:::

【110年 應用案例】 巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。

近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV(無人機)尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。

國家太空中心(TASA)資料倉儲服務

▲國家太空中心(TASA)資料倉儲服務

在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。

運用衛星遙測影像數據 可加速智慧農業發展

然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百Megabyte(MB)的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。

還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔(.jpg或.png),複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。

AI分析雲端服務平台流程導入前後之差異。

▲ AI分析雲端服務平台流程導入前後之差異

興創知能表示,在我國國家太空中心(TASA, Taiwan Space Agency)的多年努力下,屬於臺灣的ODC(Open Data Cube)系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1(每隔6日一幅)、Sentinel-2(每隔6日一幅),USGS的Landsat-7(每隔16日一幅)、Landsat-8(每隔16日一幅),以及國內自有的Formosat-2(每日一幅)與Formosat-5(每隔2日一幅)。

以Python語言為基礎 興創知能開發衛星影像辨識工具

擺脫GIS(Geographic Information System)套裝軟體的侷限,興創知能以Python語言為基礎,整合GDAL(Geospatial Data Abstraction Library),並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料(作物分佈圖資),預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習(LightGBM)或深度學習(CNN)框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。

事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。

▲巨量遙測空間數據AI分析雲端服務架構

推薦案例

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95。 VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及ARVR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。 VCSEL技術應用層面廣,也可應用於無人機。圖為佐翼科技農用無人機 VCSEL技術應用層面廣 AI技術助攻瑕疵檢測 赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。 赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10,造成生產成本增加。 為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。 因此,赫銳特科技首先建立自動光學檢測裝置Automated Optical Inspection,AOI,自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像Test與一標準正常影像Normal,進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network ResNet或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。 導入AOI檢測 提升產能效率達20以上 比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試高溫回焊,失效樣品進再入重工流程。 但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95以上,預期可協助場域業者降低生產成本達10,提高產能效率達20以上。 導入AI影像檢測的前後之差異 赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。 而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI嘛會煮咖啡! 無人烘豆機靠AI 精準設點與培養忠實客群

你早上來杯咖啡了嗎 臺灣於過去十年以來,逐漸形成一股喝咖啡的文化風潮,隨著AI技術的精進,無人烘豆機也能靠AI精準設點,同時培養忠實客群,我們來看看,這是如何辦到的 根據國際咖啡組織 ICO 調查,國人一年喝掉約 285 億杯咖啡,臺灣咖啡市場規模上看 800 億元,且每年約有 20 成長。 臺灣近十年來,人手一杯的「喝咖啡」文化,已成為流行的代名詞,而「咖啡」甚至以65的高比例當選為國人平日最常選擇的飲品,其中重度咖啡愛好者的族群更願意花費更高的價錢去選購符合自身口味的咖啡豆來享用咖啡。近兩三年來,越來越多無人飲品販賣店於臺灣飲品市場上問市。 無人咖啡飲品店無法快速展店,主要受到兩大問題困擾,一是客流量與機器設點位置的合適性,往往仍需憑藉人力進行評估分析;二是如何精準打入中高階咖啡愛好者市場 AI解決無人烘豆機設點合適性與培養忠實客群兩大難題 為解決上述兩大問題,協助無人烘豆機能迅速打開市場,昇銳電子擬以透過導入AI 人流計數分析與AI 人臉陌生辨識,來針對無人烘豆機的設置地點進行人潮數量計算,且歸類消費者的性別及年齡,以進行更為精準的商情分析;並提供消費者對於烘焙咖啡生豆的多重選擇,期以給予專業的咖啡愛好者更客製化的服務與貼近其需求和個人口味的一包「高品質烘豆」。 自2018年起,無人販賣店的興起,無非是因為業主想減少不斷上漲的租金與人事成本的費用支出,但在店面設點的初期評估,卻仍需花費鐘點人力費以人眼計算客流量,但人非機器,難免會有計算來店消費者與道路上經過人潮的錯誤率,而無法做到精準的即時客流分析,或甚至經過一段試營運後才進行估算是否達到設點的營運效益,以上皆會造成錯失最佳撤掉設點位置的停損時機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,推出無人烘豆機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,與帶來「黑金」風潮的咖啡進行商機結合,並且抓住臺灣眾多咖啡行家喜歡親自至量販店耐心挑選符合自身口味的咖啡生豆與喜愛去高品質的研磨咖啡廳或連鎖咖啡店之消費習慣與特點,故誕生針對咖啡豆產地、品種、烘焙方式等提供選擇的第一台無人咖啡烘豆機之新創概念。 AI烘豆機提升客戶忠誠度與物料管理效率達20 針對無人烘豆機的精進開發,昇銳電子工程師搭載AI NVIDIA 開發平台於TCNNFacenet 的基礎上進行,透過AI 將關於性別及年齡搜集之數萬張的影像資料進行樣本訓練,以針對首次選購咖啡烘豆的消費者也能利用人臉陌生辨識來簡單地歸類,藉此取得消費者的信任並提升使用意願,並進而進行購買資訊紀錄及未來商品購買推薦以產出消費者購買行為分析,便可使業主參照消費者對於不同咖啡生豆的偏好度高低,作為未來物料準備數量之依據,以降低原物料轉運及庫存問題,並提升物料管理效率達20。 再者,業主可透過放置此無人烘豆機於選定之人流匯聚率高的地段內,便能透過攝影機捕捉人潮,並針對機台擺設位置的客源是否充足,進行對於經過人潮數量的計算,進而評估消費者佇足購買機率的高低,並於短時間內分析出是否需要將機台進行移設,並可更容易地瞄準出中高階咖啡愛好者所在的最佳設點位置。 而關於無人烘豆機有專業烘焙模式介面,其針對咖啡生豆的產地來源、品種、烘焙方式(淺中深焙)、入豆與出豆溫度、轉速溫度與目標溫度等跟溫度、風速和秒數相關之選擇,提供消費者多種選項以烘焙出符合自己愛好的客製化精品咖啡豆。而若過程中業者針對機台有要進行改善的需求,工程師能配合調整韌體參數,也能協助與業主的訂單系統進行整合。 服務人員簡述無人烘豆機的操作方式 「黑金」透過AI 可更深入至咖啡廳、科學園區、商業大樓 此一無人烘豆機針對咖啡行家的客群,不僅能設點於中高階咖啡廳,以烘製相較於在量販店購買更為客製化的咖啡豆,更能在製作完成一包咖啡豆時,即時提供給咖啡廳內專業的技術店員協助進行咖啡研磨與手沖,而剩餘的烘豆也能將其帶回家之後自己沖泡與享用。在這之中也為咖啡廳帶來了附加價值,其可更加了解消費客群對於咖啡豆的偏好程度,並能推出更能吸引顧客的飲品促銷活動與進行合適的備料管理。 而除了咖啡廳,無人烘豆機也能透過AI 人流計數分析,精準設點於科學園區與商業大樓裡或附近店面,以提供其有高度飲用咖啡需求的內部員工,於辦公室也能手工沖泡的優質咖啡豆。另外,更能推出實體會員制以隨時發起選購咖啡豆之促銷活動,或不定時提出支付優惠回饋,進而吸引到新客源與培養既有顧客的忠誠度和黏著度。 智慧無人烘豆機的操作介面

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。