:::

【108年 應用案例】 智慧農漁業數位分身:一個高效率、永續經營的農漁業升級解決方案。養殖漁業如何靠著稱為「數位分身」的AI 技術達成三倍產量?

靠著九種感知器偵測水質、以及監控養殖物生長狀況和漁民行為決策,「智慧農漁業數位分身」人工智慧解決方案,可以大幅增加產量至 300%。「開心農場」式的高科技整合的解決方案,可以讓新手也快速上手,農漁業可以大幅降低對於經驗的倚賴,增加年輕人回鄉加入農漁業的誘因。

曾經有一段時間,FB遊戲剛剛開始流行的時候,因為「開心農場」這個熱門遊戲,可以說是人人皆農夫。上班族中午休息時間一一拿出手機,開始了手機上的快樂農夫生活。有些人還調皮,上班時間偷偷連上 FB ,偷了同事的菜。由於這個遊戲實在太療癒,有些人還真的就踏入真正的農田,當個小小的假日農夫。如果說,「開心農場」真實存在,你相信嗎?由資策會服創所領頭開發的「數位分身」-「智慧溫室」以及「智慧養殖場」解決方案,就是貨真價實存在的「開心農場」、「開心水族箱」。

在這裡,基於 IoT 的 9 大感知器,會持續監測水質等作物 / 養殖物生長環境的「設施因子」,並且透過控制盒上傳雲端。而雲端中的 AI 機器人會在系統內持續模擬出一個數位的分身,在收到外部的水溫、溶氧量等等「設施因子」、以及持續蒐集作物 / 養殖物生長狀況的「生長因子」,雲端系統裡面創造出一個模擬的養殖漁民的「數位分身」,AI 機器人也會按照過往漁民的成功策略來運算出合適的「行為決策」。

在含氧量低、水溫超標等等情況下, AI 會建議你開水車、開增氧機,或是用藥等等行為決策,漁民則可以考慮自己的經驗或是知識,再判斷是否要採用。事後,系統也會比較判斷結果,漁民也可以就結果來判斷,究竟是真人的決策比較厲害,還是「數位分身」的行為決策比較厲害。

除此之外,智慧農業的數位分身AI ,在背景也是 24 小時運作不打烊,它默默的紀錄並且分析養殖漁民在智慧養殖場中針對各種「設施因子」以及「生長因子」的對應「行為決策」,由此慢慢的建立起養殖策略的最佳解模型。慢慢的, AI 像是個小學徒,在漁民身邊默默的學習這些「隱性知識」,使得這些知識不會因為漁民退休而失傳。

不僅如此,除了「種魚」還可以利用同樣的技術方案去「種菜」,這些最佳化養殖 / 種植模型可以成為珍貴的資料庫,即使是剛入行的新手,也可以跳過摸索的過程,直接成為大師。

三難一貴,是目前最大的挑戰:人力不足、老年化、經驗失傳三大難,新科技導入貴

台灣農業技術、養殖技術都聞名全球,然而小農結構普遍都有人力不足、老年化的趨勢,數位轉型勢在必行。然而,要導入新技術的成本,是 80% 的小農小漁都負擔不起的。由於環境因素有太多不確定因素,如氣候的變遷、水質變化等等,都高度倚賴經驗來處理。因此,最嚴峻的挑戰,來自於農漁民退休而年輕農漁民又不及接班,多年的經驗因無法傳承而失傳。

智慧農漁業數位分身,持續最佳化不停機

「數位分身」是一個結合 AI 人工智慧,與 HI 工匠智慧的新興技術,國際研究機構 Gartner 連續三年將其評為全球未來關鍵十大技術之一。經濟部技術處在 2016 年就開始布局數位分身的研發,認為領域產業除了自動化效率之外,同時也需要將各產業的經驗技藝數位保存下來,建構 AI 與 HI 交互學習與最佳化的人機協同技術。以水產養殖這個領域來說,透過「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。利用各種水質數據所建構出的「設施因子」、魚、蝦體影像的影像資料、病徵影像等等的「生長因子」各種數位資料的分析,加上養殖漁民的「行為決策」來訓練 AI 人工智慧,可以得出水質管理、水產生長管理、水產疾病管理等等最佳化模型。

「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。

▲「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計)

將這些 AI 管理模型組合起來,就成為了高存活率、高換肉率的智慧養殖解決方案。養殖的整個過程都有數位化的監控資料、品質可分析、而且產銷履歷甚至可以回溯至養殖初期,藉以大幅提升水產品質、價值以及產量。

雖然前景看好,但是仍然有著重重挑戰

資策會服創所與「數位分身」的緣份,是由 2018 年時經濟部技術處支持的前瞻科技專案開始。當時技術處認為各領域產業除了自動化效率之外,也需數位保存領域產業的工藝知識,用以建構 AI 與 HI 交互學習與最佳化的人機協同技術。

後來,行政院農委會農業試驗所接續支持「數位分身」在智慧農業當中的應用。「數位分身技術應用在農業,協助小農經驗數位化積累,並透過群體經驗與人工智慧交互作用,精進農業技藝,解決農業智慧化最大挑戰」。在農業場域當中的「智慧農業數位分身技術」,在產品化之後預期可以提高生產效率 30% ,可以說是前景相當看好。

邱璟明組長受訪圖
▲邱璟明組長:「厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍。」 
 

Digital Twin: Aqua-Solution

Digital Twin: Aqua-Solution

後來,與科技養殖產業業者合作,共同獲得經濟部工業局的業界計畫支持,資策會服創所才將數位分身的技術應用在「智慧漁塭」的場域當中。負責養殖漁業的場域應用團隊指出,「在養殖漁塭當中,漁民在面對各種環境改變時的行為決策,往往是不同的。其中,厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍,例如白蝦的存活率,一般的平均是 10% 左右,有些漁民就是可以獲得 30% 的高水準產量。如此一來,生產成本降低,賺的錢也是原本的三倍。

數位分身的技術,就是可以將這些達人的隱性知識傳承下來,最終推動整個產業的升級。」

9大感知器、魚體影像以及漁民行為決策組合而成的「數位分身」

為了取得各種養殖場的環境數據,服創所採用了包括了有溶氧、水溫、酸鹼度、鹽度、濁度、氨氮、硝酸鹽、葉綠素 a、ORP (Oxidation-Reduction Potential)氧化還原電位等九大感知器來監控水質,這些又被稱為「設施因子」。

另外,漁民也會定期把魚、蝦從池中撈上來,或是透過沉水攝影機拍攝水下的養殖物影像。藉以得知目前養殖物的大小,來了解生長狀況,這又被稱為「成長因子」。

智慧養殖設施示意圖

▲ 「設施因子」、「成長因子」再加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計) 

有了這兩個因子,在加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。

在這個好像遊戲一樣的「數位分身」中,我們可以盡情的模擬,藉以找尋不同「設施因子」下,最佳的「行為決策」,藉以取得最佳化的「成長因子」。

換一個比較容易理解的說法,各位讀者不妨想像我們現在有個「開心漁塭」遊戲軟體。其中,漁塭的各種環境參數,都是由真實情況所記錄下來的。我們也紀錄下每個「開心漁塭」玩家在不同環境參數下所做出的行為決策以及最終的成果。當紀錄下來的資料組數量夠多,得到 ML 機器學習( Machine Learning)而來的魚塭數位分身模型,再經由即時數據進行模擬,就可以找出各種最佳化組合。而這個模擬世界,就是「開心漁塭」的「數位分身」。

感知器容易損壞,如何解決?

然而,研發的過程總是有些挑戰。例如水下的感知器如水溫和溶氧感知器,經常由於藻類增生而損壞。水下紀錄魚體大小的攝影機,也經常因為池底泥沙或藻類污染而模糊不清,無法辨識。

為了克服這些感知器的損壞問題,有兩個方案,一是定期從池中打水上來經過感知器來偵測,二是將感知器製作成一個盒子,每天定期泡入養殖池當中用以偵測水質。

至於魚體和蝦體的生長狀況,只需要漁民每日定期打撈上來拍照量測即可。成本低而且有效。

服創所的邱組長說:「這些感知器的損壞問題,是個成本問題,雖然說帶來的效益很高,但是若成本太高,漁民不願意採納也失去意義了。我們目前正在研發 9 合 1 的水質偵測盒子,成功整合完成之後,就可以準備量產,並且以銷售盒子加上連線月租費的方式來商業運作。我們目前已經非常接近完成整合,非常歡迎廠商來洽談合作」

漁民行為決策難以紀錄的困難

另外一個挑戰來自於漁民,部份漁民會自覺的紀錄每天觀察的水質以及環境指標,並且紀錄自己的操作策略和結果。但是,並不是每個漁民都會這樣操作,這時候,就需要引進 AI 人工智慧當中相當重要的 GAN (Generative adversarial network 生成對抗網路)技術。

GAN 會依據過去的資料,生成漁民的可能策略,也就是「猜」漁民的決策,用以補足漁民沒有輸入的行為決策。若是事後得到漁民補完,也不影響訓練資料集。

得獎技術量產化之後, 300%的生產效率不再是遙不可及

「數位分身」技術目前全球應用案例多運用於航太、製造業,目前只有台灣與荷蘭率先投入數位分身在智慧農業的研發。因此,「智慧農業數位分身」獲美國 R&D全球百大科技研發獎也是國內技術領先的證明。目前正在完成整合的水質監控盒以及整套解決方案,在產品化後預期提高生產效率 300%。

未來「數位分身」技術不只是可以應用於農業和養殖漁業當中,還可以擴展至原本仰賴「隱性知識」的產業當中,如製茶、漁業等等。由於全程數據化,品質不再是靠著經驗以及「看天吃飯」。藉此,可以提高農民的「智慧化監控」和「精準化生產」科技層次,除了提昇傳統農漁業的生產力,也很有機會達成永續經營,促成整個產業升級,提昇年輕人回鄉參與農漁業的誘因。

參考資料:智慧製造的關鍵拼圖!加速「數位分身」實現的創新感測技術-數位時代

推薦案例

這是一張圖片。 This is a picture.
測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
哈瑪星科技建構AI模型管理平台 加速AI落地應用

搭上AI列車,資服業者借助深厚的產業基礎,不僅自己轉型,也協助客戶轉型 成立已超過20年的哈瑪星科技,近年來不斷研發AI技術,並協助產業客戶導入AI。哈瑪星認為,執行一個完整的AI專案,除了AI理論知識、數據分析與模型訓練能力,實務上還需要依據客戶的需求開發數據串接API、建置資料庫、開發前端RWD網頁,甚至還需要考慮到版面設計與使用者體驗 User Experience。這些工作不僅對AI新創業者形成技術門檻,即便對已具規模的業者來說,每個專案反覆投入人力進行類似的功能開發,也難以累積技術經驗、加速業務成長。 機關客戶對於AI仍具備高度客製化之需求 以哈瑪星科技所執行的政府A機關的需求為例,用戶須針對特定管道的不實資訊進行管控,需要平台提供用來訓練模型和預測的數據接入功能,並可以在平台上完成自然語言處理NLP文本分類模型訓練與使用。當模型發現不實資訊時,需要即時透過通訊軟體通報相關負責同仁。而B機關的需求則是希望透過AI模型針對民眾陳情案件進行自動分類,並即時提供陳情民眾或案件承辦人員可參考之歷史案件資訊。儘管專案模式相似 數據接入、模型預測、警示通知,但在個別專案中,仍只能分別進行需求功能開發,無法重複利用既有的程式與模型來加速後續專案的執行。 在深入探討之後,哈瑪星科技發現企業面臨導入AI專案的痛點,包括導入成本高昂、專案時程冗長等,其中,在企業內難以齊備資料科學家、分析師、工程師、設計師等人才,而現階段的專案皆為集中解決特定領域需求,難以重複利用AI模型跨入其他應用領域,同時,因為工具集中在AI專案領域,無法滿足客戶提供整體解決方案。 換言之,在AI技術的落地上,由於AI資服業者往往面臨「人力有限」、「領域限縮」與「工具不足」等困境,致使專案執行成本高昂或時程冗長。這些都是業者們亟需解決的共通性問題。因此,若有一個AI模型應用服務管理平台,將可解決上述困難,不僅能夠快速導入降低成本,還有助於縮短專案時程,提供客戶一站式解決方案。 AI模型應用服務管理平台協助快速完成專案 因此,哈瑪星科技在經濟部工業局AI計畫支持下,進行「AI模型應用服務管理平台AISP研發計畫」,投入研發AISP產品,目的是為了讓AI資服業者能事半功倍地完成AI專案。 AI模型應用服務管理平台提供AI一站式解決方案 透過AISP,AI資服業者可透過既有的模組功能快速組裝數據API介接、模型管理與模型預測結果監控訂閱等需求功能。同時也提供常用的圖形化工具,幫助業者快速設計用戶所需要的互動式圖表或儀表板,有效降低執行專案所需要的人力成本,並縮短解決方案POC或導入時程,加速產業AI落地與擴散。 在產品商模上,短期內將廣邀具備AI專門領域技術的資服業者合作,藉由平台服務解決各類場域需求單位所面臨的AI導入問題,逐步建立平台品牌信賴感。 中期則盼以哈瑪星過往的成功經驗逐步拓展業務市場,聯合多家資服業者建立策略聯盟,針對專門領域可解決更多且廣泛的問題,並提供更多解決方案供場域單位選擇。 平台結合領域專家共同擴展海外市場 長期而言,在建立各項專門領域的AI策略聯盟後,平台將擁有大量針對專門領域的AI解決方案專家,累積大量的專案成功經驗後,哈瑪星科技期望AISP將能與專家業者們攜手合作,共同進軍拓展國際市場。 哈瑪星科技股份有限公司於民國89年延攬多位資深專業經理人及相關領域技術專長人才所組成,致力於軟體技術研發暨服務,並以建構成為國際級軟體公司為目標,積極促成各項跨國產業合作機會。公司在首任總經理的優良領導之下,已快速成長成為臺灣主要軟體公司之一。

這是一張圖片。 This is a picture.
生成式AI在商場!聚典資訊打造創新購物體驗

隨著智慧零售新風潮的崛起與不斷演進的AI科技與技術,聚典資訊乘此風浪推出生成式AI客服機器人Gen AI 客服機器人,為改寫消費體驗的傳統框架做足了準備,欲替場域、顧客與品牌方開創零售新應用 為了提升使用者體驗,聚典資訊攜手三創生活與西門商圈,共同推行全新的生成式AI智能客服系統。這一創新技術結合了高效的便利性、智能問答、自動推薦等功能,顧客們僅需拿起手機,掃描螢幕上的QR Code即可獲得所需資訊與推薦清單,不僅為他們帶來更加方便的購物體驗,場域方更能透過實體機台與後台分析協助,提升營運效益並掌握行銷流量密碼,達到商業洞見新應用的效果。 Gen AInbsp客服機器人 五大特點 【便利性提升】新的AI智能客服系統設置於驗證場域內,配備大螢幕顯示樓層導覽和分類介紹選單,操作簡便直觀。顧客可以掃描螢幕上的QR Code,客服資訊帶著走,隨時隨地查找需要的資訊,大大地提高了尋找商店與商品的效率。 【智能問答系統】聚典資訊開發的智能問答系統,使用自建語言模型,建立專屬語意資料庫。系統運用非關聯式資料庫和Vector Search技術,為每個使用情境量身定制智能問答解決方案。通過語意分析,系統能夠提供精準且人性化的回答,並經由不斷學習和更新資料庫,以提升服務品質。 【自然語言處理 NLP 技術】系統透過大規模語料庫訓練,具備深度語言結構和語意理解能力。不只能夠生成自然流暢的回答,也能通過分析不同用詞和標點符號的情緒語氣,提供適當的回應,使顧客感受到貼心的服務。 【全天候即時服務】該系統提供24小時不間斷的即時服務,確保無論何時何地,顧客都能獲得所需的幫助,其顧客滿意度高達90。 【多元應用場景】聚典資訊的生成式AI智能客服系統,除了智慧零售的應用外,還可以廣泛應用於藝文產業和行銷團隊等多個領域,提升各行業的運營效率和客戶體驗。 聚典資訊於西門商圈六號出口外之智慧顯示機台 生成式AI在商場 智慧顯示更加分搭載點擊與影像辨識的智慧顯示機台,協助使用者更能看見生成式AI,並達到完整的使用流程,避免單方面的資訊傳遞也能有效提高使用者體驗,更能依照場域需求增加模組,如小遊戲、拍貼機與智慧行銷模組,增添使用樂趣與傳遞品牌價值,建立人與人與商場的連結。 10,000以上雙月造訪人次:Gen AI配合搭載點擊與影像辨識的智慧顯示機台,更有效的引導使用者獲得重要資訊。 90以上的使用滿意度:透過完整的使用者旅程,我們也獲得90以上的使用滿意度,並持續為使用者創造美好體驗與回憶。 247全天候客服服務:透過雲端伺服器的運作,我們打造了24小時全年無休的智能客服,無時無刻幫助使用者解決各式難題。 智慧顯示Gen AI 完整零售實體場域的使用者旅程 nbsp 最懂你的智能客服 最多樣的解決方案 聚典資訊提供包含於雲端、地端或混和雲的AI解決方案,依據客戶需求進行導入,並為企業設計了專屬的問答介面,無論是使用者還是管理者,都能輕鬆上手。這套系統不僅美觀大方,還能大幅提升工作效率,讓企業在數位轉型過程中快速進入狀況。 地端部署的生成式AI解決方案能避免資料上傳至雲端,確保企業敏感資訊的安全,從資料輸入到AI模型訓練與推論的所有過程,均在地端主機進行,這樣的架構消除了資訊外洩的風險,特別適合對資料隱私有高度要求的企業,如大型零售業、製造業、科技業及政府部門等。 聚典資訊的專業團隊根據每個企業的特定需求,打造專屬的大語言模型LLM,企業只需提供相關的垂直領域資料,便能透過AI技術快速生成精準的內容,應用範圍廣泛,從文案創作、翻譯語言到客服系統等,幫助企業在不同業務領域中全面提升效能。此外亦能透過後台面板查看每次互動的完整問答紀錄,讓企業能夠檢視使用效益,並根據實際運作情況持續優化AI模型的表現,從而提供更精確、更人性化的服務。 聚典資安落地生成式AI介紹,提供多樣化的解決方案 AI for Good 「AI for good」 一直是聚典在推動技術創新的同時,也關注其在社會責任與ESG永續發展方面的角色,因此能不斷的創新並持續為使用者創造更佳的使用者體驗,也與合作企業一同推動更具效能、具社會意義的解決方案,希望能透過AI打造更智慧的城市並提供更優質的生活體驗。nbsp