:::

【110年 應用案例】 實現無人商店夢想 喜鵲生活建構智能機產業未來

「喜鵲生活的DNA不會只有販賣機,我們相信販賣機結合科技、通路、人文,才能帶來令我們歡欣鼓舞的成果。」這是喜鵲生活官網上的一句話,讓販賣機帶來愉悅的生活,建構貼心、科技、永續的智能機產業未來,也是喜鵲生活創立的初衷。

成立於2018年的喜鵲生活,在成立4個月之後,即推出臺灣第一台自有品牌結合行動支付(掃碼+感應)、藉由螢幕觸碰完成消費體驗、POS系統管理、數據聚集於後台的喜鵲U1智販機,讓消費者能同步世界的新零售腳步,體驗購買便利性、結帳安全性、視覺娛樂性、提升物流補貨效率的全新零售消費體驗。

傳統販賣機缺乏資訊可見度 AI技術協助資訊透明化

此次,喜鵲智能販賣機更搭載AI技術,提供可調整貨架空間、搭配工業電腦與大尺寸觸控顯示螢幕之自動販賣機,達成無店面商店之目的。

喜鵲生活表示,傳統販賣機最大問題即是缺乏資訊可見度。想要檢查庫存,就必須由補貨人員實際檢查每一部機器,這種做法既費時,成本也高。而當機器故障時,一般更是會長時間無法運作。大多數故障均無人通報,直到下次補貨人員抵達補貨才會發現。接著還必須等待維修技師排行程,而一等就可能需要數週的時間。 傳統販賣機缺乏即時互動性,當消費者投幣後遇到狀況時廠商無法當下處理。此外,傳統販賣機更缺乏彈性,無法應消費者偏好變化而調適。

▲傳統販賣機存在僅限零錢購物、支付工具單一;商品擺放數量有限,選擇性少等缺點。

受到COVID-19疫情影響,消費習慣轉為非接觸式的方式,致使無人化商店市場升溫。一般自動販賣機僅能擺放較單純的商品如飲料、食品等等。可販售的產業有限。而喜鵲開發出的專利販賣機可調整貨架空間,搭配升降貨梯,適用在各種類型的商品。此外,機台搭配工業電腦與大尺寸觸控顯示螢幕,能同時達到廣告託播的需求,預計朝無店面商店的方向邁進。

根據喜鵲生活觀察發現,近兩年來的消費者市場趨勢,消費者訴求便利生活、飲食消費型態重視餐飲體驗/簡單快速,並且搭配手機連網訂購模式,而且熱飲及鮮食外送是兩大趨勢重點。而設置地點、販售品項、食用方式及多元付款方式是智能販售機的市場成長重點。

就便利性而言,臺灣消費者購買自動販賣機食品仍以車站、機場、學校、商業區公司附近為最高,多樣的付款方式也更獲得消費者支持,顯示未來自動販賣機可朝品項多元和支付方式多元兩大方向展開。

AI銷售預測技術整合後台管理 達到精準行銷目的

由於商品種類繁多,難以得知商品在不同因素(如季節、市場情形、促銷活動等)影響下的需求,容易造成缺貨或庫存過剩的狀況,喜鵲生活特別開發「AI銷售預測技術」,整合至後台管理系統,期能透過數據分析鎖定客戶購買偏好及意願,進而達到精準行銷之目的,進而做出精準的商業決策,有效分配有限資源。

▲導入AI系統可達精準行銷、庫存管理及供應鏈管理三大目標。

此一系統為專為供應鏈管理人員設計的調補貨決策輔助工具,透過 AI 預測未來銷量需求,協助企業有效優化產能、庫存及配貨策略。 其整體系統架構包括:

1.資料探索性分析功能:針對資料內缺失值提供自動化補值、自動編碼及自動特徵篩選功能。

2.建模功能 :

(1)提供迴歸(Regression)、時間序列(Time Series Forecast)共兩類預測問題類型之模型訓練功能。 

(2)支援 Auto ML 自動建模,並由系統推薦提供最佳模型,亦可建立集成模型提升模型準度。 

(3)支援多種演算法類型:Random Forest, XGBoost, GBM等演算法。 

(4)支援多種時間序列模型:指數平滑、ARIMA、ARIMAX、間歇性需求、動態複迴歸等模型。 

(5)支援多種模型評估指標:R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1%, Misclassification等指標。 

(6)支援自動切割訓練資料集及Holdout驗證資料集,並可手動調整比例。 

(7)支援自動模型集成學習 (Stacked Ensemble)、平衡函數學習 (Balancing Classes)、早停法 (Early Stopping)。 

(8)支援同時建立多個模型,系統將依照建模需求配置資源,讓建模、預測等任務擁有獨立的運算資源且互不影響,在整體伺服器空間有上限的情況下,運算資源能有效率被利用。 

(9)具有記憶體運算(In-memory computing)功能,可藉由大容量及高速的記憶體進行運算,避免大量從硬碟中讀寫檔案,提高運算效能。

3.資料串接功能: 運用API嫁接,採用完整的資料串接自動化,不需要手動匯入資料,提高使用者體驗。

4.圖表分析功能:針對商品銷量提供視覺畫圖表及基本統計值。

AI數據分析解決方案具備兩大優勢: 1.創業機台租售 低成本開設無人實體店與連鎖零售業合作,透過智能機讓創業者以低於店面租金的成本經營零售生意。提供機台買賣及租賃兩種合作模式,依業者評估選擇。 2.多型態商品上架 24小時隨時隨地販售商品,可上架達60多種多樣化商品,透明大櫥窗提升商品能見度,定期補貨及追蹤商品販售狀況,依需求調整產品類型。

近來網路與實體界線模糊化,顧客互動方式大幅改變,消費需求多變且個性化,零售業面臨前所未有的挑戰和不確定性,掌握數據成為關鍵。AI 數據分析解決方案能幫助零售業快速活化大量資料,打造無縫的個人化體驗,最佳化營運價值鏈並提升效率,強化企業核心競爭力。

推薦案例

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
哈瑪星科技建構AI模型管理平台 加速AI落地應用

搭上AI列車,資服業者借助深厚的產業基礎,不僅自己轉型,也協助客戶轉型 成立已超過20年的哈瑪星科技,近年來不斷研發AI技術,並協助產業客戶導入AI。哈瑪星認為,執行一個完整的AI專案,除了AI理論知識、數據分析與模型訓練能力,實務上還需要依據客戶的需求開發數據串接API、建置資料庫、開發前端RWD網頁,甚至還需要考慮到版面設計與使用者體驗 User Experience。這些工作不僅對AI新創業者形成技術門檻,即便對已具規模的業者來說,每個專案反覆投入人力進行類似的功能開發,也難以累積技術經驗、加速業務成長。 機關客戶對於AI仍具備高度客製化之需求 以哈瑪星科技所執行的政府A機關的需求為例,用戶須針對特定管道的不實資訊進行管控,需要平台提供用來訓練模型和預測的數據接入功能,並可以在平台上完成自然語言處理NLP文本分類模型訓練與使用。當模型發現不實資訊時,需要即時透過通訊軟體通報相關負責同仁。而B機關的需求則是希望透過AI模型針對民眾陳情案件進行自動分類,並即時提供陳情民眾或案件承辦人員可參考之歷史案件資訊。儘管專案模式相似 數據接入、模型預測、警示通知,但在個別專案中,仍只能分別進行需求功能開發,無法重複利用既有的程式與模型來加速後續專案的執行。 在深入探討之後,哈瑪星科技發現企業面臨導入AI專案的痛點,包括導入成本高昂、專案時程冗長等,其中,在企業內難以齊備資料科學家、分析師、工程師、設計師等人才,而現階段的專案皆為集中解決特定領域需求,難以重複利用AI模型跨入其他應用領域,同時,因為工具集中在AI專案領域,無法滿足客戶提供整體解決方案。 換言之,在AI技術的落地上,由於AI資服業者往往面臨「人力有限」、「領域限縮」與「工具不足」等困境,致使專案執行成本高昂或時程冗長。這些都是業者們亟需解決的共通性問題。因此,若有一個AI模型應用服務管理平台,將可解決上述困難,不僅能夠快速導入降低成本,還有助於縮短專案時程,提供客戶一站式解決方案。 AI模型應用服務管理平台協助快速完成專案 因此,哈瑪星科技在經濟部工業局AI計畫支持下,進行「AI模型應用服務管理平台AISP研發計畫」,投入研發AISP產品,目的是為了讓AI資服業者能事半功倍地完成AI專案。 AI模型應用服務管理平台提供AI一站式解決方案 透過AISP,AI資服業者可透過既有的模組功能快速組裝數據API介接、模型管理與模型預測結果監控訂閱等需求功能。同時也提供常用的圖形化工具,幫助業者快速設計用戶所需要的互動式圖表或儀表板,有效降低執行專案所需要的人力成本,並縮短解決方案POC或導入時程,加速產業AI落地與擴散。 在產品商模上,短期內將廣邀具備AI專門領域技術的資服業者合作,藉由平台服務解決各類場域需求單位所面臨的AI導入問題,逐步建立平台品牌信賴感。 中期則盼以哈瑪星過往的成功經驗逐步拓展業務市場,聯合多家資服業者建立策略聯盟,針對專門領域可解決更多且廣泛的問題,並提供更多解決方案供場域單位選擇。 平台結合領域專家共同擴展海外市場 長期而言,在建立各項專門領域的AI策略聯盟後,平台將擁有大量針對專門領域的AI解決方案專家,累積大量的專案成功經驗後,哈瑪星科技期望AISP將能與專家業者們攜手合作,共同進軍拓展國際市場。 哈瑪星科技股份有限公司於民國89年延攬多位資深專業經理人及相關領域技術專長人才所組成,致力於軟體技術研發暨服務,並以建構成為國際級軟體公司為目標,積極促成各項跨國產業合作機會。公司在首任總經理的優良領導之下,已快速成長成為臺灣主要軟體公司之一。

這是一張圖片。 This is a picture.
以植物生長箱為例 - 依影像建構電子設備程序標準化

近年來,全球氣候變遷和環境問題日益嚴重,對農業生產造成了巨大衝擊。傳統農業高度依賴天氣條件,面臨著作物品質不穩定、產量驟減、病蟲害難以控制等挑戰。特別是在台灣,農業生技業者和農民不斷遭受損失,亟需創新解決方案。同時,台灣植物工廠產業也面臨諸多困境:高昂的設備和人工成本、產業鏈不完整導致國際競爭力不足、企業間缺乏合作等問題制約了產業發展。此外,COVID-19疫情更凸顯了遠程監控和管理的重要性,傳統的人工巡檢和數據收集方式已無法滿足現代農業生產的需求。這些問題共同構成了智慧農業解決方案的迫切需求背景,推動了如台灣海博特等公司開發整合物聯網、雲計算和人工智能技術的創新項目。 海博特雲端數據整合分析平台 面對這些挑戰,農業領域亟需一套能夠精確控制生長環境、提高資源利用效率、實現遠程監控和智能管理的系統。現有的植物工廠設備往往需要整套更換,難以與舊有設備兼容,且感測器與攝影系統可能需要不同的操作界面,使用不便。因此,業界需要一種能夠靈活整合各種設備和技術的解決方案,既能提供實時監測和數據分析,又能根據植物生長狀況自動調節環境參數。這種需求不僅存在於台灣,也是全球智慧農業發展的趨勢。通過引入人工智能技術,可以建立更科學化的評量基準,優化生產流程,提高產量和品質,同時降低能源消耗和環境影響。此外,這種智能化的解決方案還能吸引更多年輕人參與農業生產,推動產業升級和可持續發展。總的來說,智慧農業解決方案的需求源於應對氣候變化、提高生產效率、降低成本、實現精準化管理的迫切要求,而這正是像台灣海博特這樣的公司所致力解決的問題。 台灣的植物工廠業者們正面臨著一系列嚴峻的挑戰,這些困難正逐漸侵蝕著他們的競爭力和生存空間。首先,高昂的設備和運營成本成為了他們最大的負擔。每一次電費賬單的到來都像是一次沉重的打擊,迫使他們在保證產品品質和控制成本之間艱難平衡。其次,氣候變遷帶來的不可預測性成為了他們的噩夢。突如其來的極端天氣事件可能在短時間內摧毀他們精心培育的作物,造成巨大的經濟損失。更糟糕的是,他們發現自己在國際市場競爭中日漸處於劣勢。相比之下,國外的大型植物工廠憑藉先進的自動化技術和完善的供應鏈,能夠以更低的成本生產出品質穩定的農產品,這讓台灣的業者們感到前所未有的壓力。 在技術層面上,他們同樣面臨著諸多問題。新舊設備的兼容性問題常常讓他們陷入困境,嘗試整合不同系統時總是遭遇各種技術障礙。缺乏精確的數據分析和預測能力也讓他們在生產決策上舉步維艱,難以準確把握每種作物的最佳生長條件。現有的監測系統提供的數據往往雜亂無章,難以解讀和應用。人力資源方面的挑戰同樣嚴峻,年輕人普遍對農業工作缺乏興趣,導致他們難以招募到具備現代農業技能的員工。即便是現有的員工,也常常因為繁瑣的手動操作和監控工作而感到疲憊不堪。這些問題交織在一起,形成了一個複雜的困境,讓植物工廠業者們感到既困惑又焦慮。他們迫切需要一個能夠全面提升工廠運營效率、降低成本、提高產品競爭力的綜合解決方案,以助他們渡過難關,重新在激烈的市場競爭中站穩腳跟。 在面對植物工廠業者的種種挑戰時,台灣海博特公司展現了卓越的技術創新能力和靈活的客戶導向開發策略。他們深刻理解到,解決方案必須能夠無縫整合現有設備,同時提供高度智能化的管理功能。為此,海博特的研發團隊採取了模組化設計的方法,開發出一套可以靈活配置的IoT(物聯網)系統。這個系統的核心是一個智能控制中樞,能夠與各種感測器和執行設備進行通信。在開發過程中,海博特密切與客戶合作,深入了解他們的具體需求和運營環境。他們甚至派遣工程師駐場,實地觀察植物工廠的日常運作,以確保開發的系統能夠真正解決實際問題。這種深度合作不僅幫助海博特優化了產品設計,還建立了與客戶的緊密關係,為後續的持續改進奠定了基礎。 海博特的創新不僅體現在硬件設計上,更體現在他們開發的智能軟體系統中。這套系統整合了先進的機器學習算法,能夠根據大量歷史數據和實時監測信息,對植物生長狀況進行精確預測和優化控制。為了幫助客戶克服技術障礙,海博特設計了一個直觀易用的用戶界面,即使是非技術背景的操作人員也能輕鬆掌握。此外,他們還提供全面的培訓和技術支持服務,確保客戶能夠充分利用系統的所有功能。在遇到難題時,海博特的技術團隊能夠通過遠程診斷迅速識別問題,並提供解決方案。在一次客戶遇到嚴重設備故障的緊急情況下,海博特的工程師通過系統遠程接入,成功指導客戶進行修復,避免了可能的巨大損失。這種全方位的服務不僅解決了客戶的即時困難,更增強了他們對智能化管理的信心,推動了整個行業向更高效、更可持續的方向發展。 海博特公司開發的智慧農業解決方案不僅為植物工廠帶來了革命性的變革,更為整個農業產業的未來描繪了一幅令人振奮的藍圖。這套系統的優越性體現在多個方面:首先,它實現了對植物生長環境的精準控制,大幅提高了作物產量和品質的穩定性。通過先進的人工智能算法,系統能夠根據歷史數據和實時監測信息,預測並調整最佳生長條件,使得每一株植物都能在最理想的環境中生長。其次,它顯著降低了能源消耗和運營成本,提高了資源利用效率。智能化的管理系統能夠優化用水、用電和養分供應,減少浪費,同時降低人力成本。此外,系統的模組化設計和強大的兼容性,使得它能夠輕鬆整合各種新舊設備,為植物工廠的逐步升級提供了靈活的解決方案。最重要的是,這套系統為農業生產注入了科技感和現代化氛圍,有助於吸引年輕一代加入農業領域,為行業注入新的活力。 展望未來,海博特的智慧農業系統具有廣闊的應用前景和擴展潛力。除了植物工廠,這套系統還可以應用於傳統溫室種植、都市農業、甚至是家庭園藝。在水產養殖領域,相似的技術可以用於監控和優化魚類或蝦類的養殖環境。在食品加工業,類似的智能監控和預測系統可以用於優化生產流程,提高食品安全性。甚至在製藥行業,這種精準控制的環境管理系統也可以應用於藥物研發和生產過程。為了進一步推廣這套系統,海博特可以採取多管齊下的策略。首先,可以與農業院校和研究機構合作,建立示範基地,讓更多人親身體驗智慧農業的優勢。其次,可以開發針對不同規模和類型農業生產的定制化解決方案,擴大產品的適用範圍。再者,可以通過舉辦行業論壇、線上研討會等方式,分享成功案例,提高業界對智慧農業的認知和接受度。最後,還可以探索與政府部門合作,將這套系統納入農業現代化和可持續發展的政策支持範疇,從而在更大範圍內推動智慧農業的普及。通過這些努力,海博特不僅可以擴大自身的市場份額,更能為全球農業的可持續發展做出重要貢獻,真正實現科技賦能農業的願景。