:::

【110年 應用案例】 赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95%。

VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及AR/VR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。

VCSEL技術應用層面廣,也可應用於無人機。(圖為佐翼科技農用無人機)

▲VCSEL技術應用層面廣,也可應用於無人機。(圖為佐翼科技農用無人機)

VCSEL技術應用層面廣 AI技術助攻瑕疵檢測

赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。

赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10%,造成生產成本增加。

為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。

因此,赫銳特科技首先建立自動光學檢測裝置(Automated Optical Inspection,AOI),自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像(Test)與一標準正常影像(Normal),進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network (ResNet)或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。

導入AOI檢測 提升產能效率達20%以上

比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試(高溫回焊),失效樣品進再入重工流程。

但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95%以上,預期可協助場域業者降低生產成本達10%,提高產能效率達20%以上。

導入AI影像檢測的前後之差異。

▲導入AI影像檢測的前後之差異

赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。

而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

推薦案例

【解決方案】佐翼科技無人機導入高爾夫球場域 可節省一半人力
佐翼科技無人機導入高爾夫球場域 可節省一半人力

對於大多數的高爾夫球場而言,場務的營運及管理是一個令人頭疼的問題。「球場就是在賣草皮,場地一定要顧好」,一位高球場負責人不諱言指出。面臨球場場務人力短缺、老年化及成本高昂的市場痛點,導入AI無人機進行農藥噴灑及防蟲害,將可節省球場一半以上的人力成本,並大幅提升整體營運效率。 初夏晌午,位於桃園的台北高爾夫俱樂部,AI智慧無人機緩緩升空,其主要的任務是進行高爾夫球場AI 智慧無人機施肥噴藥的測試。事實上,執行此項任務的佐翼科技,其無人機普遍使用於稻田、香蕉、茶樹等農作物,來從事施肥施藥及防治病蟲害的工作,對於動輒數十到上百公頃的高爾夫球草坪,要運用AI無人機協助草皮維護作業,現階段將進行資料蒐集、建立施藥AI模型及多光譜影像分析測試等,未來將進一步進行大規模的技術落地驗證,為無人機導入高爾夫球場域建立典範。 透過AI無人機施肥灑藥 可節省一半人力 傳統高爾夫球場維護草坪的作業方式,是以人工揹著藥桶,或是駕駛施藥車逐一分區進行噴灑。「國內高爾夫球場於2001年起開始種植超矮性百慕達草種品系,此一草種喜好涼爽的氣候,台灣高溫潮濕的天氣型態並不適宜」,佐翼科技執行長進一步指出,為避免草皮遭受病蟲害,就必須進行農藥噴灑工作,以18洞球場而言,相當於每周要噴灑一次殺菌劑,T台及球道每兩個月噴藥一次。對於高爾夫球場而言,噴灑農藥耗時費力,重要的是,大規模噴灑將增加人員中毒與農藥量增加的風險。 農用無人機在高爾夫球場應用之效益 根據佐翼科技研究,高爾夫球場的蟲害包括夜盜蟲、斜紋夜盜蛾等,其生活習性是傍晚會出來覓食,因此,噴藥的工作必須傍晚施作。依據傳統作業方式,每次施藥估計需要兩台車三個人力,共耗費45小時的時間。若透過AI無人機施肥灑藥,操作人力僅需1人,20分鐘可以噴灑08公頃土地,約可節省三分之二的人力,也可減少營運成本30左右。 高爾夫球場草坪透過AI無人機施肥灑藥,約可節省一半人力 啟用農用無人機應用於高爾夫球場的草皮維護,除了顯著的效益顯現外,佐翼科技也特別導入AI多光譜影像辨識建立NDVI標準化植被指數分析,「所謂的多光譜是將不同的波長波段光線打在草坪的植株上,蒐集反射回來的影像進行分析」,佐翼科技劉姓執行長接著解釋,因為不同光譜,每一種植物在光的波長吸收程度不一,透過多光譜可以掌握草種生長狀況。同時再結合AI影像辨識,可以精準偵測病蟲害分布情況,據此決定施藥量的多寡。 跨領域協作 建立無人機草坪多源影像資料庫 運用AI多光譜影像辨識技術,佐翼科技將蒐集包括可見光譜、多光譜、熱影像和高光譜影像等,建立無人機草坪多源影像資料庫,完整掌握百慕達草種生長週期。 佐翼科技累積豐富的農業AI無人機噴灑藥劑經驗,但要將AI解決方案導入大面積的高爾夫球場仍有諸多問題需要克服。例如需要建立全新施藥模型及測試飛行方式,尤其是多光譜影像辨識運用,概念驗證並不困難,但實際執行則需要更多的測試實證,反覆推論,並與植物專家建立協同作業才能完成,這部分則須仰賴資策會等法人單位跨域整合,集結更多場域投入實證,建立典範,才能在高爾夫球場場域擴散。 智慧無人機導入高爾夫球場的國際案例文獻並不多,在驗證的過程中,能否快速複製至下一個球場尚未可知,但佐翼科技劉姓執行長認為,透過跨領域協作的方式,將問題定義清楚,一一臚列,供需雙方取得共識,針對每一個問題提出可以解決的方案,並找尋內外部的資源合作,才能逐步完成高爾夫球場智慧化的目標,順利協助產業轉型。 佐翼科技執行長劉峻麟

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛

臺灣是一個海洋國家,你去基隆八斗子漁港或潮境公園遊玩時,是否順道去占地48公頃的國立海洋科技博物館探索海洋世界的奧秘呢為了讓更多人親近海洋科技,基隆海科館導入科技服務,將場館化身為一個大型科技遊樂場,讓大小朋友都樂不思蜀,充分發揮「寓教於樂」的功能。 歷經長時間的規劃,北臺灣最大的基隆海洋科技博物館於2014年元月開幕營運,館內以海洋教育科技為主題,號稱擁有全臺最大的IMAX 3D海洋劇場,主題具有獨特性、又擁有新穎的視廳設備,理應成為基隆知名的地標景點。然而,原先的展覽規畫以靜態為主,內容相當專業,與民眾互動不足,曾經前往參觀的遊客也反映展出內容有限且十分無趣,整體消費者體驗評價欠佳。 海科館不滿意的前3項為周邊景點連結弱、展示內容不吸引人、展示內容少 根據海科館的統計數據顯示,海科館遊客結構當地民眾與外來客的比重約為 64,其中外地遊客以北部居多;交通方式以開車與客運方式為主;出遊類型以家族、親子、朋友居多;逗留時間為 1至2 小時。 再深入了解,遊客感到不滿意的前3項分別為周邊景點連結弱、展示內容不吸引人、展示內容少等,館方分析可能的原因包括部分展示內容的呈現方式過於專業,讓民眾看不懂,以及缺發互動體驗的元素,讓參展民眾覺得無趣,停留的時間匆促而短暫。分析遊客的輪廓可以發現,由於基隆科博館主要客源有半數以上來自於當地民眾,外來客必須以開車或大眾運輸方式前來,來一趟並不是那麼容易,因此,場館與展覽的設計必須導入更多的互動性及趣味性,讓本地客願意一來再來,外地客的停留時間也能拉長一點。並透過科技服務將博物館特色凸顯出來。 經由經濟部工業局AI團隊之一中華民國資訊軟體協會引薦,海科館就委託巨鷗科技協助解決場館無法吸引人的問題。 巨鷗科技初步訪談之後發現,許多遊客前往海科館,大多是受到海科館建築外型、周邊牆面所張貼的告示及懸掛的旗幟、或正在舉辦的活動所吸引;而遊客最感興趣的為 3D 海洋劇場,顯示內容以影音、實體景方式呈現較能吸引遊客。 七大AI科技導入 海科館帶動區域觀光人潮 巨鷗科技透過科技服務的導入,將占地48公頃的場域設計成AI語音導覽、尋寶解謎遊戲、AI展物互動活化、AI空間展館互動體驗、AI人流管控、Face AI互動式體驗、AI語音客服系統等7大服務,藉由AIoT物聯網以及雲端科技讓看展變有趣、不僅解決孩童靜態看展無趣的議題,並可提升雙倍學習效率,讓消費者對海科館的印象改觀,大大提升來客意願,也同步拉升區域觀光人潮。 國立海洋科技博物館導入AI語音導覽等七大科技應用服務。 巨鷗科技以改善海科館空間場域優化為目標,透過臺灣北部海濱鳥類特展的展覽背景為雛形,結合包括「人臉」、「肢體」、「人流」三大主軸,從提升功能的面向,來協助改善海科館對AI的應用。 在具體作法上,海科館及巨鷗科技首先針對場域內的特展進行篩選,先避免在已展出的展覽內進行水電工程、管路等相關建置,影響到展覽本身的觀看品質,轉而找出展期未到的場館先行導入,透過展覽本身的特點搭配一系列的科技服務進行導入。 在海科館內臺灣北部海濱鳥類特展施工內容與策展人討論,初步在展館入口處利用Bella X1做迎賓互動說明,接著搭配AI智慧導覽中文英文X1進行講解,搭配趣味性尋寶解謎集章活動-APP X1,讓民眾闖關,後續將鳥類特展內鳥種進行標本活化互動X1、甚至在展覽空間中導入AR之情境X1增添趣味性娛樂,最後在Face AI做人臉之互動測試臉部進行微笑打分數。nbsp 華麗變身後的海科館將成為親子最佳旅遊地點。圖海科館FB粉絲頁 海科館這套AIoT服務未來可延伸運用於各大展覽類博物館,甚至擴及到靜態美術館等地區,依據不同場域特點導入。同時也可透過政府專案及相關計畫推動,幫助農村再生,讓遊客不再只是去農村看看而已,添加趣味互動以擺脫對不同場域的刻板印象,應用服務範圍十分廣泛。

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
挺進智慧物流5.0 新竹物流醫材配送班表超高效率

傳統物流公司加上AI技術之後,在運送效率提升及運輸成本下降等效益大大提升,尤其是醫材轉運更涉及醫院及病患的服務時效及權益,透過智慧物流的建置,可為醫材業者節省投入建構GDP倉、配多達千萬元之成本。 國內重要物流領導廠商-新竹物流HCT擁有3,500輛車隊、6萬坪倉儲,提供物流、商流、金流、資訊流、流通、倉儲、加工之客製化物流解決方案。每日貨件處理件數達58萬件,最大處理能力每日可達90萬件,轉運效能的提升對於新竹物流而言,至關重要。 醫院醫材運送 需優化現有作業流程與提升系統化、智慧化 尤其是醫院醫材的運送,也面臨到難題。醫材業者需要針對客戶不同產品需求、不同溫層需求、不同配送時效等因素,透過多家物流業者進行出貨與物流作業,高度依賴作業人員的經驗與細心管制,無論是產品出貨過程與實際物流配送過程,需要環環相扣,若有任何人工失誤與錯誤,都會影響醫院與病患的服務時效與權益,因此各家業者與政府及醫院等,都致力於優化現有作業流程與提升系統化、自動化與智慧化程度,以有效降低服務過程中造成的失誤及成本損失。 新竹物流導入AI之前的配送流程。 現行在醫院需求端已有相關業者配合政府推動相關標準化平台作業,透過供應端業者的資料協同作業,改善產品出貨正確性與作業時效,提升需求端的作業品質與管理效益;同時,部分業者也投入企業內部作業流程標準化與系統化,提升業者營運效能與品質。 在貨運物流端方面,物流業者的倉庫出貨人員需要耗費人工進行管控不同的物流出貨作業安排,若因常常接到緊急任務通知,要出貨到醫療院所,往往需要依賴小型區域性物流業者來提供客製化配送服務,除配送時效提升外,並無法導入整合性的資訊化服務。 新上路的GDP醫材法規規範運銷品質,也就是醫材供應商必須進行GDP合規認證,必須導入符合GDP法令規範之倉儲與物流服務業者,如此一來,區域性小型公司將被淘汰,因此,新竹物流透過經濟部工業局的AI輔導計畫案協助,除延伸既有GDP符合法令的倉儲物流服務外,將進一步利用相關數據整合與最佳化AI技術,協助醫材業者簡化改善物流配送最佳化作業。 複雜的物流難題 運用Simulated AnnealingSA演算法求解 為能滿足新的「醫療器材優良運銷準則」中對於醫療器材優良運銷系統建構的要求,新竹物流除了積極導入新式物流車,更將導入人工智慧中數學最佳化技術,以協助公司在每日全國營業據點以及轉運站進行智慧班次排程規劃,期望以最佳化的車班進行醫材在營業據點間的對開,或是區域間的轉運,以提高醫材在運銷過程中的效率。 目前醫材在新竹物流的轉運過程中,使用可分離式拖車頭與貨櫃。每個營業所及轉運站由於區位與幾何設計不同,以及人員數量不同,單位時間內的吞吐量也有差異;再加上每天的貨況大小、目的地皆不相同,面對無法確定且需求不同的變化,拖車頭及貨櫃的派遣狀況便隨之改變。 在此情況下,新竹物流僅能根據以往的經驗來進行各個衛星所之發車班表,並根據此班表視每日不同變化之貨物需求量進行調整。 因為是根據經驗法則進行排班,所以,班表往往不能兼顧全盤的變化與考量,使得目前發車班表仍然存在著可以改善的空間。。 貨物遞送規劃本質上為一NP-Hard難題,因此難以用傳統的解析解法,新竹物流結合奇點無限公司採用Simulated AnnealingSA演算法進行求解。 新竹物流導入的新物流服務為「GDP櫃班次規劃」。所謂的班次規劃,指的是根據未來對於站所間醫材貨件的預估量,進行站所間貨櫃車班的班表規劃,目的是讓醫材能夠如期如質抵達,並且讓新竹物流在場站作業、車輛數、行駛里程得到最高的效益。 新竹物流導入AI最佳化班次規劃,從其起點至終點間建構出一條最有效率的運送路線。 新竹物流導入「最佳化班次規劃」服務 降低5運輸成本 導入方式是利用雲端軟體服務,由新竹物流定期輸入站所間醫材貨件之「交互件數表」至「最佳化班次規劃」服務後,設定好演算參數即可產生GDP櫃班次表。同時發展新竹物流醫材班表系統,使新竹物流醫材運務單位能透過交互件數表編制適合班表。在相同服務水準的前提下,預估可降低運輸成本5,為醫材業者節省下建構GDP倉儲、配輸成本達千萬元。 醫材由於其對於衛生、溫度的要求,以及其易碎性等特色,因此運輸與轉運的時間越少越好,越少時間暴露在外,則醫材配曝險程度越低,然而由於仍須考量物流效率與成本。AI將每個需要運送的貨物,從其起點至終點間建構出一條最有效率的路線,即可有效率地完成每日的運務作業。 因應未來產業物流高度發展需求,其中配送與轉運AI最佳化將是關鍵議題,透過本計畫將成立專案推動組織,配置AI技術、IT與流程領域人才,累積落地經驗後,逐步擴大AI實際應用場域,全面優化轉型新竹物流的營運體系,並結盟AIOT與各領域AI夥伴加速與擴大效益之達成。