:::

【110年 應用案例】 赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95%。

VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及AR/VR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。

VCSEL技術應用層面廣,也可應用於無人機。(圖為佐翼科技農用無人機)

▲VCSEL技術應用層面廣,也可應用於無人機。(圖為佐翼科技農用無人機)

VCSEL技術應用層面廣 AI技術助攻瑕疵檢測

赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。

赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10%,造成生產成本增加。

為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。

因此,赫銳特科技首先建立自動光學檢測裝置(Automated Optical Inspection,AOI),自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像(Test)與一標準正常影像(Normal),進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network (ResNet)或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。

導入AOI檢測 提升產能效率達20%以上

比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試(高溫回焊),失效樣品進再入重工流程。

但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95%以上,預期可協助場域業者降低生產成本達10%,提高產能效率達20%以上。

導入AI影像檢測的前後之差異。

▲導入AI影像檢測的前後之差異

赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。

而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

推薦案例

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。

這是一張圖片。 This is a picture.
基於人工智慧的PCBA表面瑕疵檢測改善

隨著AOIAI系統的導入,我們將能提高產品良率、降低成本,從業務面來看,更可提高客戶的信任度,增加營業收益。而且AI具有難以被模仿的優勢,並非如其它設備只要花錢就買的到,讓我們的競爭對手難以追上我們。 組弘發展現況 我們致力於IOT智慧製造上,自行開發的系統已有智慧物料系統、環境溫溼度監控系統、防錯料系統、智能採購算料系統、智慧物料盤點系統、錫膏管理系統、生管系統。過去我們曾詢問過其他廠商,有關AI檢驗PCBA表面瑕疵的可能性,每個廠商都希望我們能夠購買其設備,但實際驗證後都無法達到效果,此次與資服業者討論過後,定調為AOIAI的運作模式,方覺得有可行性。 組弘科技投入AOIAI檢測計畫,用於檢查SMT零件上的文字、焊點、極性、缺件hellip等,用AI替代人工來學習AOI檢測後定義為rdquo可能是不良品rdquo的部份,提升人員產值與降低誤判率。 產業痛點 nbspnbspnbsp 台灣缺工情形嚴重,尤其願意從事目視檢查的人更少,而且年齡相對較大,檢查遺漏的狀況越來越嚴重。所以在追求高品質電子產業中,最關鍵的瓶頸已經是生產後的檢查。過去的消費性產品,異常未能被檢出,只要在一定比例下,也可被接受。現在的汽車產業如果有不良未被檢出,即有可能造成人員死亡,所以汽車產業對於品質的要求極高。要想在汽車產業的供應鏈中生存,就必須解決異常無法被檢出的問題。 nbspnbspnbsp 而且隨著台灣工資越來越高,只能設法以AI技術,取代傳統人力,否則就算解決了異常流出,但相對高的人力成本依然無法在此產業中競爭。 應用技術與說明 nbspnbspnbsp 原本過程圖一,PCB從出來Reflow後,會經過AOI檢測,分出「疑似不良品」與良品,這時「疑似不良品」的部分約為20,再由人工針對這20的部分來做複判,再將「疑似不良品」的部分區分為良品與不良品。 nbspnbspnbsp 我們想要藉由AI的技術,將原本由人工複判這20的「疑似不良品」改由AI來做,複判出來一樣會有良品與「疑似不良品」,結果一樣會有「良品」與「疑似不良品」的產生,但此時「疑似不良品」約只剩下3,也就是說組弘作業人員的工作量會從20降到只有3。理論上是AOI檢查完後,再由AI來做複判,但從表面看起來似乎只有經過AOI而已,所以我們才將這個技術稱之為A0IAI檢測圖二。 原本AOI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI 檢測不良品資訊,再經由人工逐一覆判是否為不良品。 AOIAI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI檢測不良品資訊後, 進由AI先進行AOI檢測不良品的覆判,輸出AI檢測不良資訊後, 再經由人工逐一覆判是否為不良品。 流程差異 nbspnbspnbsp 藉由AOIAI系統的導入,我們除了能夠提升目視檢查人員的效率與良率外,我們有了這次AI的導入經驗,以後也可將AI與大數據的運用加入到組弘原有的智慧製造系統,使我們的智慧製造系統的效能更提升,更進一步的減輕員工的工作壓力。 導入前後差異說明 推廣策略 1nbspnbspnbspnbspnbspnbsp 同領域擴散:所有SMT製造業皆會遇到檢查瓶頸導致延誤出貨的狀況,導入此系統可解決目前缺工嚴重問題並提升出貨速度與品質,自行向客戶推廣或透過設備商銷售給相關需求者。 2nbspnbspnbspnbspnbspnbsp 異業擴散規劃:與AOI製造商洽談直接將AI系統掛在AOI系統內,增加其市場競爭力。 nbsp 獲利策略 1nbspnbspnbspnbspnbspnbsp 與AOI製造商合作收取授權金。 2nbspnbspnbspnbspnbspnbsp 與SMT製造業直接銷售AI系統。 3nbspnbspnbspnbspnbspnbsp 提供SMT製造業AOIAI系統訂閱制

這是一張圖片。 This is a picture.
實現無人商店夢想 喜鵲生活建構智能機產業未來

「喜鵲生活的DNA不會只有販賣機,我們相信販賣機結合科技、通路、人文,才能帶來令我們歡欣鼓舞的成果。」這是喜鵲生活官網上的一句話,讓販賣機帶來愉悅的生活,建構貼心、科技、永續的智能機產業未來,也是喜鵲生活創立的初衷。 成立於2018年的喜鵲生活,在成立4個月之後,即推出臺灣第一台自有品牌結合行動支付掃碼感應、藉由螢幕觸碰完成消費體驗、POS系統管理、數據聚集於後台的喜鵲U1智販機,讓消費者能同步世界的新零售腳步,體驗購買便利性、結帳安全性、視覺娛樂性、提升物流補貨效率的全新零售消費體驗。 傳統販賣機缺乏資訊可見度 AI技術協助資訊透明化 此次,喜鵲智能販賣機更搭載AI技術,提供可調整貨架空間、搭配工業電腦與大尺寸觸控顯示螢幕之自動販賣機,達成無店面商店之目的。 喜鵲生活表示,傳統販賣機最大問題即是缺乏資訊可見度。想要檢查庫存,就必須由補貨人員實際檢查每一部機器,這種做法既費時,成本也高。而當機器故障時,一般更是會長時間無法運作。大多數故障均無人通報,直到下次補貨人員抵達補貨才會發現。接著還必須等待維修技師排行程,而一等就可能需要數週的時間。 傳統販賣機缺乏即時互動性,當消費者投幣後遇到狀況時廠商無法當下處理。此外,傳統販賣機更缺乏彈性,無法應消費者偏好變化而調適。 傳統販賣機存在僅限零錢購物、支付工具單一;商品擺放數量有限,選擇性少等缺點。 受到COVID-19疫情影響,消費習慣轉為非接觸式的方式,致使無人化商店市場升溫。一般自動販賣機僅能擺放較單純的商品如飲料、食品等等。可販售的產業有限。而喜鵲開發出的專利販賣機可調整貨架空間,搭配升降貨梯,適用在各種類型的商品。此外,機台搭配工業電腦與大尺寸觸控顯示螢幕,能同時達到廣告託播的需求,預計朝無店面商店的方向邁進。 根據喜鵲生活觀察發現,近兩年來的消費者市場趨勢,消費者訴求便利生活、飲食消費型態重視餐飲體驗簡單快速,並且搭配手機連網訂購模式,而且熱飲及鮮食外送是兩大趨勢重點。而設置地點、販售品項、食用方式及多元付款方式是智能販售機的市場成長重點。 就便利性而言,臺灣消費者購買自動販賣機食品仍以車站、機場、學校、商業區公司附近為最高,多樣的付款方式也更獲得消費者支持,顯示未來自動販賣機可朝品項多元和支付方式多元兩大方向展開。 AI銷售預測技術整合後台管理 達到精準行銷目的 由於商品種類繁多,難以得知商品在不同因素如季節、市場情形、促銷活動等影響下的需求,容易造成缺貨或庫存過剩的狀況,喜鵲生活特別開發「AI銷售預測技術」,整合至後台管理系統,期能透過數據分析鎖定客戶購買偏好及意願,進而達到精準行銷之目的,進而做出精準的商業決策,有效分配有限資源。 導入AI系統可達精準行銷、庫存管理及供應鏈管理三大目標。 此一系統為專為供應鏈管理人員設計的調補貨決策輔助工具,透過 AI 預測未來銷量需求,協助企業有效優化產能、庫存及配貨策略。 其整體系統架構包括: 1資料探索性分析功能:針對資料內缺失值提供自動化補值、自動編碼及自動特徵篩選功能。 2建模功能 : 1提供迴歸Regression、時間序列Time Series Forecast共兩類預測問題類型之模型訓練功能。nbsp 2支援 Auto ML 自動建模,並由系統推薦提供最佳模型,亦可建立集成模型提升模型準度。nbsp 3支援多種演算法類型:Random Forest, XGBoost, GBM等演算法。nbsp 4支援多種時間序列模型:指數平滑、ARIMA、ARIMAX、間歇性需求、動態複迴歸等模型。nbsp 5支援多種模型評估指標:R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification等指標。nbsp 6支援自動切割訓練資料集及Holdout驗證資料集,並可手動調整比例。nbsp 7支援自動模型集成學習 Stacked Ensemble、平衡函數學習 Balancing Classes、早停法 Early Stopping。nbsp 8支援同時建立多個模型,系統將依照建模需求配置資源,讓建模、預測等任務擁有獨立的運算資源且互不影響,在整體伺服器空間有上限的情況下,運算資源能有效率被利用。nbsp 9具有記憶體運算In-memory computing功能,可藉由大容量及高速的記憶體進行運算,避免大量從硬碟中讀寫檔案,提高運算效能。 3資料串接功能: 運用API嫁接,採用完整的資料串接自動化,不需要手動匯入資料,提高使用者體驗。 4圖表分析功能:針對商品銷量提供視覺畫圖表及基本統計值。 AI數據分析解決方案具備兩大優勢: 1創業機台租售 低成本開設無人實體店與連鎖零售業合作,透過智能機讓創業者以低於店面租金的成本經營零售生意。提供機台買賣及租賃兩種合作模式,依業者評估選擇。 2多型態商品上架 24小時隨時隨地販售商品,可上架達60多種多樣化商品,透明大櫥窗提升商品能見度,定期補貨及追蹤商品販售狀況,依需求調整產品類型。 近來網路與實體界線模糊化,顧客互動方式大幅改變,消費需求多變且個性化,零售業面臨前所未有的挑戰和不確定性,掌握數據成為關鍵。AI 數據分析解決方案能幫助零售業快速活化大量資料,打造無縫的個人化體驗,最佳化營運價值鏈並提升效率,強化企業核心競爭力。