:::

【110年 應用案例】 巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。

近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV(無人機)尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。

國家太空中心(TASA)資料倉儲服務

▲國家太空中心(TASA)資料倉儲服務

在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。

運用衛星遙測影像數據 可加速智慧農業發展

然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百Megabyte(MB)的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。

還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔(.jpg或.png),複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。

AI分析雲端服務平台流程導入前後之差異。

▲ AI分析雲端服務平台流程導入前後之差異

興創知能表示,在我國國家太空中心(TASA, Taiwan Space Agency)的多年努力下,屬於臺灣的ODC(Open Data Cube)系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1(每隔6日一幅)、Sentinel-2(每隔6日一幅),USGS的Landsat-7(每隔16日一幅)、Landsat-8(每隔16日一幅),以及國內自有的Formosat-2(每日一幅)與Formosat-5(每隔2日一幅)。

以Python語言為基礎 興創知能開發衛星影像辨識工具

擺脫GIS(Geographic Information System)套裝軟體的侷限,興創知能以Python語言為基礎,整合GDAL(Geospatial Data Abstraction Library),並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料(作物分佈圖資),預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習(LightGBM)或深度學習(CNN)框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。

事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。

▲巨量遙測空間數據AI分析雲端服務架構

推薦案例

這是一張圖片。 This is a picture.
以植物生長箱為例 - 依影像建構電子設備程序標準化

近年來,全球氣候變遷和環境問題日益嚴重,對農業生產造成了巨大衝擊。傳統農業高度依賴天氣條件,面臨著作物品質不穩定、產量驟減、病蟲害難以控制等挑戰。特別是在台灣,農業生技業者和農民不斷遭受損失,亟需創新解決方案。同時,台灣植物工廠產業也面臨諸多困境:高昂的設備和人工成本、產業鏈不完整導致國際競爭力不足、企業間缺乏合作等問題制約了產業發展。此外,COVID-19疫情更凸顯了遠程監控和管理的重要性,傳統的人工巡檢和數據收集方式已無法滿足現代農業生產的需求。這些問題共同構成了智慧農業解決方案的迫切需求背景,推動了如台灣海博特等公司開發整合物聯網、雲計算和人工智能技術的創新項目。 nbsp 海博特雲端數據整合分析平台 nbsp 面對這些挑戰,農業領域亟需一套能夠精確控制生長環境、提高資源利用效率、實現遠程監控和智能管理的系統。現有的植物工廠設備往往需要整套更換,難以與舊有設備兼容,且感測器與攝影系統可能需要不同的操作界面,使用不便。因此,業界需要一種能夠靈活整合各種設備和技術的解決方案,既能提供實時監測和數據分析,又能根據植物生長狀況自動調節環境參數。這種需求不僅存在於台灣,也是全球智慧農業發展的趨勢。通過引入人工智能技術,可以建立更科學化的評量基準,優化生產流程,提高產量和品質,同時降低能源消耗和環境影響。此外,這種智能化的解決方案還能吸引更多年輕人參與農業生產,推動產業升級和可持續發展。總的來說,智慧農業解決方案的需求源於應對氣候變化、提高生產效率、降低成本、實現精準化管理的迫切要求,而這正是像台灣海博特這樣的公司所致力解決的問題。 nbsp nbsp 台灣的植物工廠業者們正面臨著一系列嚴峻的挑戰,這些困難正逐漸侵蝕著他們的競爭力和生存空間。首先,高昂的設備和運營成本成為了他們最大的負擔。每一次電費賬單的到來都像是一次沉重的打擊,迫使他們在保證產品品質和控制成本之間艱難平衡。其次,氣候變遷帶來的不可預測性成為了他們的噩夢。突如其來的極端天氣事件可能在短時間內摧毀他們精心培育的作物,造成巨大的經濟損失。更糟糕的是,他們發現自己在國際市場競爭中日漸處於劣勢。相比之下,國外的大型植物工廠憑藉先進的自動化技術和完善的供應鏈,能夠以更低的成本生產出品質穩定的農產品,這讓台灣的業者們感到前所未有的壓力。 在技術層面上,他們同樣面臨著諸多問題。新舊設備的兼容性問題常常讓他們陷入困境,嘗試整合不同系統時總是遭遇各種技術障礙。缺乏精確的數據分析和預測能力也讓他們在生產決策上舉步維艱,難以準確把握每種作物的最佳生長條件。現有的監測系統提供的數據往往雜亂無章,難以解讀和應用。人力資源方面的挑戰同樣嚴峻,年輕人普遍對農業工作缺乏興趣,導致他們難以招募到具備現代農業技能的員工。即便是現有的員工,也常常因為繁瑣的手動操作和監控工作而感到疲憊不堪。這些問題交織在一起,形成了一個複雜的困境,讓植物工廠業者們感到既困惑又焦慮。他們迫切需要一個能夠全面提升工廠運營效率、降低成本、提高產品競爭力的綜合解決方案,以助他們渡過難關,重新在激烈的市場競爭中站穩腳跟。 nbsp nbsp nbsp nbsp 在面對植物工廠業者的種種挑戰時,台灣海博特公司展現了卓越的技術創新能力和靈活的客戶導向開發策略。他們深刻理解到,解決方案必須能夠無縫整合現有設備,同時提供高度智能化的管理功能。為此,海博特的研發團隊採取了模組化設計的方法,開發出一套可以靈活配置的IoT(物聯網)系統。這個系統的核心是一個智能控制中樞,能夠與各種感測器和執行設備進行通信。在開發過程中,海博特密切與客戶合作,深入了解他們的具體需求和運營環境。他們甚至派遣工程師駐場,實地觀察植物工廠的日常運作,以確保開發的系統能夠真正解決實際問題。這種深度合作不僅幫助海博特優化了產品設計,還建立了與客戶的緊密關係,為後續的持續改進奠定了基礎。 海博特的創新不僅體現在硬件設計上,更體現在他們開發的智能軟體系統中。這套系統整合了先進的機器學習算法,能夠根據大量歷史數據和實時監測信息,對植物生長狀況進行精確預測和優化控制。為了幫助客戶克服技術障礙,海博特設計了一個直觀易用的用戶界面,即使是非技術背景的操作人員也能輕鬆掌握。此外,他們還提供全面的培訓和技術支持服務,確保客戶能夠充分利用系統的所有功能。在遇到難題時,海博特的技術團隊能夠通過遠程診斷迅速識別問題,並提供解決方案。在一次客戶遇到嚴重設備故障的緊急情況下,海博特的工程師通過系統遠程接入,成功指導客戶進行修復,避免了可能的巨大損失。這種全方位的服務不僅解決了客戶的即時困難,更增強了他們對智能化管理的信心,推動了整個行業向更高效、更可持續的方向發展。 nbsp 海博特公司開發的智慧農業解決方案不僅為植物工廠帶來了革命性的變革,更為整個農業產業的未來描繪了一幅令人振奮的藍圖。這套系統的優越性體現在多個方面:首先,它實現了對植物生長環境的精準控制,大幅提高了作物產量和品質的穩定性。通過先進的人工智能算法,系統能夠根據歷史數據和實時監測信息,預測並調整最佳生長條件,使得每一株植物都能在最理想的環境中生長。其次,它顯著降低了能源消耗和運營成本,提高了資源利用效率。智能化的管理系統能夠優化用水、用電和養分供應,減少浪費,同時降低人力成本。此外,系統的模組化設計和強大的兼容性,使得它能夠輕鬆整合各種新舊設備,為植物工廠的逐步升級提供了靈活的解決方案。最重要的是,這套系統為農業生產注入了科技感和現代化氛圍,有助於吸引年輕一代加入農業領域,為行業注入新的活力。 展望未來,海博特的智慧農業系統具有廣闊的應用前景和擴展潛力。除了植物工廠,這套系統還可以應用於傳統溫室種植、都市農業、甚至是家庭園藝。在水產養殖領域,相似的技術可以用於監控和優化魚類或蝦類的養殖環境。在食品加工業,類似的智能監控和預測系統可以用於優化生產流程,提高食品安全性。甚至在製藥行業,這種精準控制的環境管理系統也可以應用於藥物研發和生產過程。為了進一步推廣這套系統,海博特可以採取多管齊下的策略。首先,可以與農業院校和研究機構合作,建立示範基地,讓更多人親身體驗智慧農業的優勢。其次,可以開發針對不同規模和類型農業生產的定制化解決方案,擴大產品的適用範圍。再者,可以通過舉辦行業論壇、線上研討會等方式,分享成功案例,提高業界對智慧農業的認知和接受度。最後,還可以探索與政府部門合作,將這套系統納入農業現代化和可持續發展的政策支持範疇,從而在更大範圍內推動智慧農業的普及。通過這些努力,海博特不僅可以擴大自身的市場份額,更能為全球農業的可持續發展做出重要貢獻,真正實現科技賦能農業的願景。 nbsp

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度

臺灣堪稱製造業大國,然而,在產線上,品質瑕疵檢測一直是製造業長期痛點,雖然有AOI設備可輔助,但大多採用固定式機器,受限於角度,診斷不夠精準,誤判率也高。海量數位工程公司導入AOI機器智能手臂檢測系統,可有效降低誤判率,提高瑕疵檢測精準度。 一般來說,產品的良率攸關企業的成本與客戶的退貨率,而製造產業品質瑕疵的檢測流程,往往需要編制大量的品質檢測人力。目前製造業檢測工具雖然有AOI設備來輔助進行,但這些設備多半採用固定式的檢測機器,固定式相機容易受限於角度,導致診斷不夠精準,誤判率太高等缺點,因此,人員在後端需要再次篩選檢驗,也就是複檢,通常人工目測檢視的瑕疵漏檢率平均在5上,甚至可高達20。 製造業品質檢測三大痛點 機器手臂AOI之動態多角度品檢協助解決 根據海量數位工程實際了解製造業在檢測產品品質有三大痛點: 痛點一、人力檢測產品品質出錯率高 目前製造業多以人力來檢測產品外觀,但人工判斷多半有誤差,例如:表面刮傷、色差、焊道外觀hellip等,瑕疵判斷出錯率高,且須待成品階段才能一次性檢驗,時常出貨前全檢後依然遭整批退件,導致重製及人力成本大增。 痛點二、品質檢測之數據無法量化與記錄 傳統人力檢測無法保留檢測數據,嗣後發生品質糾紛時,責任難以釐清。而海外品牌高階代工單往往要求溯源與相對應的缺點紀錄,傳統產業原有之人力檢測難以符合更高階代工單之要求。 痛點三、傳統AOI視覺檢測的限制 現有製造業常用的AOI視覺檢測系統,因為視覺軟體技術的限制,都是以固定相機、固定光源及單一角度的方式來進行,這種方式對於平面或形狀由直線組成之產品例如:長方體或正方體的單一檢測點尚可處理,但對於複雜形狀的產品例如:汽車零件多為不規則狀多點、多幅度的檢測,就較難實現。 海量數位工程研發AOI機器智能手臂檢測系統,有效提高瑕疵檢測精準度。 為解決製造業在品質檢測的痛點,海量數位工程決定從研發多角度、可移動式的檢測儀器開始發想,從結合工廠自動化領域中的兩大代表性技術-機器手臂與機器視覺著手。海量數位工程以機器手臂結合AOI之動態多角度AI視覺即時品質檢測方式,改善固定式檢測受限多角度的問題,視覺檢測技術的提升與結合人工智慧,進一步相機取得的影像資訊可由平面取樣提升至多角度、多維度取樣。 選定汽車產業做為實證場域 可快速回應顧客需求 AOI機器智能手臂檢測系統,所運用的AI技術包括無監督學習(unsupervised)、監督式學習Supervised learning、半監督式學習Semi-supervised Learing,使業者在初期樣本不齊全,或是沒有不良樣本的情況下也能使用無監督深度學習技術學習良品,並應用在汽車三角架自動焊接的視覺檢測上。可解決導入前受限於固定式機器的角度、診斷不夠精準、誤判率高的問題。 汽車零組件單價較高,會要求更嚴格的瑕疵檢測正確率。 在導入AI服務的產業中,選定汽車製造業作為實證場域。海量數位工程表示,汽車製造業主要為相關零組件製造商,而且通常元件單價較高,需更多品質檢測品質及良率,會要求更嚴格的正確率,因此選定汽車業做為導入的場域。 機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統,除了可以改善汽車零組件檢測瑕疵品質失誤率外,因為以多角度的機器手臂AOI服務來提升定點式AOI光學檢測,可以符合多數產業之量測需求;最後是建立第三方系統平台,建置共同工作整合平台監測系統,以便在問題發生時,第一時間接收訊息並著手處理。 本系統可針對出廠產品之重要數據進行記錄儲存,為實現未來數位生產線與虛擬生產之基礎。同時於瑕疵發生時,可即時串接海量MES監控系統,迅速反應至相關製造決策部門,嗣後並利用ERP系統進行專案管理與檢討,有效精進其生產效率,降低生產成本。 有助降低溝通成本 期許成為行業標配 就產業上下游整合而言,可以為上下游之數據連貫提供一基礎之標準,降低供應鏈之溝通成本,經由指標代工廠與品牌商的認證,有機會成為該產業之行業標準配置。 透過此一計畫的產出數據資料庫建置,業者進一步透過大數據分析Data Analysis,優化供應鏈管理的解決方案「供應鏈規畫Supply Chain Planning, SCP」,依據數據,建立預測計畫,並運用科技串連供應鏈上下游的數據,精準控制產品品質。未來對接歐美、日,需要品質精細訂單,業者能更快速回應及整合產業供應鏈Supply Chain 。 最後期望透過標竿示範產業之場域驗證,例如:以汽車零組件製造產業標竿示範場域,透過機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統計畫進行驗證,讓汽車代工廠與汽車原廠之間有更優化的供應鏈聯繫,並成為該行業標準。更進一步尋求更多的AI團隊,加入場域協作平台跨產業之開發,帶動整體AI新創與場域結合的生態系。 海量數位工程研發的自走車

【解決方案】優式AI智能割草機器人 搶攻高爾夫藍海市場
優式AI智能割草機器人 搶攻高爾夫藍海市場

一台看似掃地機器人的AI智能割草機器人,在面積達30公頃的高爾夫球場草坪上來回穿梭進行除草工作。這是由國人自主研發與設計的AI智能割草機器人,此種機型搭載全球首創電子圍籬定位技術,可利用高精準定位的GPS功能結合雲端AI計算最割草路徑,已計畫搶攻高爾夫球藍海市場。 這款AI智能割草機器人由成立於2019年的台灣新創公司優式機器人進行研發,優式機器人總經理陳招成曾擔任台灣前5大ODM科技公司的執行副總經理,擅長軟硬整合工作。在他擔任服務型機器人聯盟總召集人時,就深知在少子化、人力漸趨吃緊的情況下,服務型機器人勢必成為高度成長的產業。 新需求》園藝市場規模大 剛性需求殷切 「發展服務型機器人核心技術,一定要找到剛性需求,綜觀歐美國家,人工短缺,然園藝需求增加,園藝工長年短缺7-10」,在此「剛性需求」強烈的情況下,陳招成成立優式機器人公司,第一個產品就是研發AI智能割草機器人。 以國外來說,美國是全球最大的園藝市場,佔全球產值高達30-40,估計約有100萬名園藝工,然近年來皆處於7-10的缺工狀態,遲遲無法改善。主要缺工原因為:人口老化,加上園藝工作靠勞力工作吃重,年輕人不想做。而不像在台灣,歐美國家對於草坪維護十分重視,並明文規定不除草,將觸犯法規予以重罰,因此,AI智能割草機器人的市場發展潛力相當大。 藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔 優式機器人所開發的AI智能割草機器人已研發至第二代,包括國內大學院校及知名美術館使用最新機型M1,同時也在美國包括一些全球知名的高科技公司,及知名的大學院校等實際場域中運行,正進行後續商務合作的洽談中。 優式機器人表示,目前使用的專業RTK系統,可以將原本GPS定位的誤差從數十公尺縮小到2公分左右,讓機器人在戶外也可以精準的移動。簡單設定邊界後,便能透過APP輕鬆地進行作業。 新應用》導入高爾夫球場 解決人力老化及短缺問題 陳招成進一步說明,國土測繪局是RTK的服務商,RTK將定位點的誤差參考圖提供出來,優式機器人透過4G上網,即可抓取特定位置的定位誤差值。再透過優式機器人的AI演算法,將原本一般GPS 10-20公尺誤差值縮短到2公分。定位好之後,優式機器人再運用六軸加速器定位、陀螺儀、輪子的輪差等感測裝置導入,進行軟硬整合工程,搭配輪子的運動模式和地形的契合,才能達到精準的除草路徑規劃。 這款寬度62公分、長度84公分、高度 46公分,重量只有25公斤的智能割草機器人可以在雲端將割草邊界設定完成,可以透過設定避掉水池與沙坑,用AI演算法自動計算出最佳路徑,一小時可除草面積大約是150坪,電池可以連續使用6小時以上,電池續航力是目前全球最高。 除了一般園藝公司外,在經濟部工業局AI計畫團隊的協助下,將優式機器人的AI智能割草機器人導入高爾夫球場的割草應用。 位於台中市太平區的知名高爾夫球場現有場務人員5人,負責整個球場30公頃的草坪、植栽維護、及其他景觀維護工作。但因場務人員平均年齡高達55歲,且長期無法招募到新的場務人員,針對場務人員的老年化及人力的短缺,希望能尋求AI科技的導入來減緩衝擊,因此藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔。 新挑戰》因應草種不同 需藉由專家系統克服困難 「這款AI智能割草機器人具備低噪音、低汙染、低人力成本及防水、防盜等配置,在割草的過程中,能透過超音波感測器辨識避開障礙物,並同時保持除草品質,維持美觀一致的割草長度」,陳招成接著表示,高爾夫球最重要的是草紋要漂亮、不能有病蟲害。 根據場勘後發現,高爾夫球場地主要分為果嶺、球道及長草區三大區塊,長草區以現行機器人除草沒有問題,20度以內的斜坡道都能夠克服;球道區的短草只能維持兩公分,草種也不同,需要修改刀盤設計;至於果嶺區的草因為影響到推桿速度,不僅要除草,還要壓草至與地面貼合,草的方向要一致,諸多因素均會影響到果嶺指數,這部分需要更多的研究與測試。 AI智能割草機器人能透過超音波感測器辨識避開障礙物,並同時保持除草品質 AI智慧割草機器人內建攝影鏡頭,可以用來偵測草坪的健康狀態,陳招成表示,未來也將導入專家系統,及早判斷草坪是否有病蟲害或水分足夠與否,將草坪健康數據分析提供給客戶參考,可及早防範與因應,以減少災害損失。 本身也是高爾夫球好手的陳招成表示,台灣高爾夫球發展得很好,然而,受到氣候多雨潮濕、有颱風等天候因素影響,與國外一流球場比較,台灣的高爾夫球場土質偏硬,坑洞較多,若智能割草機器人要普遍導入高爾夫球場仍有許多困難必須克服。但因台灣的困難地形造就很好的試煉場所,一旦台灣能夠克服諸多問題順利導入,就能擴展到海外市場,搶攻新的藍海市場商機。 優式機器人總經理陳招成