:::

【110年 應用案例】 挺進智慧物流5.0 新竹物流醫材配送班表超高效率

傳統物流公司加上AI技術之後,在運送效率提升及運輸成本下降等效益大大提升,尤其是醫材轉運更涉及醫院及病患的服務時效及權益,透過智慧物流的建置,可為醫材業者節省投入建構GDP倉、配多達千萬元之成本。

國內重要物流領導廠商-新竹物流(HCT)擁有3,500輛車隊、6萬坪倉儲,提供物流、商流、金流、資訊流、流通、倉儲、加工之客製化物流解決方案。每日貨件處理件數達58萬件,最大處理能力每日可達90萬件,轉運效能的提升對於新竹物流而言,至關重要。

醫院醫材運送 需優化現有作業流程與提升系統化、智慧化

尤其是醫院醫材的運送,也面臨到難題。醫材業者需要針對客戶不同產品需求、不同溫層需求、不同配送時效等因素,透過多家物流業者進行出貨與物流作業,高度依賴作業人員的經驗與細心管制,無論是產品出貨過程與實際物流配送過程,需要環環相扣,若有任何人工失誤與錯誤,都會影響醫院與病患的服務時效與權益,因此各家業者與政府及醫院等,都致力於優化現有作業流程與提升系統化、自動化與智慧化程度,以有效降低服務過程中造成的失誤及成本損失。

新竹物流導入AI之前的配送流程。

▲新竹物流導入AI之前的配送流程。

現行在醫院需求端已有相關業者配合政府推動相關標準化平台作業,透過供應端業者的資料協同作業,改善產品出貨正確性與作業時效,提升需求端的作業品質與管理效益;同時,部分業者也投入企業內部作業流程標準化與系統化,提升業者營運效能與品質。

在貨運物流端方面,物流業者的倉庫出貨人員需要耗費人工進行管控不同的物流出貨作業安排,若因常常接到緊急任務通知,要出貨到醫療院所,往往需要依賴小型區域性物流業者來提供客製化配送服務,除配送時效提升外,並無法導入整合性的資訊化服務。

新上路的GDP醫材法規規範運銷品質,也就是醫材供應商必須進行GDP合規認證,必須導入符合GDP法令規範之倉儲與物流服務業者,如此一來,區域性小型公司將被淘汰,因此,新竹物流透過經濟部工業局的AI輔導計畫案協助,除延伸既有GDP符合法令的倉儲物流服務外,將進一步利用相關數據整合與最佳化AI技術,協助醫材業者簡化改善物流配送最佳化作業。

複雜的物流難題 運用Simulated Annealing(SA)演算法求解

為能滿足新的「醫療器材優良運銷準則」中對於醫療器材優良運銷系統建構的要求,新竹物流除了積極導入新式物流車,更將導入人工智慧中數學最佳化技術,以協助公司在每日全國營業據點以及轉運站進行智慧班次排程規劃,期望以最佳化的車班進行醫材在營業據點間的對開,或是區域間的轉運,以提高醫材在運銷過程中的效率。

目前醫材在新竹物流的轉運過程中,使用可分離式拖車頭與貨櫃。每個營業所及轉運站由於區位與幾何設計不同,以及人員數量不同,單位時間內的吞吐量也有差異;再加上每天的貨況(大小、目的地)皆不相同,面對無法確定且需求不同的變化,拖車頭及貨櫃的派遣狀況便隨之改變。 在此情況下,新竹物流僅能根據以往的經驗來進行各個衛星所之發車班表,並根據此班表視每日不同變化之貨物需求量進行調整。

因為是根據經驗法則進行排班,所以,班表往往不能兼顧全盤的變化與考量,使得目前發車班表仍然存在著可以改善的空間。。 貨物遞送規劃本質上為一NP-Hard難題,因此難以用傳統的解析解法,新竹物流結合奇點無限公司採用Simulated Annealing(SA)演算法進行求解。 新竹物流導入的新物流服務為「GDP櫃班次規劃」。所謂的班次規劃,指的是根據未來對於站所間醫材貨件的預估量,進行站所間貨櫃車班的班表規劃,目的是讓醫材能夠如期如質抵達,並且讓新竹物流在場站作業、車輛數、行駛里程得到最高的效益。

新竹物流導入AI最佳化班次規劃,從其起點至終點間建構出一條最有效率的運送路線。

▲新竹物流導入AI最佳化班次規劃,從其起點至終點間建構出一條最有效率的運送路線。

新竹物流導入「最佳化班次規劃」服務 降低5%運輸成本

導入方式是利用雲端軟體服務,由新竹物流定期輸入站所間醫材貨件之「交互件數表」至「最佳化班次規劃」服務後,設定好演算參數即可產生GDP櫃班次表。同時發展新竹物流醫材班表系統,使新竹物流醫材運務單位能透過交互件數表編制適合班表。在相同服務水準的前提下,預估可降低運輸成本5%,為醫材業者節省下建構GDP倉儲、配輸成本達千萬元。

醫材由於其對於衛生、溫度的要求,以及其易碎性等特色,因此運輸與轉運的時間越少越好,越少時間暴露在外,則醫材配曝險程度越低,然而由於仍須考量物流效率與成本。AI將每個需要運送的貨物,從其起點至終點間建構出一條最有效率的路線,即可有效率地完成每日的運務作業。

因應未來產業物流高度發展需求,其中配送與轉運AI最佳化將是關鍵議題,透過本計畫將成立專案推動組織,配置AI技術、IT與流程領域人才,累積落地經驗後,逐步擴大AI實際應用場域,全面優化轉型新竹物流的營運體系,並結盟AIOT與各領域AI夥伴加速與擴大效益之達成。

推薦案例

【導入案例】無人智慧販賣機 黑沃咖啡一分鐘打造精品咖啡
無人智慧販賣機 黑沃咖啡一分鐘打造精品咖啡

科技也能飄著咖啡香 位於台中市南區高工路上的「黑沃咖啡」創始店,28坪的空間,飄散著文創與科技交融的咖啡香。2016年10月成立的黑沃咖啡,迄今在全台擁有7家直營店及28家加盟店,在全台已有15萬家店在賣咖啡的情況下,黑沃咖啡異軍突起的秘訣在於:運用AI科技,打造無人智慧販賣機,1分鐘煮出精美香醇的迷人咖啡。 黑沃咖啡實體店營造文創時尚氛圍圖:黑沃咖啡官網 根據國際咖啡組織(ICO)調查,台灣人一年喝掉285億杯咖啡,市場規模超過700億元;而業者星巴克調查,2018年台灣咖啡整體市場達720億元,2020年已上看900億元。近5年,台灣咖啡市場以每年約20的成長率擴展,成長潛力驚人。 咖啡需求商機驚人 每年以20速度成長 在咖啡已成為台灣人時尚消費象徵的現在,除了星巴克、路易莎等一級品牌咖啡店外,還有7-11、全家便利商店,及在街頭巷弄一家家的精品咖啡館。如何吸引消費者的目光,在淪為「紅海市場」的咖啡市場中異軍突起,就有賴彈性與創意,了解消費者的需求與口味,更是培養品牌忠誠度的不二法門。 除了實體店面外,黑沃咖啡也積極發展虛擬通路,其電商平台除了官網,還有 PChome、momo及團購主等通路, 通路多元,業績也穩定成長。 即便如此,黑沃咖啡創辦人林佩霓仍不斷求新求變,在成立前三年,由於與加盟門市的關係處理往往處於被動分散狀況,難以主動掌握市場動向,與消費者溝通的節奏及品牌跟進消費者的速度存在著一定的落差,較難以培養品牌的忠誠擁護者。 職人精品咖啡深受消費者喜愛。圖:黑沃咖啡官網 透過AI鷹眼系統爬蒐商情 市調成本大幅下降 為解決無法快速掌握市場風向與市調成本高昂的兩大痛點,黑沃咖非在2020年導入AI鷹眼系統爬搜市場商情,透過在社群網站、新聞、論壇等社群媒體全方位爬蒐各式文章,自動貼標,合適篩選,從網站每篇以5個關鍵字計算,爬蒐4,858篇文章,相當於24,290個關鍵字,所花費的成本不多,可以精準掌握到消費者的口味與偏好。 同時,在新品推出之後,不僅可即時通知加盟店,更可以透過社群了解消費者的接受程度,作為是否大力推廣的參考依據。 透過數據的蒐集,及透過AI演算法的分析,選出消費者最喜歡的口味,可以降低新品推出的風險,提升新品成功率,因此,黑沃咖非在2021年大膽開拓新市場,推出全球首創AIoT智慧咖啡創新概念,與全聯合作首間「智慧超市」合作,結合黑沃咖啡打造無人智能手沖咖啡機,讓消費者也能享受獨一無二的好風味。 洞悉消費者口味 打造AIoT無人智慧販賣機 台灣第一家全聯內湖瑞光「智慧超市」就位於台北軟體重鎮內湖區內,推出全球首創AIoT智慧咖啡概念店,可以透過手機App連動AI智慧咖啡販賣機、AI手沖咖啡機、AI真空冷萃機,一次滿足三種咖啡科技體驗,自助區部分設有黑沃咖啡AI智慧咖啡販賣機,不僅支援多種無現金支付方式,還是全台唯一以冷藏牛乳製成奶泡的無人智慧咖啡販賣機,嚴選黑沃5A級牛乳,從付款、研磨現煮、到出杯,只需1分鐘時間。 台灣第一家全聯「智慧超市」於台北市內湖區瑞光路成立。圖:全聯FB粉絲頁 全聯智慧超市設置AI智慧咖啡販賣機,使用APP操作就能享用香醇咖啡。圖:全聯FB粉絲頁 現在,加上AI科技元素之後,喝咖啡不只是純喝咖啡,也為消費者帶來更多全新的科技體驗與便利。

【解決方案】佐翼科技無人機導入高爾夫球場域 可節省一半人力
佐翼科技無人機導入高爾夫球場域 可節省一半人力

對於大多數的高爾夫球場而言,場務的營運及管理是一個令人頭疼的問題。「球場就是在賣草皮,場地一定要顧好」,一位高球場負責人不諱言指出。面臨球場場務人力短缺、老年化及成本高昂的市場痛點,導入AI無人機進行農藥噴灑及防蟲害,將可節省球場一半以上的人力成本,並大幅提升整體營運效率。 初夏晌午,位於桃園的台北高爾夫俱樂部,AI智慧無人機緩緩升空,其主要的任務是進行高爾夫球場AI 智慧無人機施肥噴藥的測試。事實上,執行此項任務的佐翼科技,其無人機普遍使用於稻田、香蕉、茶樹等農作物,來從事施肥施藥及防治病蟲害的工作,對於動輒數十到上百公頃的高爾夫球草坪,要運用AI無人機協助草皮維護作業,現階段將進行資料蒐集、建立施藥AI模型及多光譜影像分析測試等,未來將進一步進行大規模的技術落地驗證,為無人機導入高爾夫球場域建立典範。 透過AI無人機施肥灑藥 可節省一半人力 傳統高爾夫球場維護草坪的作業方式,是以人工揹著藥桶,或是駕駛施藥車逐一分區進行噴灑。「國內高爾夫球場於2001年起開始種植超矮性百慕達草種品系,此一草種喜好涼爽的氣候,台灣高溫潮濕的天氣型態並不適宜」,佐翼科技執行長進一步指出,為避免草皮遭受病蟲害,就必須進行農藥噴灑工作,以18洞球場而言,相當於每周要噴灑一次殺菌劑,T台及球道每兩個月噴藥一次。對於高爾夫球場而言,噴灑農藥耗時費力,重要的是,大規模噴灑將增加人員中毒與農藥量增加的風險。 農用無人機在高爾夫球場應用之效益 根據佐翼科技研究,高爾夫球場的蟲害包括夜盜蟲、斜紋夜盜蛾等,其生活習性是傍晚會出來覓食,因此,噴藥的工作必須傍晚施作。依據傳統作業方式,每次施藥估計需要兩台車三個人力,共耗費45小時的時間。若透過AI無人機施肥灑藥,操作人力僅需1人,20分鐘可以噴灑08公頃土地,約可節省三分之二的人力,也可減少營運成本30左右。 高爾夫球場草坪透過AI無人機施肥灑藥,約可節省一半人力 啟用農用無人機應用於高爾夫球場的草皮維護,除了顯著的效益顯現外,佐翼科技也特別導入AI多光譜影像辨識建立NDVI標準化植被指數分析,「所謂的多光譜是將不同的波長波段光線打在草坪的植株上,蒐集反射回來的影像進行分析」,佐翼科技劉姓執行長接著解釋,因為不同光譜,每一種植物在光的波長吸收程度不一,透過多光譜可以掌握草種生長狀況。同時再結合AI影像辨識,可以精準偵測病蟲害分布情況,據此決定施藥量的多寡。 跨領域協作 建立無人機草坪多源影像資料庫 運用AI多光譜影像辨識技術,佐翼科技將蒐集包括可見光譜、多光譜、熱影像和高光譜影像等,建立無人機草坪多源影像資料庫,完整掌握百慕達草種生長週期。 佐翼科技累積豐富的農業AI無人機噴灑藥劑經驗,但要將AI解決方案導入大面積的高爾夫球場仍有諸多問題需要克服。例如需要建立全新施藥模型及測試飛行方式,尤其是多光譜影像辨識運用,概念驗證並不困難,但實際執行則需要更多的測試實證,反覆推論,並與植物專家建立協同作業才能完成,這部分則須仰賴資策會等法人單位跨域整合,集結更多場域投入實證,建立典範,才能在高爾夫球場場域擴散。 智慧無人機導入高爾夫球場的國際案例文獻並不多,在驗證的過程中,能否快速複製至下一個球場尚未可知,但佐翼科技劉姓執行長認為,透過跨領域協作的方式,將問題定義清楚,一一臚列,供需雙方取得共識,針對每一個問題提出可以解決的方案,並找尋內外部的資源合作,才能逐步完成高爾夫球場智慧化的目標,順利協助產業轉型。 佐翼科技執行長劉峻麟

【導入案例】汙水處理的救星 結合大數據與AI技術打開環保產業另一片天
汙水處理的救星 結合大數據與AI技術打開環保產業另一片天

隨著水資源枯竭與環保需求,汙水處理廠導入AI技術來協助觀測預警的需求日益增加,中欣行的汙水處理結合大數據與AI技術,打開環保產業另一片天,未來除了提升汙水處理產業的科技動能,更能夠推廣到其他類型產業,促進科技與經濟發展。 創立於民國69年的中欣工程行後更名為中欣行股份有限公司,為國內操作維護專業領域最具規模及技術之大型環保公司。中欣行進行的污水下水道系統操作維護工作實績遍佈全台,包括科學園區、工業區、國際航空站、學校、集合式住宅、國家公園及工廠等。 汙水廠導入AI系統 精準縮減加藥時間與降低水質超標罰款風險 中欣行於位於新竹科學園區汙水處理廠導入「AOMBR碳源與曝氣之智能強化控制系統開發」,能精準預測風量控制與縮減加藥時間,降低動輒上百萬的罰款風險。 中欣行表示,因應先進產業蓬勃發展及放流水標準漸趨嚴格,當設備控制失之毫釐,水質將差之千里。 近年污水處理設施多已加入設備自動控制之功能,現場狀況卻常常與學理略有偏差,導致很多情況下良好的處理技術需因地制宜,時時滾動時時調整,方能達到良好的出流水質控制。「放流水的水質越來越好,操作人員壓力只會越來越大。這是中欣行最大的痛點」,一位內部主管不諱言地說。 定期的水質檢測與設備保養維護,能確保放流水低於法規標準。 也就是說,每天操作人員需掌握設備與水質狀況,若有突發的進流水質異常或設備跳機,問題環環相扣下就會產生污染,所以每天除了做好維護保養與檢測的工作,更需要緊盯儀表板隨時確認系統正常,不僅耗費人力也耗費精神。 中欣行的現場操作人員24小時輪班,時時盯著放流水的質量監測,加上要採檢水質進化驗室檢測分析,一旦汙水處理值未符合要求,就需要受到環保單位與受託單位的行政與契約罰款,也對對於員工心理造成不小的壓力。 中欣行長期以來建立累積的水質資料與員工間傳承的豐富經驗,已能全盤瞭解整個系統的操作特性,也能透過設備或水質資料的關鍵訊號,抓出處理單元的問題。如果能透過AI技術導入,代替人力檢測汙水來源,透過發生預警訊號進行系統性的評估,就能夠大大減輕人員的壓力。 反應時間由8小時縮短至4小時 節省一半時間 於是,中欣行導入「AOMBR碳源與曝氣之智能強化控制系統開發」,運用所累積的汙水數據資料,加上操作人員現場經驗的口述,透過AI技術的輔助與環境工程學理的支持,便能有效控制生物處理單元中重要的關鍵參數:碳源加藥量與曝氣量,透過污水處理的AI化,使污染物去除、微生物生長、設備節能及操作節藥之間取得平衡,獲得合理化的操作控制參數。 水處理碳源及曝氣參數調整步驟從數據蒐集、模型訓練到預測驗證。 長期來看,納入歷史資料的計算後,確認處理系統承受能力的上下限,AI便能在已知的邊界條件範圍中,不僅記錄過去曾經發生水質與設備作動特徵,更能透過模式預測,找出最佳解法,提供藥品使用、能源節用、減少溫室氣體排放及去除污染物的最佳成效。 根據中欣行估算,原本因為人工調整參數易造成誤差,控制反應時間需要耗費8小時,透過AI技術導入,除可降低誤差值,也能將控制反應時間縮短至4小時,節省一半左右時間。進而提升人員周轉率,更有效降低員工操作失誤造成的心理壓力,自然也減少水質超標罰款的風險。 Dashboard數位儀表板示意圖