。接著使用高雄廠取出的訓練資料用來Fine-Tune雛型模型提高物件於特定指定場域下的辨識率。最終選取訓練過程中於測試集計算之損失值最低的模型做為主要物件偵測模型。

動態忽略
動態忽略

AI幫你看

CCTV 智能影像搜索系統主要是做為監控影像的搜尋輔助系統,可以藉由設定搜尋物件條件來加速達到從影片找出目標事件的功能,僅需定義搜尋條件,即可快速產出關鍵物件的縮圖影片並進行回放確認,縮短昔日以人工調閱案件所須時間,查找時間快6倍,前端安全單位運用此平台可強化風險管理第一道防線之自行監督功能以及早採取因應措施。

推薦案例

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
挺進智慧物流5.0 新竹物流醫材配送班表超高效率

傳統物流公司加上AI技術之後,在運送效率提升及運輸成本下降等效益大大提升,尤其是醫材轉運更涉及醫院及病患的服務時效及權益,透過智慧物流的建置,可為醫材業者節省投入建構GDP倉、配多達千萬元之成本。 國內重要物流領導廠商-新竹物流HCT擁有3,500輛車隊、6萬坪倉儲,提供物流、商流、金流、資訊流、流通、倉儲、加工之客製化物流解決方案。每日貨件處理件數達58萬件,最大處理能力每日可達90萬件,轉運效能的提升對於新竹物流而言,至關重要。 醫院醫材運送 需優化現有作業流程與提升系統化、智慧化 尤其是醫院醫材的運送,也面臨到難題。醫材業者需要針對客戶不同產品需求、不同溫層需求、不同配送時效等因素,透過多家物流業者進行出貨與物流作業,高度依賴作業人員的經驗與細心管制,無論是產品出貨過程與實際物流配送過程,需要環環相扣,若有任何人工失誤與錯誤,都會影響醫院與病患的服務時效與權益,因此各家業者與政府及醫院等,都致力於優化現有作業流程與提升系統化、自動化與智慧化程度,以有效降低服務過程中造成的失誤及成本損失。 新竹物流導入AI之前的配送流程。 現行在醫院需求端已有相關業者配合政府推動相關標準化平台作業,透過供應端業者的資料協同作業,改善產品出貨正確性與作業時效,提升需求端的作業品質與管理效益;同時,部分業者也投入企業內部作業流程標準化與系統化,提升業者營運效能與品質。 在貨運物流端方面,物流業者的倉庫出貨人員需要耗費人工進行管控不同的物流出貨作業安排,若因常常接到緊急任務通知,要出貨到醫療院所,往往需要依賴小型區域性物流業者來提供客製化配送服務,除配送時效提升外,並無法導入整合性的資訊化服務。 新上路的GDP醫材法規規範運銷品質,也就是醫材供應商必須進行GDP合規認證,必須導入符合GDP法令規範之倉儲與物流服務業者,如此一來,區域性小型公司將被淘汰,因此,新竹物流透過經濟部工業局的AI輔導計畫案協助,除延伸既有GDP符合法令的倉儲物流服務外,將進一步利用相關數據整合與最佳化AI技術,協助醫材業者簡化改善物流配送最佳化作業。 複雜的物流難題 運用Simulated AnnealingSA演算法求解 為能滿足新的「醫療器材優良運銷準則」中對於醫療器材優良運銷系統建構的要求,新竹物流除了積極導入新式物流車,更將導入人工智慧中數學最佳化技術,以協助公司在每日全國營業據點以及轉運站進行智慧班次排程規劃,期望以最佳化的車班進行醫材在營業據點間的對開,或是區域間的轉運,以提高醫材在運銷過程中的效率。 目前醫材在新竹物流的轉運過程中,使用可分離式拖車頭與貨櫃。每個營業所及轉運站由於區位與幾何設計不同,以及人員數量不同,單位時間內的吞吐量也有差異;再加上每天的貨況大小、目的地皆不相同,面對無法確定且需求不同的變化,拖車頭及貨櫃的派遣狀況便隨之改變。 在此情況下,新竹物流僅能根據以往的經驗來進行各個衛星所之發車班表,並根據此班表視每日不同變化之貨物需求量進行調整。 因為是根據經驗法則進行排班,所以,班表往往不能兼顧全盤的變化與考量,使得目前發車班表仍然存在著可以改善的空間。。 貨物遞送規劃本質上為一NP-Hard難題,因此難以用傳統的解析解法,新竹物流結合奇點無限公司採用Simulated AnnealingSA演算法進行求解。 新竹物流導入的新物流服務為「GDP櫃班次規劃」。所謂的班次規劃,指的是根據未來對於站所間醫材貨件的預估量,進行站所間貨櫃車班的班表規劃,目的是讓醫材能夠如期如質抵達,並且讓新竹物流在場站作業、車輛數、行駛里程得到最高的效益。 新竹物流導入AI最佳化班次規劃,從其起點至終點間建構出一條最有效率的運送路線。 新竹物流導入「最佳化班次規劃」服務 降低5運輸成本 導入方式是利用雲端軟體服務,由新竹物流定期輸入站所間醫材貨件之「交互件數表」至「最佳化班次規劃」服務後,設定好演算參數即可產生GDP櫃班次表。同時發展新竹物流醫材班表系統,使新竹物流醫材運務單位能透過交互件數表編制適合班表。在相同服務水準的前提下,預估可降低運輸成本5,為醫材業者節省下建構GDP倉儲、配輸成本達千萬元。 醫材由於其對於衛生、溫度的要求,以及其易碎性等特色,因此運輸與轉運的時間越少越好,越少時間暴露在外,則醫材配曝險程度越低,然而由於仍須考量物流效率與成本。AI將每個需要運送的貨物,從其起點至終點間建構出一條最有效率的路線,即可有效率地完成每日的運務作業。 因應未來產業物流高度發展需求,其中配送與轉運AI最佳化將是關鍵議題,透過本計畫將成立專案推動組織,配置AI技術、IT與流程領域人才,累積落地經驗後,逐步擴大AI實際應用場域,全面優化轉型新竹物流的營運體系,並結盟AIOT與各領域AI夥伴加速與擴大效益之達成。

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇

綠能是未來趨勢,必帶動未來龐大商機。而風力發電是近年全球矚目綠色能源之一,將成為我國再生能源重要生力軍、幫助台灣發電量於2025年達到20的目標,以提高台灣能源自主性。隨著國內風力發電機風機組數量和電量逐年增長,如何讓儲電設備達到安全、長效性、充放電不易衰減和永續低碳又環保的技術能量顯得格外重要,同時風機設備本身的健康檢測、保養與維修也成為風場業者關注焦點。為滿足風場客戶需要,華鉬實業旗下綠能事業部門推出長效儲能的全釩液流電池電解液及風機AI預測性運維,提供100安全、長效性且可降低客戶初製成本的電力儲能設備,並透過AI預測性運維服務協助客戶降低發電度成本10,節省最多30維護保修成本。 華鉬實業成立於1998年,本業以提煉釩、鉬及稀有金屬元素等製品起家,並運用於高階鋼鐵、專業化工及特用化學品等行業,而釩更如同煉鋼的維他命可加值煉鋼的成效。其中釩、鉬相關製品為公司主力項目之一,公司看見100以釩元素為主的全釩液流電池在長效儲能上未來將是相當被看好的綠能技術主流,並且2010年以前政府已積極請法人如工研院在固態電池和全釩電池進行相關零組件材料投入研究,再加上經濟部期許再生能源在2025年發電量佔比達20目標並達15GW,基於上述考量,華鉬實業決定於2017年全力研究與投入自主開發的全釩液流電池電解液的技術開發,以藉此加速2025年再生能源的達標率。 華鉬公司指出「再生能源的電源較不穩定,而台灣本身缺乏鋰資源,在鋰電池製造上幾乎80-90電池芯必須倚賴國外採購,缺乏100國內自足自給的儲能資源與技術。」同樣地,對於本身沒有天然釩礦資源的台灣是如何克服呢 為此,華鉬實業利用獨創技術,透過石化業如中油煉油廠或台朔石化製程中的廢觸媒,其中有高達10釩離子成分可提煉出高價值的釩礦資源,藉此生產出台灣100自主自製的全釩液流電池電解液且不受資源影響,有效達到資源循環再利用。自2017起華鉬實業已成功打造出全釩液流電解液技術,並順利通過工研院和核研所及多家國際大廠的產品驗證。 台灣在儲電能量目標於2025年要達15GW,其電力分配包含500MW於台電的自動調頻系統、500MW於E-dReg及500MW於既有或新設的太陽能電廠,以太陽能電廠的用電使用為例,主要以下午4點到晚上10點用為民生用電尖峰時段,為此,能源局特別要求台電必須加強儲能設備的升級,也因此帶動市場上對全釩液流電池儲能系統設備的高度需求。另外,台灣在目前總儲備電能的建置與貢獻尚未達到100MW,距離2025年目標15GW儲電量仍差距15倍以上。 運用全釩液流電池 成功打造100安全、低碳環保又長效性儲能系統設備 相較於鋰電池的短效電力儲能,全釩液流電池的最大優勢為全球公認可長效性的儲備電能,可以長時間儲能達12小時,代表若充12小時電力,則可以釋放12小時電力。相較於一般儲能系統的計電方式也就是每日用電度數功率以千瓦為單位 x時間以小時為單位,對全釩液流電池而言,功率和小時數是各別設計,該功率又稱為電堆,是由金屬、高分子模、碳氈和石墨板等四種材料組成,而該用電時間改以電解液的量以立方體為單位來計算,因此當功率電推 x電解液的量我們每日運用全釩液流電池儲能的用電度數。 全釩液流電池儲能系統設備之產品特色方面,包含安全性、長效性、充放電不易衰減和永續低碳環保性等四大特色。全釩液流電池品質是100安全,由於電能是儲存在含釩的電解液中,能避免儲飽電的儲能系統造成任何易燃事故發生。在電池壽命上,相較於鋰電池的電池壽命短暫,全釩液流電池透過價數變化可高達20-25年以上電池壽命。對於儲能的充放電性能,不像鋰電池有一定充放電次數5000-600次,全釩液流電池的充放電次數是沒有限制性的。對於全球高度重視的零碳排放,不同於鋰電池有回收議題,全釩液流電池的電解液可永久使用,該電堆材料成分是環保的且可完全回收,以打造真正永續性又低碳環保的儲能系統。 陸域風機AI預測智慧運維 讓客戶降低發電度成本10 省下維護保修成本高達30 華鉬實業不只透過全釩液流電池儲能系統設備提高再生能源客戶長效儲電效能、協助客戶降低初置成本,更透過離岸與陸域風機AI智慧運維實證計畫在台電的陸域風場的場域實證,積極累積自家在AI預測性運維的技術經驗和能量。在經濟部工業局AI HUB計畫支持下,合作場域將以台電公司路域一期風場為主並提供6個月以上風機的智慧運轉數據進行分析。本次陸域風機的AI預測運維系統,採用機器學習方式,主要技術提供者來自英國British PetroleumBP石油集團的子公司ONYX Insight,該公司透過AI Hub分析軟體技術進行台電面臨的風機痛點分析,包含路域風機的發電量損失和陸域風機的關鍵零組件如齒輪箱、變槳軸承hellip在異常震動三維的振動頻率或異常溫度等狀態下進行損壞預測等報告產出。透過本次落地實證可有效協助台電降低發電度成本10,增加資產價值12,節省最多30維護保修成本。近三年ONYX Insight在全球已成功預測運維2萬台以上離岸或陸域風機,累積極高的AI模型準確率。相信透過與ONYX Insight建立的國際合作夥伴關係,將有效輔導並加速華鉬實業的綠能事業部在邁向成為風機AI預測性運維的獨立科技服務提供者之目標與布局。 與合作夥伴ONYX insight提供客戶AI預測運維系統,包含風機發電量損失與風機關鍵零組件之損壞預測 厚植國內風機運維的基礎 以台灣為基地 拓展到東南亞風場 離岸風機AI預測性運維未來在台灣將超過300億台幣的的市場產值,儲能市場在全球更是有千億美金以上的產值,在未來公司願景,華鉬實業期許能成為釩液流電池電解液及風機AI預測性運維的獨立技術服務提供者。而長期目標,透過累積豐厚技術及實績資本,在世界各地建立釩液流電池電解液之在地供應鏈,就近供應產業需求。

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵

隨著高齡人口增加,伴隨著各種慢性病的發生機率日增,其中,心臟衰竭不僅是隱形殺手,由於心衰疾病的病程非常長,復發機率高,造成醫護人員的負擔加重。然而,利用通過醫療認證之心電心音裝置,搭配心臟衰竭風險AI預測評估及遠距照護系統可輔助診斷幫助醫師做出正確的診斷,以利於後續病患的醫療或轉介。 心臟衰竭病程長 醫療支出是糖尿病5倍 如果你有呼吸易喘,甚至稍微動一下就喘,或是夜晚睡覺的時候,容易從睡夢中驚醒,需要坐起來才會比較舒服,又或是下肢容易有水腫等狀況,甚至合併有焦慮、不安、疲倦、食慾下降hellip等症狀,當心很有可能是心臟衰竭。 根據統計,全球心臟衰竭人口約有6000萬人,每年新增的心臟衰竭人口約500萬人。中國的心血管疾病患者將近29億人口,占城市居民死亡原因第二位;而全中國約有1200萬心臟衰竭病人,佔心臟病死因的59以上。尤其心衰疾病的病程非常長,且復發及再入院率非常高,使得醫療支出的成本是高血壓的2倍、糖尿病的5倍。 根據美國研究統計,心肌梗塞及心臟衰竭病人的30天內死亡率分別為166及111,並且30天內再住院率分別為199及244。心臟衰竭的症狀因為和其他疾病如慢性肺阻塞,氣喘等疾病相似,有185 的誤診率,對於醫療院所而言,是相當棘手的問題。 麗臺科技為顯示卡大廠,2000年起投入醫療及健康照護領域。由於董事長盧崑山曾分別與2011年及2015年兩度心臟病發,因此,麗臺科技專注於健康大數據,自主研發心臟衰竭AI辨識技術,此一AI應用讀取病患的心電圖以及心音圖做出異常檢測以及心臟衰竭的風險預測模型,可及早發現疾病徵兆。 麗臺科技自主研發心臟衰竭AI辨識技術 可預測病史及風險 麗臺自主研發之心臟衰竭AI辨識技術具以下三種判斷功能: 1 心臟衰竭病史之預測 將心電及心音圖資料分類為「具心臟衰竭住院病史」以及「未具心臟衰竭病史」兩類。 2 心臟衰竭風險預測 將心電及心音圖資料給予發生的心臟衰竭風險預測值。 3 心臟衰竭再發生風險預測 針對已有心臟衰竭的患者判讀其心音圖及心音圖,判斷其心衰再發生之風險預測。 麗臺科技表示,心臟衰竭AI辨識技術應用可輔助醫師更有效率且精確的診斷,以利後續病患的醫療或轉介。舉台北榮總研究心臟衰竭的離院病患為例,根據心電心音同軸檢測裝置所計算出的EMAT電機活化期指數與SDI心縮不全指數作為治療指引的病患,會比依據傳統症狀做為治療指引的病患,有更高的存活率,此研究也已刊登於國際心臟權威期刊JACC,獲得國際市場肯定。 系統廠商可將心臟衰竭AI辨識技術作其他加值應用 麗臺科技表示,合作系統廠商可選擇自建心臟衰竭AI風險預測引擎,將自有系統之心電心音圖上傳到麗臺心臟衰竭AI風險預測引擎後,引擎回傳風險預測值,做為系統整合廠商合作廠商的加值應用輸入。 不僅臨床使用 心臟衰竭AI風險預測引擎可延伸居家或工作場與使用 此外,這套系統也可以延伸至其他應用,包括: 一、醫院門診快篩:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,在門診、急診進行10秒快速檢測,評估病患心臟病史及心臟衰竭風險。 二、出院風險評估:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,評估病患住院期間的心臟衰竭風險,檢測數據可作為出院前的風險評估及預後指標。 三、居家連續照護:病患可使用心電心音記錄器、穿戴心電圖記錄器,透過居家傳輸盒閘道器,在家量測心電心音訊號,並上傳至amor健康雲平台進行心臟衰竭AI風險預測分析。病患可透過APP自主健康管理,檢視歷史生理趨勢;疾病個管師可透過健康管理後台Web管理會員健康。 四、居家康復訓練 病患可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 心臟衰竭AI辨識技術系統可以延伸至員工居家照護等應用。 此外,在工廠或辦公室等場域也可以透過這套系統達到員工健康管理的目標,應用的方向包括: 一、工作場域之作業安全單位:在員工執行工作業務前發給員工穿戴心電圖記錄器。 二、業務執行者生理監測:員工於執行業務或訓練時,配戴穿戴心電圖記錄器之疲勞警示,警示生理狀態是否可繼續執行任務。任務執行段落可使用資料傳輸盒或APP 將生理監測資訊上傳至健康管理平台,並評估作業員工心臟衰竭風險,檢測數據可作為企業資源人力單位做為風險評估及公共安全對應指標。 三、工作場域生理監控中心照護:工作場域的生理監控中心可透過健康雲平台,檢視並記錄員工值情時之歷史生理趨勢。 四、工作場域之護理單位:護理單位在接收生理監控中心指示,可依據值情員工的生理趨勢給予健康管理的建議;護理中心可透過健康管理後台Web管理員工健康。 五、員工可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 工作場域應用心臟衰竭雲端照護及大數據中心示意圖