:::

【108年 應用案例】 智慧農漁業數位分身:一個高效率、永續經營的農漁業升級解決方案。養殖漁業如何靠著稱為「數位分身」的AI 技術達成三倍產量?

靠著九種感知器偵測水質、以及監控養殖物生長狀況和漁民行為決策,「智慧農漁業數位分身」人工智慧解決方案,可以大幅增加產量至 300%。「開心農場」式的高科技整合的解決方案,可以讓新手也快速上手,農漁業可以大幅降低對於經驗的倚賴,增加年輕人回鄉加入農漁業的誘因。

曾經有一段時間,FB遊戲剛剛開始流行的時候,因為「開心農場」這個熱門遊戲,可以說是人人皆農夫。上班族中午休息時間一一拿出手機,開始了手機上的快樂農夫生活。有些人還調皮,上班時間偷偷連上 FB ,偷了同事的菜。由於這個遊戲實在太療癒,有些人還真的就踏入真正的農田,當個小小的假日農夫。如果說,「開心農場」真實存在,你相信嗎?由資策會服創所領頭開發的「數位分身」-「智慧溫室」以及「智慧養殖場」解決方案,就是貨真價實存在的「開心農場」、「開心水族箱」。

在這裡,基於 IoT 的 9 大感知器,會持續監測水質等作物 / 養殖物生長環境的「設施因子」,並且透過控制盒上傳雲端。而雲端中的 AI 機器人會在系統內持續模擬出一個數位的分身,在收到外部的水溫、溶氧量等等「設施因子」、以及持續蒐集作物 / 養殖物生長狀況的「生長因子」,雲端系統裡面創造出一個模擬的養殖漁民的「數位分身」,AI 機器人也會按照過往漁民的成功策略來運算出合適的「行為決策」。

在含氧量低、水溫超標等等情況下, AI 會建議你開水車、開增氧機,或是用藥等等行為決策,漁民則可以考慮自己的經驗或是知識,再判斷是否要採用。事後,系統也會比較判斷結果,漁民也可以就結果來判斷,究竟是真人的決策比較厲害,還是「數位分身」的行為決策比較厲害。

除此之外,智慧農業的數位分身AI ,在背景也是 24 小時運作不打烊,它默默的紀錄並且分析養殖漁民在智慧養殖場中針對各種「設施因子」以及「生長因子」的對應「行為決策」,由此慢慢的建立起養殖策略的最佳解模型。慢慢的, AI 像是個小學徒,在漁民身邊默默的學習這些「隱性知識」,使得這些知識不會因為漁民退休而失傳。

不僅如此,除了「種魚」還可以利用同樣的技術方案去「種菜」,這些最佳化養殖 / 種植模型可以成為珍貴的資料庫,即使是剛入行的新手,也可以跳過摸索的過程,直接成為大師。

三難一貴,是目前最大的挑戰:人力不足、老年化、經驗失傳三大難,新科技導入貴

台灣農業技術、養殖技術都聞名全球,然而小農結構普遍都有人力不足、老年化的趨勢,數位轉型勢在必行。然而,要導入新技術的成本,是 80% 的小農小漁都負擔不起的。由於環境因素有太多不確定因素,如氣候的變遷、水質變化等等,都高度倚賴經驗來處理。因此,最嚴峻的挑戰,來自於農漁民退休而年輕農漁民又不及接班,多年的經驗因無法傳承而失傳。

智慧農漁業數位分身,持續最佳化不停機

「數位分身」是一個結合 AI 人工智慧,與 HI 工匠智慧的新興技術,國際研究機構 Gartner 連續三年將其評為全球未來關鍵十大技術之一。經濟部技術處在 2016 年就開始布局數位分身的研發,認為領域產業除了自動化效率之外,同時也需要將各產業的經驗技藝數位保存下來,建構 AI 與 HI 交互學習與最佳化的人機協同技術。以水產養殖這個領域來說,透過「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。利用各種水質數據所建構出的「設施因子」、魚、蝦體影像的影像資料、病徵影像等等的「生長因子」各種數位資料的分析,加上養殖漁民的「行為決策」來訓練 AI 人工智慧,可以得出水質管理、水產生長管理、水產疾病管理等等最佳化模型。

「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。

▲「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計)

將這些 AI 管理模型組合起來,就成為了高存活率、高換肉率的智慧養殖解決方案。養殖的整個過程都有數位化的監控資料、品質可分析、而且產銷履歷甚至可以回溯至養殖初期,藉以大幅提升水產品質、價值以及產量。

雖然前景看好,但是仍然有著重重挑戰

資策會服創所與「數位分身」的緣份,是由 2018 年時經濟部技術處支持的前瞻科技專案開始。當時技術處認為各領域產業除了自動化效率之外,也需數位保存領域產業的工藝知識,用以建構 AI 與 HI 交互學習與最佳化的人機協同技術。

後來,行政院農委會農業試驗所接續支持「數位分身」在智慧農業當中的應用。「數位分身技術應用在農業,協助小農經驗數位化積累,並透過群體經驗與人工智慧交互作用,精進農業技藝,解決農業智慧化最大挑戰」。在農業場域當中的「智慧農業數位分身技術」,在產品化之後預期可以提高生產效率 30% ,可以說是前景相當看好。

邱璟明組長受訪圖
▲邱璟明組長:「厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍。」 
 

Digital Twin: Aqua-Solution

Digital Twin: Aqua-Solution

後來,與科技養殖產業業者合作,共同獲得經濟部工業局的業界計畫支持,資策會服創所才將數位分身的技術應用在「智慧漁塭」的場域當中。負責養殖漁業的場域應用團隊指出,「在養殖漁塭當中,漁民在面對各種環境改變時的行為決策,往往是不同的。其中,厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍,例如白蝦的存活率,一般的平均是 10% 左右,有些漁民就是可以獲得 30% 的高水準產量。如此一來,生產成本降低,賺的錢也是原本的三倍。

數位分身的技術,就是可以將這些達人的隱性知識傳承下來,最終推動整個產業的升級。」

9大感知器、魚體影像以及漁民行為決策組合而成的「數位分身」

為了取得各種養殖場的環境數據,服創所採用了包括了有溶氧、水溫、酸鹼度、鹽度、濁度、氨氮、硝酸鹽、葉綠素 a、ORP (Oxidation-Reduction Potential)氧化還原電位等九大感知器來監控水質,這些又被稱為「設施因子」。

另外,漁民也會定期把魚、蝦從池中撈上來,或是透過沉水攝影機拍攝水下的養殖物影像。藉以得知目前養殖物的大小,來了解生長狀況,這又被稱為「成長因子」。

智慧養殖設施示意圖

▲ 「設施因子」、「成長因子」再加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計) 

有了這兩個因子,在加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。

在這個好像遊戲一樣的「數位分身」中,我們可以盡情的模擬,藉以找尋不同「設施因子」下,最佳的「行為決策」,藉以取得最佳化的「成長因子」。

換一個比較容易理解的說法,各位讀者不妨想像我們現在有個「開心漁塭」遊戲軟體。其中,漁塭的各種環境參數,都是由真實情況所記錄下來的。我們也紀錄下每個「開心漁塭」玩家在不同環境參數下所做出的行為決策以及最終的成果。當紀錄下來的資料組數量夠多,得到 ML 機器學習( Machine Learning)而來的魚塭數位分身模型,再經由即時數據進行模擬,就可以找出各種最佳化組合。而這個模擬世界,就是「開心漁塭」的「數位分身」。

感知器容易損壞,如何解決?

然而,研發的過程總是有些挑戰。例如水下的感知器如水溫和溶氧感知器,經常由於藻類增生而損壞。水下紀錄魚體大小的攝影機,也經常因為池底泥沙或藻類污染而模糊不清,無法辨識。

為了克服這些感知器的損壞問題,有兩個方案,一是定期從池中打水上來經過感知器來偵測,二是將感知器製作成一個盒子,每天定期泡入養殖池當中用以偵測水質。

至於魚體和蝦體的生長狀況,只需要漁民每日定期打撈上來拍照量測即可。成本低而且有效。

服創所的邱組長說:「這些感知器的損壞問題,是個成本問題,雖然說帶來的效益很高,但是若成本太高,漁民不願意採納也失去意義了。我們目前正在研發 9 合 1 的水質偵測盒子,成功整合完成之後,就可以準備量產,並且以銷售盒子加上連線月租費的方式來商業運作。我們目前已經非常接近完成整合,非常歡迎廠商來洽談合作」

漁民行為決策難以紀錄的困難

另外一個挑戰來自於漁民,部份漁民會自覺的紀錄每天觀察的水質以及環境指標,並且紀錄自己的操作策略和結果。但是,並不是每個漁民都會這樣操作,這時候,就需要引進 AI 人工智慧當中相當重要的 GAN (Generative adversarial network 生成對抗網路)技術。

GAN 會依據過去的資料,生成漁民的可能策略,也就是「猜」漁民的決策,用以補足漁民沒有輸入的行為決策。若是事後得到漁民補完,也不影響訓練資料集。

得獎技術量產化之後, 300%的生產效率不再是遙不可及

「數位分身」技術目前全球應用案例多運用於航太、製造業,目前只有台灣與荷蘭率先投入數位分身在智慧農業的研發。因此,「智慧農業數位分身」獲美國 R&D全球百大科技研發獎也是國內技術領先的證明。目前正在完成整合的水質監控盒以及整套解決方案,在產品化後預期提高生產效率 300%。

未來「數位分身」技術不只是可以應用於農業和養殖漁業當中,還可以擴展至原本仰賴「隱性知識」的產業當中,如製茶、漁業等等。由於全程數據化,品質不再是靠著經驗以及「看天吃飯」。藉此,可以提高農民的「智慧化監控」和「精準化生產」科技層次,除了提昇傳統農漁業的生產力,也很有機會達成永續經營,促成整個產業升級,提昇年輕人回鄉參與農漁業的誘因。

參考資料:智慧製造的關鍵拼圖!加速「數位分身」實現的創新感測技術-數位時代

推薦案例

這是一張圖片。 This is a picture.
AI輔助紅十字會 急難救助更智慧

多一點準備 少一點損失 社團法人台灣食物銀行聯合會,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 當台灣發生天然災害時,如地震、山崩、土石流、颱風、水災、旱災等,食物銀行的各項物資,也可即刻投入救災。本次場域驗證單位社團法人南投縣紅十字會食物銀行據點之一,以下簡稱南投紅十字會承擔「備災」物資預前準備、「救災」物資分配等工作,協助政府擔負起災變的救助與賑濟的責任。 在臺灣各項天災均具有發生時間長短和空間覆蓋廣闊或狹隘的特性,加上極端氣候常態化,災害規模與數量逐漸增加,也更難預測。而不同災情所需的物資數量和種類皆有不同,且須應對不同災區人民生活、救援需要、交通狀況、地形限制等各項因素,進行多樣化的物資調配,亦面臨諸多挑戰。 卡努颱風重創南投山區交通 法治國小親愛村奧萬大進行物資遞送" src"httpsaihuborgtwimages35f4ec12f8201e1d7cb12e2f22a64c89jpeg" alt"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" aria-label"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" data-image-id"748" 南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送 災難不斷反覆發生,我們需要時刻做好準備,有效「備災」可減緩災害所造成的衝擊,除了快速應對災區物資需求、賑濟物資,甚至可起到心理支持作用,使災區人民多一層生命財產的保障。 救災資訊缺乏即時性 社團法人台灣食物銀行聯合會為改善偏鄉生活及物資缺乏問題,除了與南投紅十字會合作,並陸續於南投市、埔里、仁愛力行、瑞岩、信義望美、同富、水里、鹿谷及草屯等共9站設立食物銀行據點,每月載運每戶等值新台幣6001000元之物資供應。但在天然災害發生時,仍有許多問題需要克服。 例如當颱風、地震、山崩等天災發生時,救災調度系統的資訊來源依賴於災害發生後的回報,從回報到應變再到執行過程中的時間差,無法及時以災區需求進行「救災」物資調整和分配,資訊缺乏即時性時,就會影響救援效率。 南投紅十字會的「備災」物資如乾糧、水、泡麵等存量、有效期限、發給都是以人力來紀錄,當災害發生時,可能面臨「備災」物資已過期,無法成為「救災」物資。 也有可能前述兩種狀況同時發生 造成花費更多時間把「備災」物資重新調配成可用「救災」物資。另一方面,民眾接到災區缺乏物資的訊息後,熱心捐贈的物資,時常與災區實際需求的物資品項差異甚大,容易造成物資過剩問題。 天災發生前後之物資作業流程 AI預判天災 補強備災物資調度正確性 應用 API 技術介接運算氣候狀態、災況搶救強度,並將南投紅十字會主要工作與搜救之需求地區為優先導入,並搭配南投紅十字會既有豪雨、颱風等模擬救災訓練,建立「天然災害緊急救備物資調度及補充決策系統」以下稱急救備物資系統。 在物資管理上,將物資庫存資料與即時供給的資料輸入急救備物資系統,進行比對分析後,協助南投紅十字會快速辨認物資,如餅乾乾糧、飲品、冷凍食品、衛生紙等,並判斷物資應成為「備災」物資或定期發放的物資。再加上資訊預判,了解偏鄉地區後續可能的災情狀況,進行食物遞送,同時解決前端食物浪費並解決後端實務需求。當天災發生時,可更快速進行應變與決策,完成物資部屬,使物資作業轉換速度增加20。 AI急救備物資系統 幫助物資調配快速應變 透過南投紅十字會的場域驗證將AI系統、物資管理、相關應用推廣至更多不同地區的急救難團體,同時持續改進急救備物資系統中的預警功能,加強預警技術基礎、提高預測精度系統即時性、優化數據收集和分析過程。 同時可與政府機構、氣象部門或其他救援團隊合作,研討整合更多數據源後,建立共享資源和數據的機制,及時共享信息,幫助更多急救難團體提高災難應變的能力,掌握黃金救援時間。

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇

綠能是未來趨勢,必帶動未來龐大商機。而風力發電是近年全球矚目綠色能源之一,將成為我國再生能源重要生力軍、幫助台灣發電量於2025年達到20的目標,以提高台灣能源自主性。隨著國內風力發電機風機組數量和電量逐年增長,如何讓儲電設備達到安全、長效性、充放電不易衰減和永續低碳又環保的技術能量顯得格外重要,同時風機設備本身的健康檢測、保養與維修也成為風場業者關注焦點。為滿足風場客戶需要,華鉬實業旗下綠能事業部門推出長效儲能的全釩液流電池電解液及風機AI預測性運維,提供100安全、長效性且可降低客戶初製成本的電力儲能設備,並透過AI預測性運維服務協助客戶降低發電度成本10,節省最多30維護保修成本。 華鉬實業成立於1998年,本業以提煉釩、鉬及稀有金屬元素等製品起家,並運用於高階鋼鐵、專業化工及特用化學品等行業,而釩更如同煉鋼的維他命可加值煉鋼的成效。其中釩、鉬相關製品為公司主力項目之一,公司看見100以釩元素為主的全釩液流電池在長效儲能上未來將是相當被看好的綠能技術主流,並且2010年以前政府已積極請法人如工研院在固態電池和全釩電池進行相關零組件材料投入研究,再加上經濟部期許再生能源在2025年發電量佔比達20目標並達15GW,基於上述考量,華鉬實業決定於2017年全力研究與投入自主開發的全釩液流電池電解液的技術開發,以藉此加速2025年再生能源的達標率。 華鉬公司指出「再生能源的電源較不穩定,而台灣本身缺乏鋰資源,在鋰電池製造上幾乎80-90電池芯必須倚賴國外採購,缺乏100國內自足自給的儲能資源與技術。」同樣地,對於本身沒有天然釩礦資源的台灣是如何克服呢 為此,華鉬實業利用獨創技術,透過石化業如中油煉油廠或台朔石化製程中的廢觸媒,其中有高達10釩離子成分可提煉出高價值的釩礦資源,藉此生產出台灣100自主自製的全釩液流電池電解液且不受資源影響,有效達到資源循環再利用。自2017起華鉬實業已成功打造出全釩液流電解液技術,並順利通過工研院和核研所及多家國際大廠的產品驗證。 台灣在儲電能量目標於2025年要達15GW,其電力分配包含500MW於台電的自動調頻系統、500MW於E-dReg及500MW於既有或新設的太陽能電廠,以太陽能電廠的用電使用為例,主要以下午4點到晚上10點用為民生用電尖峰時段,為此,能源局特別要求台電必須加強儲能設備的升級,也因此帶動市場上對全釩液流電池儲能系統設備的高度需求。另外,台灣在目前總儲備電能的建置與貢獻尚未達到100MW,距離2025年目標15GW儲電量仍差距15倍以上。 運用全釩液流電池 成功打造100安全、低碳環保又長效性儲能系統設備 相較於鋰電池的短效電力儲能,全釩液流電池的最大優勢為全球公認可長效性的儲備電能,可以長時間儲能達12小時,代表若充12小時電力,則可以釋放12小時電力。相較於一般儲能系統的計電方式也就是每日用電度數功率以千瓦為單位 x時間以小時為單位,對全釩液流電池而言,功率和小時數是各別設計,該功率又稱為電堆,是由金屬、高分子模、碳氈和石墨板等四種材料組成,而該用電時間改以電解液的量以立方體為單位來計算,因此當功率電推 x電解液的量我們每日運用全釩液流電池儲能的用電度數。 全釩液流電池儲能系統設備之產品特色方面,包含安全性、長效性、充放電不易衰減和永續低碳環保性等四大特色。全釩液流電池品質是100安全,由於電能是儲存在含釩的電解液中,能避免儲飽電的儲能系統造成任何易燃事故發生。在電池壽命上,相較於鋰電池的電池壽命短暫,全釩液流電池透過價數變化可高達20-25年以上電池壽命。對於儲能的充放電性能,不像鋰電池有一定充放電次數5000-600次,全釩液流電池的充放電次數是沒有限制性的。對於全球高度重視的零碳排放,不同於鋰電池有回收議題,全釩液流電池的電解液可永久使用,該電堆材料成分是環保的且可完全回收,以打造真正永續性又低碳環保的儲能系統。 陸域風機AI預測智慧運維 讓客戶降低發電度成本10 省下維護保修成本高達30 華鉬實業不只透過全釩液流電池儲能系統設備提高再生能源客戶長效儲電效能、協助客戶降低初置成本,更透過離岸與陸域風機AI智慧運維實證計畫在台電的陸域風場的場域實證,積極累積自家在AI預測性運維的技術經驗和能量。在經濟部工業局AI HUB計畫支持下,合作場域將以台電公司路域一期風場為主並提供6個月以上風機的智慧運轉數據進行分析。本次陸域風機的AI預測運維系統,採用機器學習方式,主要技術提供者來自英國British PetroleumBP石油集團的子公司ONYX Insight,該公司透過AI Hub分析軟體技術進行台電面臨的風機痛點分析,包含路域風機的發電量損失和陸域風機的關鍵零組件如齒輪箱、變槳軸承hellip在異常震動三維的振動頻率或異常溫度等狀態下進行損壞預測等報告產出。透過本次落地實證可有效協助台電降低發電度成本10,增加資產價值12,節省最多30維護保修成本。近三年ONYX Insight在全球已成功預測運維2萬台以上離岸或陸域風機,累積極高的AI模型準確率。相信透過與ONYX Insight建立的國際合作夥伴關係,將有效輔導並加速華鉬實業的綠能事業部在邁向成為風機AI預測性運維的獨立科技服務提供者之目標與布局。 與合作夥伴ONYX insight提供客戶AI預測運維系統,包含風機發電量損失與風機關鍵零組件之損壞預測 厚植國內風機運維的基礎 以台灣為基地 拓展到東南亞風場 離岸風機AI預測性運維未來在台灣將超過300億台幣的的市場產值,儲能市場在全球更是有千億美金以上的產值,在未來公司願景,華鉬實業期許能成為釩液流電池電解液及風機AI預測性運維的獨立技術服務提供者。而長期目標,透過累積豐厚技術及實績資本,在世界各地建立釩液流電池電解液之在地供應鏈,就近供應產業需求。