:::

【109年 應用案例】 動態車牌辨識系統 省時省力方便管理

從事馬達相關設備製造長達40年的九德松益公司,為有效監控進出廠區的車輛,導入辨識率高達98.9%的動態車牌辨識系統,透過AI技術,讓車輛管理省時又省力。

車牌辨識系統是一種智慧影像分析的基本應用,利用攝影機,擷取車牌的影像後,將影像進行分析與演算,達到車牌辨識的應用。提供車牌辨識服務的康橋科技成立於 2008 年,由一群 LED 研發團隊,及軟體開發團隊所組成,致力於 LED 產品應用、開發 LED 投射燈/車牌辨識,及 Etag 兩合一整合系統,提供給國內外公共工程標案為主。

此次,資策會AI團隊與台灣能源技術服務產業發展協會合作,探尋 車牌辨識技術實證場域,發現九德松益公司現階段遭遇到的問題包含下列三項:

1) 公司大門目前無柵欄機或其他管制設備,進出車輛完全靠人力管制及記錄,紀錄方式也是完全人工處理,如果人力不在現場時,車輛進出完全無法管制

2) 當有狀況時,現有的監控系統必須慢慢地去調閱資料尋找有問題的車輛,非常耗時且不方便

3) 找到影像時車牌部分也無法清楚辨識,找到也沒有辦法確認車主

解決三大問題 提供四大功能

了解到企業實際需求之後,依據康橋科技所建立車牌辨識系統架構,實際到場域進行實證,在管理室設置監控電腦。

康橋科技車牌辨識系統架構

▲康橋科技車牌辨識系統架構

車牌辨識系統於安裝後之使用現況,主要完成功能如下:

1) 車輛進出時,透過高解析智慧型攝影機,可以辨識出車牌及影像,紀錄車牌號碼及車輛進出的現況

2) 當需要調閱檔案時,可以利用時間搜索車輛資料,或是搜索車牌資料,可以直接找出需要的影像檔案,可省去不少時間

3) 由於使用高解析智慧型攝影機,對於影像有大幅度的提升,如有狀況可以清楚辨識

4) 當車牌資料有登記時,還可以建置黑白名單資料庫,方便警衛人員管理

車牌辨識的優點是可以將車輛進出管制全面自動化,減低人力成本;而使用軟體來辨識進出車輛,車牌不易遭人冒用,同時免除遙控器、感應磁扣遺失與轉借外人之困擾;進出不須按遙控器、不用搖下車窗,遠距離車牌辨識,行進之間即可開閘門,省去停車等待的時間。

康橋科技車牌辨識系統設置於管理室

▲康橋科技車牌辨識系統設置於管理室

資策會AI團隊表示,該團隊不斷與相關公協會合作,從挖掘企業需求、訂定主題、鏈結團隊、導入實證等有系統的方法,來協助有需求缺口的企業,媒合AI技術研發團隊,導入AI技術,解決產業問題,來達到產業AI化的目標,未來,將持續協助企業運用科技工具突破經營困境。

推薦案例

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵

隨著高齡人口增加,伴隨著各種慢性病的發生機率日增,其中,心臟衰竭不僅是隱形殺手,由於心衰疾病的病程非常長,復發機率高,造成醫護人員的負擔加重。然而,利用通過醫療認證之心電心音裝置,搭配心臟衰竭風險AI預測評估及遠距照護系統可輔助診斷幫助醫師做出正確的診斷,以利於後續病患的醫療或轉介。 心臟衰竭病程長 醫療支出是糖尿病5倍 如果你有呼吸易喘,甚至稍微動一下就喘,或是夜晚睡覺的時候,容易從睡夢中驚醒,需要坐起來才會比較舒服,又或是下肢容易有水腫等狀況,甚至合併有焦慮、不安、疲倦、食慾下降hellip等症狀,當心很有可能是心臟衰竭。 根據統計,全球心臟衰竭人口約有6000萬人,每年新增的心臟衰竭人口約500萬人。中國的心血管疾病患者將近29億人口,占城市居民死亡原因第二位;而全中國約有1200萬心臟衰竭病人,佔心臟病死因的59以上。尤其心衰疾病的病程非常長,且復發及再入院率非常高,使得醫療支出的成本是高血壓的2倍、糖尿病的5倍。 根據美國研究統計,心肌梗塞及心臟衰竭病人的30天內死亡率分別為166及111,並且30天內再住院率分別為199及244。心臟衰竭的症狀因為和其他疾病如慢性肺阻塞,氣喘等疾病相似,有185 的誤診率,對於醫療院所而言,是相當棘手的問題。 麗臺科技為顯示卡大廠,2000年起投入醫療及健康照護領域。由於董事長盧崑山曾分別與2011年及2015年兩度心臟病發,因此,麗臺科技專注於健康大數據,自主研發心臟衰竭AI辨識技術,此一AI應用讀取病患的心電圖以及心音圖做出異常檢測以及心臟衰竭的風險預測模型,可及早發現疾病徵兆。 麗臺科技自主研發心臟衰竭AI辨識技術 可預測病史及風險 麗臺自主研發之心臟衰竭AI辨識技術具以下三種判斷功能: 1 心臟衰竭病史之預測 將心電及心音圖資料分類為「具心臟衰竭住院病史」以及「未具心臟衰竭病史」兩類。 2 心臟衰竭風險預測 將心電及心音圖資料給予發生的心臟衰竭風險預測值。 3 心臟衰竭再發生風險預測 針對已有心臟衰竭的患者判讀其心音圖及心音圖,判斷其心衰再發生之風險預測。 麗臺科技表示,心臟衰竭AI辨識技術應用可輔助醫師更有效率且精確的診斷,以利後續病患的醫療或轉介。舉台北榮總研究心臟衰竭的離院病患為例,根據心電心音同軸檢測裝置所計算出的EMAT電機活化期指數與SDI心縮不全指數作為治療指引的病患,會比依據傳統症狀做為治療指引的病患,有更高的存活率,此研究也已刊登於國際心臟權威期刊JACC,獲得國際市場肯定。 系統廠商可將心臟衰竭AI辨識技術作其他加值應用 麗臺科技表示,合作系統廠商可選擇自建心臟衰竭AI風險預測引擎,將自有系統之心電心音圖上傳到麗臺心臟衰竭AI風險預測引擎後,引擎回傳風險預測值,做為系統整合廠商合作廠商的加值應用輸入。 不僅臨床使用 心臟衰竭AI風險預測引擎可延伸居家或工作場與使用 此外,這套系統也可以延伸至其他應用,包括: 一、醫院門診快篩:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,在門診、急診進行10秒快速檢測,評估病患心臟病史及心臟衰竭風險。 二、出院風險評估:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,評估病患住院期間的心臟衰竭風險,檢測數據可作為出院前的風險評估及預後指標。 三、居家連續照護:病患可使用心電心音記錄器、穿戴心電圖記錄器,透過居家傳輸盒閘道器,在家量測心電心音訊號,並上傳至amor健康雲平台進行心臟衰竭AI風險預測分析。病患可透過APP自主健康管理,檢視歷史生理趨勢;疾病個管師可透過健康管理後台Web管理會員健康。 四、居家康復訓練 病患可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 心臟衰竭AI辨識技術系統可以延伸至員工居家照護等應用。 此外,在工廠或辦公室等場域也可以透過這套系統達到員工健康管理的目標,應用的方向包括: 一、工作場域之作業安全單位:在員工執行工作業務前發給員工穿戴心電圖記錄器。 二、業務執行者生理監測:員工於執行業務或訓練時,配戴穿戴心電圖記錄器之疲勞警示,警示生理狀態是否可繼續執行任務。任務執行段落可使用資料傳輸盒或APP 將生理監測資訊上傳至健康管理平台,並評估作業員工心臟衰竭風險,檢測數據可作為企業資源人力單位做為風險評估及公共安全對應指標。 三、工作場域生理監控中心照護:工作場域的生理監控中心可透過健康雲平台,檢視並記錄員工值情時之歷史生理趨勢。 四、工作場域之護理單位:護理單位在接收生理監控中心指示,可依據值情員工的生理趨勢給予健康管理的建議;護理中心可透過健康管理後台Web管理員工健康。 五、員工可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 工作場域應用心臟衰竭雲端照護及大數據中心示意圖

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI嘛會煮咖啡! 無人烘豆機靠AI 精準設點與培養忠實客群

你早上來杯咖啡了嗎 臺灣於過去十年以來,逐漸形成一股喝咖啡的文化風潮,隨著AI技術的精進,無人烘豆機也能靠AI精準設點,同時培養忠實客群,我們來看看,這是如何辦到的 根據國際咖啡組織 ICO 調查,國人一年喝掉約 285 億杯咖啡,臺灣咖啡市場規模上看 800 億元,且每年約有 20 成長。 臺灣近十年來,人手一杯的「喝咖啡」文化,已成為流行的代名詞,而「咖啡」甚至以65的高比例當選為國人平日最常選擇的飲品,其中重度咖啡愛好者的族群更願意花費更高的價錢去選購符合自身口味的咖啡豆來享用咖啡。近兩三年來,越來越多無人飲品販賣店於臺灣飲品市場上問市。 無人咖啡飲品店無法快速展店,主要受到兩大問題困擾,一是客流量與機器設點位置的合適性,往往仍需憑藉人力進行評估分析;二是如何精準打入中高階咖啡愛好者市場 AI解決無人烘豆機設點合適性與培養忠實客群兩大難題 為解決上述兩大問題,協助無人烘豆機能迅速打開市場,昇銳電子擬以透過導入AI 人流計數分析與AI 人臉陌生辨識,來針對無人烘豆機的設置地點進行人潮數量計算,且歸類消費者的性別及年齡,以進行更為精準的商情分析;並提供消費者對於烘焙咖啡生豆的多重選擇,期以給予專業的咖啡愛好者更客製化的服務與貼近其需求和個人口味的一包「高品質烘豆」。 自2018年起,無人販賣店的興起,無非是因為業主想減少不斷上漲的租金與人事成本的費用支出,但在店面設點的初期評估,卻仍需花費鐘點人力費以人眼計算客流量,但人非機器,難免會有計算來店消費者與道路上經過人潮的錯誤率,而無法做到精準的即時客流分析,或甚至經過一段試營運後才進行估算是否達到設點的營運效益,以上皆會造成錯失最佳撤掉設點位置的停損時機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,推出無人烘豆機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,與帶來「黑金」風潮的咖啡進行商機結合,並且抓住臺灣眾多咖啡行家喜歡親自至量販店耐心挑選符合自身口味的咖啡生豆與喜愛去高品質的研磨咖啡廳或連鎖咖啡店之消費習慣與特點,故誕生針對咖啡豆產地、品種、烘焙方式等提供選擇的第一台無人咖啡烘豆機之新創概念。 AI烘豆機提升客戶忠誠度與物料管理效率達20 針對無人烘豆機的精進開發,昇銳電子工程師搭載AI NVIDIA 開發平台於TCNNFacenet 的基礎上進行,透過AI 將關於性別及年齡搜集之數萬張的影像資料進行樣本訓練,以針對首次選購咖啡烘豆的消費者也能利用人臉陌生辨識來簡單地歸類,藉此取得消費者的信任並提升使用意願,並進而進行購買資訊紀錄及未來商品購買推薦以產出消費者購買行為分析,便可使業主參照消費者對於不同咖啡生豆的偏好度高低,作為未來物料準備數量之依據,以降低原物料轉運及庫存問題,並提升物料管理效率達20。 再者,業主可透過放置此無人烘豆機於選定之人流匯聚率高的地段內,便能透過攝影機捕捉人潮,並針對機台擺設位置的客源是否充足,進行對於經過人潮數量的計算,進而評估消費者佇足購買機率的高低,並於短時間內分析出是否需要將機台進行移設,並可更容易地瞄準出中高階咖啡愛好者所在的最佳設點位置。 而關於無人烘豆機有專業烘焙模式介面,其針對咖啡生豆的產地來源、品種、烘焙方式(淺中深焙)、入豆與出豆溫度、轉速溫度與目標溫度等跟溫度、風速和秒數相關之選擇,提供消費者多種選項以烘焙出符合自己愛好的客製化精品咖啡豆。而若過程中業者針對機台有要進行改善的需求,工程師能配合調整韌體參數,也能協助與業主的訂單系統進行整合。 服務人員簡述無人烘豆機的操作方式 「黑金」透過AI 可更深入至咖啡廳、科學園區、商業大樓 此一無人烘豆機針對咖啡行家的客群,不僅能設點於中高階咖啡廳,以烘製相較於在量販店購買更為客製化的咖啡豆,更能在製作完成一包咖啡豆時,即時提供給咖啡廳內專業的技術店員協助進行咖啡研磨與手沖,而剩餘的烘豆也能將其帶回家之後自己沖泡與享用。在這之中也為咖啡廳帶來了附加價值,其可更加了解消費客群對於咖啡豆的偏好程度,並能推出更能吸引顧客的飲品促銷活動與進行合適的備料管理。 而除了咖啡廳,無人烘豆機也能透過AI 人流計數分析,精準設點於科學園區與商業大樓裡或附近店面,以提供其有高度飲用咖啡需求的內部員工,於辦公室也能手工沖泡的優質咖啡豆。另外,更能推出實體會員制以隨時發起選購咖啡豆之促銷活動,或不定時提出支付優惠回饋,進而吸引到新客源與培養既有顧客的忠誠度和黏著度。 智慧無人烘豆機的操作介面

這是一張圖片。 This is a picture.
基於人工智慧的PCBA表面瑕疵檢測改善

隨著AOIAI系統的導入,我們將能提高產品良率、降低成本,從業務面來看,更可提高客戶的信任度,增加營業收益。而且AI具有難以被模仿的優勢,並非如其它設備只要花錢就買的到,讓我們的競爭對手難以追上我們。 組弘發展現況 我們致力於IOT智慧製造上,自行開發的系統已有智慧物料系統、環境溫溼度監控系統、防錯料系統、智能採購算料系統、智慧物料盤點系統、錫膏管理系統、生管系統。過去我們曾詢問過其他廠商,有關AI檢驗PCBA表面瑕疵的可能性,每個廠商都希望我們能夠購買其設備,但實際驗證後都無法達到效果,此次與資服業者討論過後,定調為AOIAI的運作模式,方覺得有可行性。 組弘科技投入AOIAI檢測計畫,用於檢查SMT零件上的文字、焊點、極性、缺件hellip等,用AI替代人工來學習AOI檢測後定義為rdquo可能是不良品rdquo的部份,提升人員產值與降低誤判率。 產業痛點 nbspnbspnbsp 台灣缺工情形嚴重,尤其願意從事目視檢查的人更少,而且年齡相對較大,檢查遺漏的狀況越來越嚴重。所以在追求高品質電子產業中,最關鍵的瓶頸已經是生產後的檢查。過去的消費性產品,異常未能被檢出,只要在一定比例下,也可被接受。現在的汽車產業如果有不良未被檢出,即有可能造成人員死亡,所以汽車產業對於品質的要求極高。要想在汽車產業的供應鏈中生存,就必須解決異常無法被檢出的問題。 nbspnbspnbsp 而且隨著台灣工資越來越高,只能設法以AI技術,取代傳統人力,否則就算解決了異常流出,但相對高的人力成本依然無法在此產業中競爭。 應用技術與說明 nbspnbspnbsp 原本過程圖一,PCB從出來Reflow後,會經過AOI檢測,分出「疑似不良品」與良品,這時「疑似不良品」的部分約為20,再由人工針對這20的部分來做複判,再將「疑似不良品」的部分區分為良品與不良品。 nbspnbspnbsp 我們想要藉由AI的技術,將原本由人工複判這20的「疑似不良品」改由AI來做,複判出來一樣會有良品與「疑似不良品」,結果一樣會有「良品」與「疑似不良品」的產生,但此時「疑似不良品」約只剩下3,也就是說組弘作業人員的工作量會從20降到只有3。理論上是AOI檢查完後,再由AI來做複判,但從表面看起來似乎只有經過AOI而已,所以我們才將這個技術稱之為A0IAI檢測圖二。 原本AOI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI 檢測不良品資訊,再經由人工逐一覆判是否為不良品。 AOIAI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI檢測不良品資訊後, 進由AI先進行AOI檢測不良品的覆判,輸出AI檢測不良資訊後, 再經由人工逐一覆判是否為不良品。 流程差異 nbspnbspnbsp 藉由AOIAI系統的導入,我們除了能夠提升目視檢查人員的效率與良率外,我們有了這次AI的導入經驗,以後也可將AI與大數據的運用加入到組弘原有的智慧製造系統,使我們的智慧製造系統的效能更提升,更進一步的減輕員工的工作壓力。 導入前後差異說明 推廣策略 1nbspnbspnbspnbspnbspnbsp 同領域擴散:所有SMT製造業皆會遇到檢查瓶頸導致延誤出貨的狀況,導入此系統可解決目前缺工嚴重問題並提升出貨速度與品質,自行向客戶推廣或透過設備商銷售給相關需求者。 2nbspnbspnbspnbspnbspnbsp 異業擴散規劃:與AOI製造商洽談直接將AI系統掛在AOI系統內,增加其市場競爭力。 nbsp 獲利策略 1nbspnbspnbspnbspnbspnbsp 與AOI製造商合作收取授權金。 2nbspnbspnbspnbspnbspnbsp 與SMT製造業直接銷售AI系統。 3nbspnbspnbspnbspnbspnbsp 提供SMT製造業AOIAI系統訂閱制