:::

【109年 應用案例】 電商直購訂單解析自動化機器人 解決庫存問題

全台最大的黏扣帶專業工廠國紡企業生產黏扣帶,即俗稱魔鬼氈。 全球頂尖的醫療器材供應商DJO、 以拉鍊起家的YKK等國際大廠皆為其客戶, 國紡能獲得YKK等大廠信任,主要是導入製造智慧化, 為有效掌握庫存,導入電商直購訂單解析自動化機器人, 庫存問題全都露。

業界首屈一指的黏扣帶(魔鬼氈)專業製造商國紡企業,成立於1984年,創業初期 30 名員工,如今在台灣、越南等第員工加總超過 330 名。

國紡企業從整經廠、織布廠、染整廠、定型廠,提供一條龍服務。透過拉力、顏色檢測,以專業電腦分析選擇顏料組合及比例,提供穩定產品品質,有效區隔市場,建立了高品質黏扣帶市場的領導地位,並銷售60 餘國遍及五大洲,全球頂尖的醫療器材供應商DJO、以拉鍊起家的YKK 等國際大廠皆為國紡的客戶。

目前高達15 個電商平台需要仰賴大量人力進行訂單整理、庫存管理、出貨追蹤,以致於人力無法有效運用於產品與市場開發,目前雖已有另額外聘工讀生,然而,僅更新單一電商資訊就需要工作到隔年二月,難以快速反應市場需求;受限於人力,產品資訊資訊未能詳盡,導致亞馬遜產品分數難以更上一層樓。

導入AI機器人 全面掌握商品庫存資訊

資策會團隊針對上述問題,即提供電商直購訂單解析自動化機器人應用供其試用,依據國紡提供的新產品資訊,定時自動進行電商平台上架,定時自動於電商平台進行訂單檢核。

國紡能做到讓YKK等大廠信任,主要是導入製造智慧化,生產過程的溫度、濕度、速度等都被量化成數據,不僅累積大量生產數據後可提高效率、 降低耗損,更能小量多樣化生產,就算冷門品項訂單也能接單。

由於少量多樣的特性,國紡企業每年約有 4,000 筆以上的訂單要開成出貨單,通常約累積15~30天才會一次開單扣庫,導致庫存永遠不準確,因此,資策會團隊利用 AI 軟體機器人方案,以發展 POS 庫存管理自動化機器人應用,當其訂單成立後,不需人員操作開單,自動串接 POS 扣庫,即時同步 POS 系統內庫存數量至各平台,讓「架上」與「庫存」數量一致化,以確保產品庫存資訊可靠度。

推薦案例

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛

臺灣是一個海洋國家,你去基隆八斗子漁港或潮境公園遊玩時,是否順道去占地48公頃的國立海洋科技博物館探索海洋世界的奧秘呢為了讓更多人親近海洋科技,基隆海科館導入科技服務,將場館化身為一個大型科技遊樂場,讓大小朋友都樂不思蜀,充分發揮「寓教於樂」的功能。 歷經長時間的規劃,北臺灣最大的基隆海洋科技博物館於2014年元月開幕營運,館內以海洋教育科技為主題,號稱擁有全臺最大的IMAX 3D海洋劇場,主題具有獨特性、又擁有新穎的視廳設備,理應成為基隆知名的地標景點。然而,原先的展覽規畫以靜態為主,內容相當專業,與民眾互動不足,曾經前往參觀的遊客也反映展出內容有限且十分無趣,整體消費者體驗評價欠佳。 海科館不滿意的前3項為周邊景點連結弱、展示內容不吸引人、展示內容少 根據海科館的統計數據顯示,海科館遊客結構當地民眾與外來客的比重約為 64,其中外地遊客以北部居多;交通方式以開車與客運方式為主;出遊類型以家族、親子、朋友居多;逗留時間為 1至2 小時。 再深入了解,遊客感到不滿意的前3項分別為周邊景點連結弱、展示內容不吸引人、展示內容少等,館方分析可能的原因包括部分展示內容的呈現方式過於專業,讓民眾看不懂,以及缺發互動體驗的元素,讓參展民眾覺得無趣,停留的時間匆促而短暫。分析遊客的輪廓可以發現,由於基隆科博館主要客源有半數以上來自於當地民眾,外來客必須以開車或大眾運輸方式前來,來一趟並不是那麼容易,因此,場館與展覽的設計必須導入更多的互動性及趣味性,讓本地客願意一來再來,外地客的停留時間也能拉長一點。並透過科技服務將博物館特色凸顯出來。 經由經濟部工業局AI團隊之一中華民國資訊軟體協會引薦,海科館就委託巨鷗科技協助解決場館無法吸引人的問題。 巨鷗科技初步訪談之後發現,許多遊客前往海科館,大多是受到海科館建築外型、周邊牆面所張貼的告示及懸掛的旗幟、或正在舉辦的活動所吸引;而遊客最感興趣的為 3D 海洋劇場,顯示內容以影音、實體景方式呈現較能吸引遊客。 七大AI科技導入 海科館帶動區域觀光人潮 巨鷗科技透過科技服務的導入,將占地48公頃的場域設計成AI語音導覽、尋寶解謎遊戲、AI展物互動活化、AI空間展館互動體驗、AI人流管控、Face AI互動式體驗、AI語音客服系統等7大服務,藉由AIoT物聯網以及雲端科技讓看展變有趣、不僅解決孩童靜態看展無趣的議題,並可提升雙倍學習效率,讓消費者對海科館的印象改觀,大大提升來客意願,也同步拉升區域觀光人潮。 國立海洋科技博物館導入AI語音導覽等七大科技應用服務。 巨鷗科技以改善海科館空間場域優化為目標,透過臺灣北部海濱鳥類特展的展覽背景為雛形,結合包括「人臉」、「肢體」、「人流」三大主軸,從提升功能的面向,來協助改善海科館對AI的應用。 在具體作法上,海科館及巨鷗科技首先針對場域內的特展進行篩選,先避免在已展出的展覽內進行水電工程、管路等相關建置,影響到展覽本身的觀看品質,轉而找出展期未到的場館先行導入,透過展覽本身的特點搭配一系列的科技服務進行導入。 在海科館內臺灣北部海濱鳥類特展施工內容與策展人討論,初步在展館入口處利用Bella X1做迎賓互動說明,接著搭配AI智慧導覽中文英文X1進行講解,搭配趣味性尋寶解謎集章活動-APP X1,讓民眾闖關,後續將鳥類特展內鳥種進行標本活化互動X1、甚至在展覽空間中導入AR之情境X1增添趣味性娛樂,最後在Face AI做人臉之互動測試臉部進行微笑打分數。nbsp 華麗變身後的海科館將成為親子最佳旅遊地點。圖海科館FB粉絲頁 海科館這套AIoT服務未來可延伸運用於各大展覽類博物館,甚至擴及到靜態美術館等地區,依據不同場域特點導入。同時也可透過政府專案及相關計畫推動,幫助農村再生,讓遊客不再只是去農村看看而已,添加趣味互動以擺脫對不同場域的刻板印象,應用服務範圍十分廣泛。

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95。 VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及ARVR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。 VCSEL技術應用層面廣,也可應用於無人機。圖為佐翼科技農用無人機 VCSEL技術應用層面廣 AI技術助攻瑕疵檢測 赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。 赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10,造成生產成本增加。 為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。 因此,赫銳特科技首先建立自動光學檢測裝置Automated Optical Inspection,AOI,自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像Test與一標準正常影像Normal,進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network ResNet或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。 導入AOI檢測 提升產能效率達20以上 比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試高溫回焊,失效樣品進再入重工流程。 但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95以上,預期可協助場域業者降低生產成本達10,提高產能效率達20以上。 導入AI影像檢測的前後之差異 赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。 而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

這是一張圖片。 This is a picture.
CCTV 智能影像搜索系統

查找某特定人物,尋找攜行李箱入廠人物進入高安區。人物及物件顏色特徵確定,人物藍黑色上衣,行李箱顏色黑色,透過CCTV 智能影像搜索系統,做物件與顏色檢索條件設定,可以成功搜尋到三段縮圖有出現關鍵標的影片,可以有效解決作業人員查找物件標的物,透過此系統查詢速度可比人工快6倍。 需求痛點 日月光高雄廠區內密布CCTV能及時監控廠區中的各個角落,但若在事件事故發生時,無法在有限的時間可透過CCTV影像回放被找到,其背後之意涵與其中蘊藏之巨大風險自是不言而喻,而許多平時無人的區域也很容易成為治安上的死角。故如何更智能、更有效的監控占地龐大的廠區是全體半導體企業打造智慧廠區之一大重點。日月光高雄廠占地遼闊,其中有許多重要的場域需要監控人員進出以確保企業機密與員工安全。 1 自動化生產線與自動倉儲:半導體企業之自動化生產線與自動倉儲中常有AGV(Automated Guided Vehicle)無人車高速行駛,若有廠區人員不慎誤入AGV移動區域且無法對該人員發出警告,則當憾事發生將追悔莫及。 2 材料與產品存放區域:半導體相關製程之材料價值不菲,若存放材料或產品之區域遭人入侵則有損失高價材料、產品之風險。 3 高機密管制區:營業秘密關乎半導體相關企業之核心技術競爭力,若有人員侵入高機密管制區則有企業營業秘密外洩之風險,而營業秘密安全防護一直以來都是半導體相關企業最最重視之議題。 4 卸貨碼頭區:日月光L但碼頭區常有卸貨車輛進出,若人員闖入碼頭區則有發生人車擦撞、碰撞意外之風險。甚至堆放在碼頭區待出貨的貨物有失竊以及因人員碰撞後,貨物倒塌造成損毀,因而造成公司具大的信譽、金錢損失。更進一步的造成生產出貨的不便。 異常事件發生時,如何在海量數據中,快速搜尋符合條件的關鍵影像 日月光高雄廠有許多重要的場域都需要架設CCTV為安全把關,但CCTV的數量動輒上千支、上萬支,一旦發生事件要去搜索影像時,都要用人眼一一回放查找、搜索,耗時耗力效益不彰。有鑑於現今電腦視覺的發展,遂利用AI來替代人眼回放查找。 問題情境 物件偵測 物件偵測資料來源分成兩個部份 開源資料集OIDv4、以及日月光高雄廠CCTV影像檔案。針對OIDv4中,取出符合定義的九大類別物件訓練資料,其中有二類物件未能於OIDv4中搜索到可用資料,分別為刀子與汽油桶,其餘七種類別物件皆可從OIDv4中取出可用訓練資料,此訓練資料皆已有標記。而針對高雄廠CCTV影像檔案,從中抽取部分幀(Frame)的影像,並且對欲偵測的物件進行人工標記以做為訓練與測試資料。 九大物件 顏色辨識 顏色辨識資料來源分成兩個部份網路圖像截圖、以及高雄廠CCTV影像檔案。目前並沒有找到針對顏色辨識應用的公開可下載的開源資料集,因此只能從網路蒐集圖像,於網路上搜索符合定義的九大類別物件的圖像,儲存圖像後將物件與背景分割,只保留物件的區塊,最後將圖像依照顏色做類別標記。另外針對高雄廠CCTV影像檔案,則使用物件偵測資料已標記好的bounding box擷取CCTV影像檔案中各個Frame的物件所在區塊之圖像,最後將肉眼可辨其顏色之圖像依照顏色做類別標記。針對每種物件類別皆有其專屬顏色定義,各種物件類別的顏色定義取決於此物件類別於現實生活中常見之顏色。 動態忽略免除混淆訓練 從OIDv4訓練專案的物件偵測雛型模型時,因為此資料集的每張影像中,皆只有針對單一類別做標記,但影像中有可能包含其他欲偵測之類別未被標記,故針對此種情況,訓練時會使用動態忽略之技術使其不會有混淆訓練的情況。接著使用高雄廠取出的訓練資料用來Fine-Tune雛型模型提高物件於特定指定場域下的辨識率。最終選取訓練過程中於測試集計算之損失值最低的模型做為主要物件偵測模型。 動態忽略 AI幫你看 CCTV 智能影像搜索系統主要是做為監控影像的搜尋輔助系統,可以藉由設定搜尋物件條件來加速達到從影片找出目標事件的功能,僅需定義搜尋條件,即可快速產出關鍵物件的縮圖影片並進行回放確認,縮短昔日以人工調閱案件所須時間,查找時間快6倍,前端安全單位運用此平台可強化風險管理第一道防線之自行監督功能以及早採取因應措施。