:::

【108年 應用案例】 智慧農漁業數位分身:一個高效率、永續經營的農漁業升級解決方案。養殖漁業如何靠著稱為「數位分身」的AI 技術達成三倍產量?

靠著九種感知器偵測水質、以及監控養殖物生長狀況和漁民行為決策,「智慧農漁業數位分身」人工智慧解決方案,可以大幅增加產量至 300%。「開心農場」式的高科技整合的解決方案,可以讓新手也快速上手,農漁業可以大幅降低對於經驗的倚賴,增加年輕人回鄉加入農漁業的誘因。

曾經有一段時間,FB遊戲剛剛開始流行的時候,因為「開心農場」這個熱門遊戲,可以說是人人皆農夫。上班族中午休息時間一一拿出手機,開始了手機上的快樂農夫生活。有些人還調皮,上班時間偷偷連上 FB ,偷了同事的菜。由於這個遊戲實在太療癒,有些人還真的就踏入真正的農田,當個小小的假日農夫。如果說,「開心農場」真實存在,你相信嗎?由資策會服創所領頭開發的「數位分身」-「智慧溫室」以及「智慧養殖場」解決方案,就是貨真價實存在的「開心農場」、「開心水族箱」。

在這裡,基於 IoT 的 9 大感知器,會持續監測水質等作物 / 養殖物生長環境的「設施因子」,並且透過控制盒上傳雲端。而雲端中的 AI 機器人會在系統內持續模擬出一個數位的分身,在收到外部的水溫、溶氧量等等「設施因子」、以及持續蒐集作物 / 養殖物生長狀況的「生長因子」,雲端系統裡面創造出一個模擬的養殖漁民的「數位分身」,AI 機器人也會按照過往漁民的成功策略來運算出合適的「行為決策」。

在含氧量低、水溫超標等等情況下, AI 會建議你開水車、開增氧機,或是用藥等等行為決策,漁民則可以考慮自己的經驗或是知識,再判斷是否要採用。事後,系統也會比較判斷結果,漁民也可以就結果來判斷,究竟是真人的決策比較厲害,還是「數位分身」的行為決策比較厲害。

除此之外,智慧農業的數位分身AI ,在背景也是 24 小時運作不打烊,它默默的紀錄並且分析養殖漁民在智慧養殖場中針對各種「設施因子」以及「生長因子」的對應「行為決策」,由此慢慢的建立起養殖策略的最佳解模型。慢慢的, AI 像是個小學徒,在漁民身邊默默的學習這些「隱性知識」,使得這些知識不會因為漁民退休而失傳。

不僅如此,除了「種魚」還可以利用同樣的技術方案去「種菜」,這些最佳化養殖 / 種植模型可以成為珍貴的資料庫,即使是剛入行的新手,也可以跳過摸索的過程,直接成為大師。

三難一貴,是目前最大的挑戰:人力不足、老年化、經驗失傳三大難,新科技導入貴

台灣農業技術、養殖技術都聞名全球,然而小農結構普遍都有人力不足、老年化的趨勢,數位轉型勢在必行。然而,要導入新技術的成本,是 80% 的小農小漁都負擔不起的。由於環境因素有太多不確定因素,如氣候的變遷、水質變化等等,都高度倚賴經驗來處理。因此,最嚴峻的挑戰,來自於農漁民退休而年輕農漁民又不及接班,多年的經驗因無法傳承而失傳。

智慧農漁業數位分身,持續最佳化不停機

「數位分身」是一個結合 AI 人工智慧,與 HI 工匠智慧的新興技術,國際研究機構 Gartner 連續三年將其評為全球未來關鍵十大技術之一。經濟部技術處在 2016 年就開始布局數位分身的研發,認為領域產業除了自動化效率之外,同時也需要將各產業的經驗技藝數位保存下來,建構 AI 與 HI 交互學習與最佳化的人機協同技術。以水產養殖這個領域來說,透過「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。利用各種水質數據所建構出的「設施因子」、魚、蝦體影像的影像資料、病徵影像等等的「生長因子」各種數位資料的分析,加上養殖漁民的「行為決策」來訓練 AI 人工智慧,可以得出水質管理、水產生長管理、水產疾病管理等等最佳化模型。

「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。

▲「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計)

將這些 AI 管理模型組合起來,就成為了高存活率、高換肉率的智慧養殖解決方案。養殖的整個過程都有數位化的監控資料、品質可分析、而且產銷履歷甚至可以回溯至養殖初期,藉以大幅提升水產品質、價值以及產量。

雖然前景看好,但是仍然有著重重挑戰

資策會服創所與「數位分身」的緣份,是由 2018 年時經濟部技術處支持的前瞻科技專案開始。當時技術處認為各領域產業除了自動化效率之外,也需數位保存領域產業的工藝知識,用以建構 AI 與 HI 交互學習與最佳化的人機協同技術。

後來,行政院農委會農業試驗所接續支持「數位分身」在智慧農業當中的應用。「數位分身技術應用在農業,協助小農經驗數位化積累,並透過群體經驗與人工智慧交互作用,精進農業技藝,解決農業智慧化最大挑戰」。在農業場域當中的「智慧農業數位分身技術」,在產品化之後預期可以提高生產效率 30% ,可以說是前景相當看好。

邱璟明組長受訪圖
▲邱璟明組長:「厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍。」 
 

Digital Twin: Aqua-Solution

Digital Twin: Aqua-Solution

後來,與科技養殖產業業者合作,共同獲得經濟部工業局的業界計畫支持,資策會服創所才將數位分身的技術應用在「智慧漁塭」的場域當中。負責養殖漁業的場域應用團隊指出,「在養殖漁塭當中,漁民在面對各種環境改變時的行為決策,往往是不同的。其中,厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍,例如白蝦的存活率,一般的平均是 10% 左右,有些漁民就是可以獲得 30% 的高水準產量。如此一來,生產成本降低,賺的錢也是原本的三倍。

數位分身的技術,就是可以將這些達人的隱性知識傳承下來,最終推動整個產業的升級。」

9大感知器、魚體影像以及漁民行為決策組合而成的「數位分身」

為了取得各種養殖場的環境數據,服創所採用了包括了有溶氧、水溫、酸鹼度、鹽度、濁度、氨氮、硝酸鹽、葉綠素 a、ORP (Oxidation-Reduction Potential)氧化還原電位等九大感知器來監控水質,這些又被稱為「設施因子」。

另外,漁民也會定期把魚、蝦從池中撈上來,或是透過沉水攝影機拍攝水下的養殖物影像。藉以得知目前養殖物的大小,來了解生長狀況,這又被稱為「成長因子」。

智慧養殖設施示意圖

▲ 「設施因子」、「成長因子」再加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計) 

有了這兩個因子,在加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。

在這個好像遊戲一樣的「數位分身」中,我們可以盡情的模擬,藉以找尋不同「設施因子」下,最佳的「行為決策」,藉以取得最佳化的「成長因子」。

換一個比較容易理解的說法,各位讀者不妨想像我們現在有個「開心漁塭」遊戲軟體。其中,漁塭的各種環境參數,都是由真實情況所記錄下來的。我們也紀錄下每個「開心漁塭」玩家在不同環境參數下所做出的行為決策以及最終的成果。當紀錄下來的資料組數量夠多,得到 ML 機器學習( Machine Learning)而來的魚塭數位分身模型,再經由即時數據進行模擬,就可以找出各種最佳化組合。而這個模擬世界,就是「開心漁塭」的「數位分身」。

感知器容易損壞,如何解決?

然而,研發的過程總是有些挑戰。例如水下的感知器如水溫和溶氧感知器,經常由於藻類增生而損壞。水下紀錄魚體大小的攝影機,也經常因為池底泥沙或藻類污染而模糊不清,無法辨識。

為了克服這些感知器的損壞問題,有兩個方案,一是定期從池中打水上來經過感知器來偵測,二是將感知器製作成一個盒子,每天定期泡入養殖池當中用以偵測水質。

至於魚體和蝦體的生長狀況,只需要漁民每日定期打撈上來拍照量測即可。成本低而且有效。

服創所的邱組長說:「這些感知器的損壞問題,是個成本問題,雖然說帶來的效益很高,但是若成本太高,漁民不願意採納也失去意義了。我們目前正在研發 9 合 1 的水質偵測盒子,成功整合完成之後,就可以準備量產,並且以銷售盒子加上連線月租費的方式來商業運作。我們目前已經非常接近完成整合,非常歡迎廠商來洽談合作」

漁民行為決策難以紀錄的困難

另外一個挑戰來自於漁民,部份漁民會自覺的紀錄每天觀察的水質以及環境指標,並且紀錄自己的操作策略和結果。但是,並不是每個漁民都會這樣操作,這時候,就需要引進 AI 人工智慧當中相當重要的 GAN (Generative adversarial network 生成對抗網路)技術。

GAN 會依據過去的資料,生成漁民的可能策略,也就是「猜」漁民的決策,用以補足漁民沒有輸入的行為決策。若是事後得到漁民補完,也不影響訓練資料集。

得獎技術量產化之後, 300%的生產效率不再是遙不可及

「數位分身」技術目前全球應用案例多運用於航太、製造業,目前只有台灣與荷蘭率先投入數位分身在智慧農業的研發。因此,「智慧農業數位分身」獲美國 R&D全球百大科技研發獎也是國內技術領先的證明。目前正在完成整合的水質監控盒以及整套解決方案,在產品化後預期提高生產效率 300%。

未來「數位分身」技術不只是可以應用於農業和養殖漁業當中,還可以擴展至原本仰賴「隱性知識」的產業當中,如製茶、漁業等等。由於全程數據化,品質不再是靠著經驗以及「看天吃飯」。藉此,可以提高農民的「智慧化監控」和「精準化生產」科技層次,除了提昇傳統農漁業的生產力,也很有機會達成永續經營,促成整個產業升級,提昇年輕人回鄉參與農漁業的誘因。

參考資料:智慧製造的關鍵拼圖!加速「數位分身」實現的創新感測技術-數位時代

推薦案例

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構

【導入案例】屈臣氏導入insider AI 技術平台 加強客戶體驗提升轉換率
屈臣氏導入insider AI 技術平台 加強客戶體驗提升轉換率

擁有台灣實體連鎖藥妝龍頭地位的台灣屈臣氏,近年來持續擴大數位轉型的腳步,自2014年成立屈臣氏網路商店,積極發展電商市場外,更透過結合Insider的AI技術,自營的官網加上藉由大量的門市銷售數據、會員消費行為累積,及AI的個人化推薦、在最佳的時機點投放最佳的接觸訊息給使用者,大幅提升消費者在Online成交與在線下購物的OO全通路消費體驗,大大提升轉換率。 OO線上加線下 提升客戶轉換率,帶動業績成長 屈臣氏集團為全球零售巨擘,過去30年在台灣落地深耕,專精於零售、門市營運SOP流程優化、零售供應鏈等,但對於電子商務平台經營只有數年,在電商領域如何提升轉化率、透過個人化的AI演算法提供客戶最佳化購物體驗並無足夠的人才與技術資源。 相比於在零售業經常被討論的「O2O」(online to offline),屈臣氏奉行的方向則是「OO」,也就是線下加線上。目前在屈臣氏網路商店下單的客戶,約有兩成會選擇到門市現場取貨。這時門市人員的服務如果到位,扮演現場購買的「觸媒」,就有機會利用線上商店導進來的客戶,為實體店創造額外業績。 根據統計,屈臣氏擁有將近600萬會員,在實體門市零售領域交易資料量龐大,但對比擁有120萬以上APP活躍用戶及近300萬App 下載量,會員活化的程度仍嫌不足,若能夠透過AI技術進行數據整合,也就是透過AI提供客戶進行最佳化的商品推薦以提升客戶從Offline 行為轉換至Online消費,或是導引線上客戶前往門市消費,將可提升大大客戶轉換率,帶動業績成長。 首頁個人化推薦模組:為您推薦 屈臣氏原始使用的開發套件為全球系統商SAP的電商解決方案Hybris,對於電子商務比較偏向單純展示、銷售,缺乏足夠技術資源處理提升消費體驗升級的相關解決方案。 Insider是一家行銷科技(martech)公司,在全球25個城市設有據點,並在台灣有專業的顧問團隊,提供顧客在地化的數位解決方案,致力於以技術優化數位行銷成效,幫助品牌推動數位成長。Insider是許多國內及全球企業包含屈臣氏、家樂福、IKEA、Lenovo、愛迪達、信義房屋、新加坡航空等大型企業的合作夥伴,在透過AI技術提升客戶轉換率、回購率、及提升廣告投資報酬率績效卓著。 屈臣氏引進insider AI演算機制主要是為了加強客戶體驗,透過AI的個人化、整合式行銷模組提升顧客戶消費的互動體驗。進而提升電子商務轉換率,以及透過AI的功能找尋對的客戶,增加新的客群、提供顧客更好的購物消費者體驗。 各頁依據客戶行為觸發折扣碼複製功能推薦 Insider 有許多原本已經研發好的技術模組,可以提供各種客戶於應用情境內去使用,搭配客戶在特定情況下所需要提升轉換率,可以提供許多不同功能的模組使用,目前屈臣氏電商網站APP使用insider不同模組,另有部分也會根據屈臣氏的特殊屬性,例如民生回購、導App需求、刮刮樂折扣碼,去設計因應屈臣氏客戶特殊情境的轉換套件或個人化推薦模組。 引進Web APP 個人化推薦、轉化模組套件 有效提升轉換率10 屈臣氏目前已經導入模組中的前四項,預計在2021年完成全部五項模組導入後,預期提升線上線下的互相導購,進而全面提升屈臣氏的整體電商及零售業績。 1 Web Recommendation Conversion Suit 2 App Recommendation Conversion Suit 3 InStory for eCommerce 4 Mobile App Template Store 5 Insider Architect 屈臣氏目前已經導入AT模組,預計2021年底完成 屈臣氏2020年與insider合作以來,引進了Web APP 個人化推薦、轉化模組套件,已有效提升成交轉換率達平均10以上,ROAS 平均10以上。 未來屈臣氏也希望能將POS銷售紀錄導入insider CDP,可以達成更優化的OO互動機制,完成全通路的消費體驗。 透過結合Insider的AI技術,自營的官網加上透過大量的門市銷售數據、會員消費行為累積,以及AI的個人化推薦、在最佳的時機點投放最佳的接觸訊息給使用者,將大幅提升消費者在Online成交與在線下購物或是進入屈臣氏門市創造互動的機會。藉由新技術在電商寡占的領域,為屈臣氏在消費者心中保持美妝保健類別中獨特的領導地位。

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI嘛會煮咖啡! 無人烘豆機靠AI 精準設點與培養忠實客群

你早上來杯咖啡了嗎 臺灣於過去十年以來,逐漸形成一股喝咖啡的文化風潮,隨著AI技術的精進,無人烘豆機也能靠AI精準設點,同時培養忠實客群,我們來看看,這是如何辦到的 根據國際咖啡組織 ICO 調查,國人一年喝掉約 285 億杯咖啡,臺灣咖啡市場規模上看 800 億元,且每年約有 20 成長。 臺灣近十年來,人手一杯的「喝咖啡」文化,已成為流行的代名詞,而「咖啡」甚至以65的高比例當選為國人平日最常選擇的飲品,其中重度咖啡愛好者的族群更願意花費更高的價錢去選購符合自身口味的咖啡豆來享用咖啡。近兩三年來,越來越多無人飲品販賣店於臺灣飲品市場上問市。 無人咖啡飲品店無法快速展店,主要受到兩大問題困擾,一是客流量與機器設點位置的合適性,往往仍需憑藉人力進行評估分析;二是如何精準打入中高階咖啡愛好者市場 AI解決無人烘豆機設點合適性與培養忠實客群兩大難題 為解決上述兩大問題,協助無人烘豆機能迅速打開市場,昇銳電子擬以透過導入AI 人流計數分析與AI 人臉陌生辨識,來針對無人烘豆機的設置地點進行人潮數量計算,且歸類消費者的性別及年齡,以進行更為精準的商情分析;並提供消費者對於烘焙咖啡生豆的多重選擇,期以給予專業的咖啡愛好者更客製化的服務與貼近其需求和個人口味的一包「高品質烘豆」。 自2018年起,無人販賣店的興起,無非是因為業主想減少不斷上漲的租金與人事成本的費用支出,但在店面設點的初期評估,卻仍需花費鐘點人力費以人眼計算客流量,但人非機器,難免會有計算來店消費者與道路上經過人潮的錯誤率,而無法做到精準的即時客流分析,或甚至經過一段試營運後才進行估算是否達到設點的營運效益,以上皆會造成錯失最佳撤掉設點位置的停損時機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,推出無人烘豆機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,與帶來「黑金」風潮的咖啡進行商機結合,並且抓住臺灣眾多咖啡行家喜歡親自至量販店耐心挑選符合自身口味的咖啡生豆與喜愛去高品質的研磨咖啡廳或連鎖咖啡店之消費習慣與特點,故誕生針對咖啡豆產地、品種、烘焙方式等提供選擇的第一台無人咖啡烘豆機之新創概念。 AI烘豆機提升客戶忠誠度與物料管理效率達20 針對無人烘豆機的精進開發,昇銳電子工程師搭載AI NVIDIA 開發平台於TCNNFacenet 的基礎上進行,透過AI 將關於性別及年齡搜集之數萬張的影像資料進行樣本訓練,以針對首次選購咖啡烘豆的消費者也能利用人臉陌生辨識來簡單地歸類,藉此取得消費者的信任並提升使用意願,並進而進行購買資訊紀錄及未來商品購買推薦以產出消費者購買行為分析,便可使業主參照消費者對於不同咖啡生豆的偏好度高低,作為未來物料準備數量之依據,以降低原物料轉運及庫存問題,並提升物料管理效率達20。 再者,業主可透過放置此無人烘豆機於選定之人流匯聚率高的地段內,便能透過攝影機捕捉人潮,並針對機台擺設位置的客源是否充足,進行對於經過人潮數量的計算,進而評估消費者佇足購買機率的高低,並於短時間內分析出是否需要將機台進行移設,並可更容易地瞄準出中高階咖啡愛好者所在的最佳設點位置。 而關於無人烘豆機有專業烘焙模式介面,其針對咖啡生豆的產地來源、品種、烘焙方式(淺中深焙)、入豆與出豆溫度、轉速溫度與目標溫度等跟溫度、風速和秒數相關之選擇,提供消費者多種選項以烘焙出符合自己愛好的客製化精品咖啡豆。而若過程中業者針對機台有要進行改善的需求,工程師能配合調整韌體參數,也能協助與業主的訂單系統進行整合。 服務人員簡述無人烘豆機的操作方式 「黑金」透過AI 可更深入至咖啡廳、科學園區、商業大樓 此一無人烘豆機針對咖啡行家的客群,不僅能設點於中高階咖啡廳,以烘製相較於在量販店購買更為客製化的咖啡豆,更能在製作完成一包咖啡豆時,即時提供給咖啡廳內專業的技術店員協助進行咖啡研磨與手沖,而剩餘的烘豆也能將其帶回家之後自己沖泡與享用。在這之中也為咖啡廳帶來了附加價值,其可更加了解消費客群對於咖啡豆的偏好程度,並能推出更能吸引顧客的飲品促銷活動與進行合適的備料管理。 而除了咖啡廳,無人烘豆機也能透過AI 人流計數分析,精準設點於科學園區與商業大樓裡或附近店面,以提供其有高度飲用咖啡需求的內部員工,於辦公室也能手工沖泡的優質咖啡豆。另外,更能推出實體會員制以隨時發起選購咖啡豆之促銷活動,或不定時提出支付優惠回饋,進而吸引到新客源與培養既有顧客的忠誠度和黏著度。 智慧無人烘豆機的操作介面