:::

【109年 應用案例】 AOI驗布員降低誤殺率,減少70%複判篩檢量

檢出率低、速度慢、招工難且人員成本高

紡織業向來為勞力密集之產業,目前全球紡織業幾乎都還是用人工進行布料檢驗,人工驗布有三大痛點:檢出率低、速度慢、招工難且人員成本高。平均一個驗布員在1小時內最多發現200個疵點,瑕疵檢出率約為70%。

但人員集中力最多維持20~30分鐘,而且驗布速度一般限制在20~30cm/s,若超過這個時間和速度,驗布員會產生疲勞。

紡織業者購買的國內外AOI驗布機,到目前皆尚未正式融入生產線中,開始時1捲布約能測出10000個疑似瑕疵,檢出率高但正確率[過篩]低,迄今約減少到7000個點,但仍未達老師傅水準。

高速相機拍攝瑕疵,記錄瑕疵位置

▲高速相機拍攝瑕疵,記錄瑕疵位置

廠商目前採用的Rule-based瑕疵辨識方法,在業主(場域)實際使用前需要花費大量調整時間(約1~3個月),而且目前使用後並沒有一套可以修正自動化修正辨識模型的方案,造成廠商需要再額外花費時間進行參數設定重新調整,因此,不管是對廠商或業主(場域)都需要花費龐大的成本。

目前廠商的胚布驗布流程

▲目前廠商的胚布驗布流程

輔導團隊與合作廠商針對瑕疵檢驗流程導入AI辨識技術與學習框架(針對模型重新訓練),具體作法描述如下

1. AI-based 瑕疵辨識模型 :

利用大量收集到的影像資料(包含無瑕疵與有瑕疵),藉由機器學習(Machine Learning),如SVM,或深度學習(Deep Learning)的物件偵測方法,如SSD或YOLOv3,建構瑕疵偵測模型,依此模型來得知當前胚布表面的狀況,是正常品還是瑕疵品,藉此達成瑕疵辨識。

2. 辨識模型重新訓練框架 :

根據目檢員的判斷,若有判斷錯誤的情況發生,則標記該筆影像,將該筆資料作為重新訓練的資料集,待累積至一定程度的誤判資料筆數後,系統將自動啟動辨識模型重新訓練功能,新模型產生後將自動替換舊有的辨識模型,藉此達到模型更新的目的。

導入本計畫後的胚布瑕疵檢驗流程

▲導入本計畫後的胚布瑕疵檢驗流程

低誤殺率,解決產業缺工與高質化挑戰

本計畫以深度學習網路架構,重新分類經檢測出的瑕疵,包括真瑕疵與假瑕疵,並可將真瑕疵與假瑕疵進一步分類,降低傳統AOI方案的誤殺率,預期可再協助驗布員減少70%以上的複判篩檢量,解決現行生產線導入的疑慮,加速擴散織布廠導入應用AI化AOI檢測方案,解決產業缺工與高質化產品的挑戰。

推薦案例

這是一張圖片。 This is a picture.
生成式AI在商場!聚典資訊打造創新購物體驗

隨著智慧零售新風潮的崛起與不斷演進的AI科技與技術,聚典資訊乘此風浪推出生成式AI客服機器人Gen AI 客服機器人,為改寫消費體驗的傳統框架做足了準備,欲替場域、顧客與品牌方開創零售新應用 為了提升使用者體驗,聚典資訊攜手三創生活與西門商圈,共同推行全新的生成式AI智能客服系統。這一創新技術結合了高效的便利性、智能問答、自動推薦等功能,顧客們僅需拿起手機,掃描螢幕上的QR Code即可獲得所需資訊與推薦清單,不僅為他們帶來更加方便的購物體驗,場域方更能透過實體機台與後台分析協助,提升營運效益並掌握行銷流量密碼,達到商業洞見新應用的效果。 Gen AInbsp客服機器人 五大特點 【便利性提升】新的AI智能客服系統設置於驗證場域內,配備大螢幕顯示樓層導覽和分類介紹選單,操作簡便直觀。顧客可以掃描螢幕上的QR Code,客服資訊帶著走,隨時隨地查找需要的資訊,大大地提高了尋找商店與商品的效率。 【智能問答系統】聚典資訊開發的智能問答系統,使用自建語言模型,建立專屬語意資料庫。系統運用非關聯式資料庫和Vector Search技術,為每個使用情境量身定制智能問答解決方案。通過語意分析,系統能夠提供精準且人性化的回答,並經由不斷學習和更新資料庫,以提升服務品質。 【自然語言處理 NLP 技術】系統透過大規模語料庫訓練,具備深度語言結構和語意理解能力。不只能夠生成自然流暢的回答,也能通過分析不同用詞和標點符號的情緒語氣,提供適當的回應,使顧客感受到貼心的服務。 【全天候即時服務】該系統提供24小時不間斷的即時服務,確保無論何時何地,顧客都能獲得所需的幫助,其顧客滿意度高達90。 【多元應用場景】聚典資訊的生成式AI智能客服系統,除了智慧零售的應用外,還可以廣泛應用於藝文產業和行銷團隊等多個領域,提升各行業的運營效率和客戶體驗。 聚典資訊於西門商圈六號出口外之智慧顯示機台 生成式AI在商場 智慧顯示更加分搭載點擊與影像辨識的智慧顯示機台,協助使用者更能看見生成式AI,並達到完整的使用流程,避免單方面的資訊傳遞也能有效提高使用者體驗,更能依照場域需求增加模組,如小遊戲、拍貼機與智慧行銷模組,增添使用樂趣與傳遞品牌價值,建立人與人與商場的連結。 10,000以上雙月造訪人次:Gen AI配合搭載點擊與影像辨識的智慧顯示機台,更有效的引導使用者獲得重要資訊。 90以上的使用滿意度:透過完整的使用者旅程,我們也獲得90以上的使用滿意度,並持續為使用者創造美好體驗與回憶。 247全天候客服服務:透過雲端伺服器的運作,我們打造了24小時全年無休的智能客服,無時無刻幫助使用者解決各式難題。 智慧顯示Gen AI 完整零售實體場域的使用者旅程 nbsp 最懂你的智能客服 最多樣的解決方案 聚典資訊提供包含於雲端、地端或混和雲的AI解決方案,依據客戶需求進行導入,並為企業設計了專屬的問答介面,無論是使用者還是管理者,都能輕鬆上手。這套系統不僅美觀大方,還能大幅提升工作效率,讓企業在數位轉型過程中快速進入狀況。 地端部署的生成式AI解決方案能避免資料上傳至雲端,確保企業敏感資訊的安全,從資料輸入到AI模型訓練與推論的所有過程,均在地端主機進行,這樣的架構消除了資訊外洩的風險,特別適合對資料隱私有高度要求的企業,如大型零售業、製造業、科技業及政府部門等。 聚典資訊的專業團隊根據每個企業的特定需求,打造專屬的大語言模型LLM,企業只需提供相關的垂直領域資料,便能透過AI技術快速生成精準的內容,應用範圍廣泛,從文案創作、翻譯語言到客服系統等,幫助企業在不同業務領域中全面提升效能。此外亦能透過後台面板查看每次互動的完整問答紀錄,讓企業能夠檢視使用效益,並根據實際運作情況持續優化AI模型的表現,從而提供更精確、更人性化的服務。 聚典資安落地生成式AI介紹,提供多樣化的解決方案 AI for Good 「AI for good」 一直是聚典在推動技術創新的同時,也關注其在社會責任與ESG永續發展方面的角色,因此能不斷的創新並持續為使用者創造更佳的使用者體驗,也與合作企業一同推動更具效能、具社會意義的解決方案,希望能透過AI打造更智慧的城市並提供更優質的生活體驗。nbsp

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇

綠能是未來趨勢,必帶動未來龐大商機。而風力發電是近年全球矚目綠色能源之一,將成為我國再生能源重要生力軍、幫助台灣發電量於2025年達到20的目標,以提高台灣能源自主性。隨著國內風力發電機風機組數量和電量逐年增長,如何讓儲電設備達到安全、長效性、充放電不易衰減和永續低碳又環保的技術能量顯得格外重要,同時風機設備本身的健康檢測、保養與維修也成為風場業者關注焦點。為滿足風場客戶需要,華鉬實業旗下綠能事業部門推出長效儲能的全釩液流電池電解液及風機AI預測性運維,提供100安全、長效性且可降低客戶初製成本的電力儲能設備,並透過AI預測性運維服務協助客戶降低發電度成本10,節省最多30維護保修成本。 華鉬實業成立於1998年,本業以提煉釩、鉬及稀有金屬元素等製品起家,並運用於高階鋼鐵、專業化工及特用化學品等行業,而釩更如同煉鋼的維他命可加值煉鋼的成效。其中釩、鉬相關製品為公司主力項目之一,公司看見100以釩元素為主的全釩液流電池在長效儲能上未來將是相當被看好的綠能技術主流,並且2010年以前政府已積極請法人如工研院在固態電池和全釩電池進行相關零組件材料投入研究,再加上經濟部期許再生能源在2025年發電量佔比達20目標並達15GW,基於上述考量,華鉬實業決定於2017年全力研究與投入自主開發的全釩液流電池電解液的技術開發,以藉此加速2025年再生能源的達標率。 華鉬公司指出「再生能源的電源較不穩定,而台灣本身缺乏鋰資源,在鋰電池製造上幾乎80-90電池芯必須倚賴國外採購,缺乏100國內自足自給的儲能資源與技術。」同樣地,對於本身沒有天然釩礦資源的台灣是如何克服呢 為此,華鉬實業利用獨創技術,透過石化業如中油煉油廠或台朔石化製程中的廢觸媒,其中有高達10釩離子成分可提煉出高價值的釩礦資源,藉此生產出台灣100自主自製的全釩液流電池電解液且不受資源影響,有效達到資源循環再利用。自2017起華鉬實業已成功打造出全釩液流電解液技術,並順利通過工研院和核研所及多家國際大廠的產品驗證。 台灣在儲電能量目標於2025年要達15GW,其電力分配包含500MW於台電的自動調頻系統、500MW於E-dReg及500MW於既有或新設的太陽能電廠,以太陽能電廠的用電使用為例,主要以下午4點到晚上10點用為民生用電尖峰時段,為此,能源局特別要求台電必須加強儲能設備的升級,也因此帶動市場上對全釩液流電池儲能系統設備的高度需求。另外,台灣在目前總儲備電能的建置與貢獻尚未達到100MW,距離2025年目標15GW儲電量仍差距15倍以上。 運用全釩液流電池 成功打造100安全、低碳環保又長效性儲能系統設備 相較於鋰電池的短效電力儲能,全釩液流電池的最大優勢為全球公認可長效性的儲備電能,可以長時間儲能達12小時,代表若充12小時電力,則可以釋放12小時電力。相較於一般儲能系統的計電方式也就是每日用電度數功率以千瓦為單位 x時間以小時為單位,對全釩液流電池而言,功率和小時數是各別設計,該功率又稱為電堆,是由金屬、高分子模、碳氈和石墨板等四種材料組成,而該用電時間改以電解液的量以立方體為單位來計算,因此當功率電推 x電解液的量我們每日運用全釩液流電池儲能的用電度數。 全釩液流電池儲能系統設備之產品特色方面,包含安全性、長效性、充放電不易衰減和永續低碳環保性等四大特色。全釩液流電池品質是100安全,由於電能是儲存在含釩的電解液中,能避免儲飽電的儲能系統造成任何易燃事故發生。在電池壽命上,相較於鋰電池的電池壽命短暫,全釩液流電池透過價數變化可高達20-25年以上電池壽命。對於儲能的充放電性能,不像鋰電池有一定充放電次數5000-600次,全釩液流電池的充放電次數是沒有限制性的。對於全球高度重視的零碳排放,不同於鋰電池有回收議題,全釩液流電池的電解液可永久使用,該電堆材料成分是環保的且可完全回收,以打造真正永續性又低碳環保的儲能系統。 陸域風機AI預測智慧運維 讓客戶降低發電度成本10 省下維護保修成本高達30 華鉬實業不只透過全釩液流電池儲能系統設備提高再生能源客戶長效儲電效能、協助客戶降低初置成本,更透過離岸與陸域風機AI智慧運維實證計畫在台電的陸域風場的場域實證,積極累積自家在AI預測性運維的技術經驗和能量。在經濟部工業局AI HUB計畫支持下,合作場域將以台電公司路域一期風場為主並提供6個月以上風機的智慧運轉數據進行分析。本次陸域風機的AI預測運維系統,採用機器學習方式,主要技術提供者來自英國British PetroleumBP石油集團的子公司ONYX Insight,該公司透過AI Hub分析軟體技術進行台電面臨的風機痛點分析,包含路域風機的發電量損失和陸域風機的關鍵零組件如齒輪箱、變槳軸承hellip在異常震動三維的振動頻率或異常溫度等狀態下進行損壞預測等報告產出。透過本次落地實證可有效協助台電降低發電度成本10,增加資產價值12,節省最多30維護保修成本。近三年ONYX Insight在全球已成功預測運維2萬台以上離岸或陸域風機,累積極高的AI模型準確率。相信透過與ONYX Insight建立的國際合作夥伴關係,將有效輔導並加速華鉬實業的綠能事業部在邁向成為風機AI預測性運維的獨立科技服務提供者之目標與布局。 與合作夥伴ONYX insight提供客戶AI預測運維系統,包含風機發電量損失與風機關鍵零組件之損壞預測 厚植國內風機運維的基礎 以台灣為基地 拓展到東南亞風場 離岸風機AI預測性運維未來在台灣將超過300億台幣的的市場產值,儲能市場在全球更是有千億美金以上的產值,在未來公司願景,華鉬實業期許能成為釩液流電池電解液及風機AI預測性運維的獨立技術服務提供者。而長期目標,透過累積豐厚技術及實績資本,在世界各地建立釩液流電池電解液之在地供應鏈,就近供應產業需求。

這是一張圖片。 This is a picture.
AI走入公益,食(實)物銀行也有時尚科技

社團法人台灣食物銀行聯合會以下簡稱本會以食物援助、貧困救濟、減少食物浪費、建構無飢網絡為組織宗旨,在台灣各地已有55個食物銀行據點,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 但各據點皆需大量人力與志工以傳統聯繫方式處理食物銀行日常事務,聯絡非營利組織與捐贈機構,為據點收到物資捐贈後,再分配給有需要的家庭戶或個人。在物資管理上缺乏數位化與整合資訊,可能產生物資資源分配不均問題。 倉儲轉運中心與迷你食物銀行 分配弱勢物資 本次場域驗證單位社團法人高雄市慈善團體聯合總會食物銀行據點之一,以下簡稱高慈總 於109年6月24日正式啟用台灣首座「食物銀行-倉儲轉運中心」佔地200坪,提高食物物資再分配、運用之效益、妥善存放及食物物資管理,至今已搶救近二百噸蔬果續食,服務一百多個團體、逾5萬戶弱勢家庭受惠,持續服務19家迷你食物銀行,將於高雄多個行政區陸續落成,分配食物物資給超過10萬人次弱勢家庭。 高慈總「食物銀行-倉儲轉運中心」於高雄大社區 照片來源 社團法人高雄市慈善團體聯合總會 人力與食物物資管理的挑戰 面對大量經濟弱勢家庭的需求,「食物銀行-倉儲轉運中心」的管理顯得格外重要。進貨時需進行分類整理、汰廢、入帳等繁瑣的工作,出貨時則需參照社工員的食物物資需求做配置建議。這些工作都需要依靠人工判斷及經驗累積。而參與的志工多為高齡人士,體力有限,而倉儲工作需耗費大量體力,志工的招募困難重重。倘若有大批食物物資進庫,在調配上會耗費空間與人力整理、盤點,並同時擔憂食物物資是否能有效的被運用及周轉。也顯示出食物銀行服務逐漸擴大規模,但人力與物資管理系統無法隨之配合。 同時食物銀行物資來自各界之捐贈,故類別多樣且效期、規格、數量也均不相同。迷你食物銀行的志工夥伴,多數也為高齡人士,但卻需執行個案服務、食物物資管理配置、物資資源開發等多重職責,有時也需向物資領用者說明並接受即期、大量特殊性的物資,如成人接受嬰兒奶粉。 「食物銀行-倉儲轉運中心」物資盤點需要皆仰賴人力 迷你食物銀行志工具多重職責 照片來源社團法人台灣食物銀行聯合會 報廢物資減少60 物資轉遞速度增加80 為精進物資管理並達到物資有效利用,並解決人力短缺等問題,在本次場域實證案導入「食物銀行倉儲物資募集AI自動預警需求判讀系統」,第一部分為建構分類模型之前置作業,建置以及蒐集場域倉儲資訊,進行AI建模訓練,將過往場域倉儲資訊收集建置成資料庫,使AI可進行預處理、分類等工作。同時視其物資種類之相依狀況作為特徵值,導入演算法中進行運算建模,再依收集之資料進行重新訓練,最終進行場域驗證並針對經常性五大類物資進行數據整理,以建立數據資料所需之訓練及測試資料集,第二部分以演算法之RNN技術建構分類模型;進一步利用強化學習建構食物銀行倉儲管理機制,使分類完善之受贈物資如白米、沖泡飲品、麵條、泡麵、罐頭等可以根據儲位指派原則自動指派儲位。 AI服務系統服務流程與說明 資料來源社團法人台灣食物銀行聯合會 在AI預判下,可優化物資轉遞速度及物資調配,有效精準配對物資捐贈並降低捐贈歷程的損耗,增加物資分配正確性,提高媒合服務率即捐贈成功率,降低錯誤物資造成人力物力浪費,即時監控食物物資的庫存,確保操作者能夠迅速回應需求,有效提供物資援助。 以AI系統的導入,加上數據智慧化建置,協助倉儲轉運中心的運作,可爭取更多時間分配捐贈物資使用。導入加速社福團體數位化服務推展,完善照顧整體社會弱勢群組之需求。 使用系統進行物資分配調度 照片來源 社團法人高雄市慈善團體聯合總會 透過本次的場域驗證後,未來可推廣至食物銀行其他服務據點導入AI系統,也可與更多非營利組織、公益團體、慈善團體等夥伴合作,擴大「食物銀行倉儲物資募集AI自動預警需求判讀系統」應用範圍如醫療用品配送,幫助更多組織更智慧化地管理和分發,減少物資的浪費,以提高社會福祉。