:::

【110年 應用案例】 赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95%。

VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及AR/VR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。

VCSEL技術應用層面廣,也可應用於無人機。(圖為佐翼科技農用無人機)

▲VCSEL技術應用層面廣,也可應用於無人機。(圖為佐翼科技農用無人機)

VCSEL技術應用層面廣 AI技術助攻瑕疵檢測

赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。

赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10%,造成生產成本增加。

為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。

因此,赫銳特科技首先建立自動光學檢測裝置(Automated Optical Inspection,AOI),自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像(Test)與一標準正常影像(Normal),進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network (ResNet)或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。

導入AOI檢測 提升產能效率達20%以上

比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試(高溫回焊),失效樣品進再入重工流程。

但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95%以上,預期可協助場域業者降低生產成本達10%,提高產能效率達20%以上。

導入AI影像檢測的前後之差異。

▲導入AI影像檢測的前後之差異

赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。

而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

推薦案例

這是一張圖片。 This is a picture.
以植物生長箱為例 - 依影像建構電子設備程序標準化

近年來,全球氣候變遷和環境問題日益嚴重,對農業生產造成了巨大衝擊。傳統農業高度依賴天氣條件,面臨著作物品質不穩定、產量驟減、病蟲害難以控制等挑戰。特別是在台灣,農業生技業者和農民不斷遭受損失,亟需創新解決方案。同時,台灣植物工廠產業也面臨諸多困境:高昂的設備和人工成本、產業鏈不完整導致國際競爭力不足、企業間缺乏合作等問題制約了產業發展。此外,COVID-19疫情更凸顯了遠程監控和管理的重要性,傳統的人工巡檢和數據收集方式已無法滿足現代農業生產的需求。這些問題共同構成了智慧農業解決方案的迫切需求背景,推動了如台灣海博特等公司開發整合物聯網、雲計算和人工智能技術的創新項目。 海博特雲端數據整合分析平台 面對這些挑戰,農業領域亟需一套能夠精確控制生長環境、提高資源利用效率、實現遠程監控和智能管理的系統。現有的植物工廠設備往往需要整套更換,難以與舊有設備兼容,且感測器與攝影系統可能需要不同的操作界面,使用不便。因此,業界需要一種能夠靈活整合各種設備和技術的解決方案,既能提供實時監測和數據分析,又能根據植物生長狀況自動調節環境參數。這種需求不僅存在於台灣,也是全球智慧農業發展的趨勢。通過引入人工智能技術,可以建立更科學化的評量基準,優化生產流程,提高產量和品質,同時降低能源消耗和環境影響。此外,這種智能化的解決方案還能吸引更多年輕人參與農業生產,推動產業升級和可持續發展。總的來說,智慧農業解決方案的需求源於應對氣候變化、提高生產效率、降低成本、實現精準化管理的迫切要求,而這正是像台灣海博特這樣的公司所致力解決的問題。 台灣的植物工廠業者們正面臨著一系列嚴峻的挑戰,這些困難正逐漸侵蝕著他們的競爭力和生存空間。首先,高昂的設備和運營成本成為了他們最大的負擔。每一次電費賬單的到來都像是一次沉重的打擊,迫使他們在保證產品品質和控制成本之間艱難平衡。其次,氣候變遷帶來的不可預測性成為了他們的噩夢。突如其來的極端天氣事件可能在短時間內摧毀他們精心培育的作物,造成巨大的經濟損失。更糟糕的是,他們發現自己在國際市場競爭中日漸處於劣勢。相比之下,國外的大型植物工廠憑藉先進的自動化技術和完善的供應鏈,能夠以更低的成本生產出品質穩定的農產品,這讓台灣的業者們感到前所未有的壓力。 在技術層面上,他們同樣面臨著諸多問題。新舊設備的兼容性問題常常讓他們陷入困境,嘗試整合不同系統時總是遭遇各種技術障礙。缺乏精確的數據分析和預測能力也讓他們在生產決策上舉步維艱,難以準確把握每種作物的最佳生長條件。現有的監測系統提供的數據往往雜亂無章,難以解讀和應用。人力資源方面的挑戰同樣嚴峻,年輕人普遍對農業工作缺乏興趣,導致他們難以招募到具備現代農業技能的員工。即便是現有的員工,也常常因為繁瑣的手動操作和監控工作而感到疲憊不堪。這些問題交織在一起,形成了一個複雜的困境,讓植物工廠業者們感到既困惑又焦慮。他們迫切需要一個能夠全面提升工廠運營效率、降低成本、提高產品競爭力的綜合解決方案,以助他們渡過難關,重新在激烈的市場競爭中站穩腳跟。 在面對植物工廠業者的種種挑戰時,台灣海博特公司展現了卓越的技術創新能力和靈活的客戶導向開發策略。他們深刻理解到,解決方案必須能夠無縫整合現有設備,同時提供高度智能化的管理功能。為此,海博特的研發團隊採取了模組化設計的方法,開發出一套可以靈活配置的IoT(物聯網)系統。這個系統的核心是一個智能控制中樞,能夠與各種感測器和執行設備進行通信。在開發過程中,海博特密切與客戶合作,深入了解他們的具體需求和運營環境。他們甚至派遣工程師駐場,實地觀察植物工廠的日常運作,以確保開發的系統能夠真正解決實際問題。這種深度合作不僅幫助海博特優化了產品設計,還建立了與客戶的緊密關係,為後續的持續改進奠定了基礎。 海博特的創新不僅體現在硬件設計上,更體現在他們開發的智能軟體系統中。這套系統整合了先進的機器學習算法,能夠根據大量歷史數據和實時監測信息,對植物生長狀況進行精確預測和優化控制。為了幫助客戶克服技術障礙,海博特設計了一個直觀易用的用戶界面,即使是非技術背景的操作人員也能輕鬆掌握。此外,他們還提供全面的培訓和技術支持服務,確保客戶能夠充分利用系統的所有功能。在遇到難題時,海博特的技術團隊能夠通過遠程診斷迅速識別問題,並提供解決方案。在一次客戶遇到嚴重設備故障的緊急情況下,海博特的工程師通過系統遠程接入,成功指導客戶進行修復,避免了可能的巨大損失。這種全方位的服務不僅解決了客戶的即時困難,更增強了他們對智能化管理的信心,推動了整個行業向更高效、更可持續的方向發展。 海博特公司開發的智慧農業解決方案不僅為植物工廠帶來了革命性的變革,更為整個農業產業的未來描繪了一幅令人振奮的藍圖。這套系統的優越性體現在多個方面:首先,它實現了對植物生長環境的精準控制,大幅提高了作物產量和品質的穩定性。通過先進的人工智能算法,系統能夠根據歷史數據和實時監測信息,預測並調整最佳生長條件,使得每一株植物都能在最理想的環境中生長。其次,它顯著降低了能源消耗和運營成本,提高了資源利用效率。智能化的管理系統能夠優化用水、用電和養分供應,減少浪費,同時降低人力成本。此外,系統的模組化設計和強大的兼容性,使得它能夠輕鬆整合各種新舊設備,為植物工廠的逐步升級提供了靈活的解決方案。最重要的是,這套系統為農業生產注入了科技感和現代化氛圍,有助於吸引年輕一代加入農業領域,為行業注入新的活力。 展望未來,海博特的智慧農業系統具有廣闊的應用前景和擴展潛力。除了植物工廠,這套系統還可以應用於傳統溫室種植、都市農業、甚至是家庭園藝。在水產養殖領域,相似的技術可以用於監控和優化魚類或蝦類的養殖環境。在食品加工業,類似的智能監控和預測系統可以用於優化生產流程,提高食品安全性。甚至在製藥行業,這種精準控制的環境管理系統也可以應用於藥物研發和生產過程。為了進一步推廣這套系統,海博特可以採取多管齊下的策略。首先,可以與農業院校和研究機構合作,建立示範基地,讓更多人親身體驗智慧農業的優勢。其次,可以開發針對不同規模和類型農業生產的定制化解決方案,擴大產品的適用範圍。再者,可以通過舉辦行業論壇、線上研討會等方式,分享成功案例,提高業界對智慧農業的認知和接受度。最後,還可以探索與政府部門合作,將這套系統納入農業現代化和可持續發展的政策支持範疇,從而在更大範圍內推動智慧農業的普及。通過這些努力,海博特不僅可以擴大自身的市場份額,更能為全球農業的可持續發展做出重要貢獻,真正實現科技賦能農業的願景。

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
挺進智慧物流5.0 新竹物流醫材配送班表超高效率

傳統物流公司加上AI技術之後,在運送效率提升及運輸成本下降等效益大大提升,尤其是醫材轉運更涉及醫院及病患的服務時效及權益,透過智慧物流的建置,可為醫材業者節省投入建構GDP倉、配多達千萬元之成本。 國內重要物流領導廠商-新竹物流HCT擁有3,500輛車隊、6萬坪倉儲,提供物流、商流、金流、資訊流、流通、倉儲、加工之客製化物流解決方案。每日貨件處理件數達58萬件,最大處理能力每日可達90萬件,轉運效能的提升對於新竹物流而言,至關重要。 醫院醫材運送 需優化現有作業流程與提升系統化、智慧化 尤其是醫院醫材的運送,也面臨到難題。醫材業者需要針對客戶不同產品需求、不同溫層需求、不同配送時效等因素,透過多家物流業者進行出貨與物流作業,高度依賴作業人員的經驗與細心管制,無論是產品出貨過程與實際物流配送過程,需要環環相扣,若有任何人工失誤與錯誤,都會影響醫院與病患的服務時效與權益,因此各家業者與政府及醫院等,都致力於優化現有作業流程與提升系統化、自動化與智慧化程度,以有效降低服務過程中造成的失誤及成本損失。 新竹物流導入AI之前的配送流程。 現行在醫院需求端已有相關業者配合政府推動相關標準化平台作業,透過供應端業者的資料協同作業,改善產品出貨正確性與作業時效,提升需求端的作業品質與管理效益;同時,部分業者也投入企業內部作業流程標準化與系統化,提升業者營運效能與品質。 在貨運物流端方面,物流業者的倉庫出貨人員需要耗費人工進行管控不同的物流出貨作業安排,若因常常接到緊急任務通知,要出貨到醫療院所,往往需要依賴小型區域性物流業者來提供客製化配送服務,除配送時效提升外,並無法導入整合性的資訊化服務。 新上路的GDP醫材法規規範運銷品質,也就是醫材供應商必須進行GDP合規認證,必須導入符合GDP法令規範之倉儲與物流服務業者,如此一來,區域性小型公司將被淘汰,因此,新竹物流透過經濟部工業局的AI輔導計畫案協助,除延伸既有GDP符合法令的倉儲物流服務外,將進一步利用相關數據整合與最佳化AI技術,協助醫材業者簡化改善物流配送最佳化作業。 複雜的物流難題 運用Simulated AnnealingSA演算法求解 為能滿足新的「醫療器材優良運銷準則」中對於醫療器材優良運銷系統建構的要求,新竹物流除了積極導入新式物流車,更將導入人工智慧中數學最佳化技術,以協助公司在每日全國營業據點以及轉運站進行智慧班次排程規劃,期望以最佳化的車班進行醫材在營業據點間的對開,或是區域間的轉運,以提高醫材在運銷過程中的效率。 目前醫材在新竹物流的轉運過程中,使用可分離式拖車頭與貨櫃。每個營業所及轉運站由於區位與幾何設計不同,以及人員數量不同,單位時間內的吞吐量也有差異;再加上每天的貨況大小、目的地皆不相同,面對無法確定且需求不同的變化,拖車頭及貨櫃的派遣狀況便隨之改變。 在此情況下,新竹物流僅能根據以往的經驗來進行各個衛星所之發車班表,並根據此班表視每日不同變化之貨物需求量進行調整。 因為是根據經驗法則進行排班,所以,班表往往不能兼顧全盤的變化與考量,使得目前發車班表仍然存在著可以改善的空間。。 貨物遞送規劃本質上為一NP-Hard難題,因此難以用傳統的解析解法,新竹物流結合奇點無限公司採用Simulated AnnealingSA演算法進行求解。 新竹物流導入的新物流服務為「GDP櫃班次規劃」。所謂的班次規劃,指的是根據未來對於站所間醫材貨件的預估量,進行站所間貨櫃車班的班表規劃,目的是讓醫材能夠如期如質抵達,並且讓新竹物流在場站作業、車輛數、行駛里程得到最高的效益。 新竹物流導入AI最佳化班次規劃,從其起點至終點間建構出一條最有效率的運送路線。 新竹物流導入「最佳化班次規劃」服務 降低5運輸成本 導入方式是利用雲端軟體服務,由新竹物流定期輸入站所間醫材貨件之「交互件數表」至「最佳化班次規劃」服務後,設定好演算參數即可產生GDP櫃班次表。同時發展新竹物流醫材班表系統,使新竹物流醫材運務單位能透過交互件數表編制適合班表。在相同服務水準的前提下,預估可降低運輸成本5,為醫材業者節省下建構GDP倉儲、配輸成本達千萬元。 醫材由於其對於衛生、溫度的要求,以及其易碎性等特色,因此運輸與轉運的時間越少越好,越少時間暴露在外,則醫材配曝險程度越低,然而由於仍須考量物流效率與成本。AI將每個需要運送的貨物,從其起點至終點間建構出一條最有效率的路線,即可有效率地完成每日的運務作業。 因應未來產業物流高度發展需求,其中配送與轉運AI最佳化將是關鍵議題,透過本計畫將成立專案推動組織,配置AI技術、IT與流程領域人才,累積落地經驗後,逐步擴大AI實際應用場域,全面優化轉型新竹物流的營運體系,並結盟AIOT與各領域AI夥伴加速與擴大效益之達成。

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構