:::

【113年 應用案例】 AI輔助紅十字會 急難救助更智慧

多一點準備 少一點損失

社團法人台灣食物銀行聯合會,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。

當台灣發生天然災害時,如地震、山崩、土石流、颱風、水災、旱災等,食物銀行的各項物資,也可即刻投入救災。本次場域驗證單位社團法人南投縣紅十字會(食物銀行據點之一,以下簡稱南投紅十字會)承擔「備災」物資預前準備、「救災」物資分配等工作,協助政府擔負起災變的救助與賑濟的責任。

在臺灣各項天災均具有發生時間長短和空間覆蓋廣闊或狹隘的特性,加上極端氣候常態化,災害規模與數量逐漸增加,也更難預測。而不同災情所需的物資數量和種類皆有不同,且須應對不同災區人民生活、救援需要、交通狀況、地形限制等各項因素,進行多樣化的物資調配,亦面臨諸多挑戰。

卡努颱風重創南投山區交通
卡努颱風重創南投山區交通

南投縣紅十字會規劃山區路線 埔里>法治國小>親愛村>奧萬大進行物資遞送
南投縣紅十字會規劃山區路線 埔里>法治國小>親愛村>奧萬大進行物資遞送

災難不斷反覆發生,我們需要時刻做好準備,有效「備災」可減緩災害所造成的衝擊,除了快速應對災區物資需求、賑濟物資,甚至可起到心理支持作用,使災區人民多一層生命財產的保障。

救災資訊缺乏即時性

社團法人台灣食物銀行聯合會為改善偏鄉生活及物資缺乏問題,除了與南投紅十字會合作,並陸續於南投市、埔里、仁愛(力行、瑞岩)、信義(望美、同富)、水里、鹿谷及草屯等共9站設立食物銀行據點,每月載運每戶等值新台幣600~1000元之物資供應。但在天然災害發生時,仍有許多問題需要克服。

例如當颱風、地震、山崩等天災發生時,救災調度系統的資訊來源依賴於災害發生後的回報,從回報到應變再到執行過程中的時間差,無法及時以災區需求進行「救災」物資調整和分配,資訊缺乏即時性時,就會影響救援效率。

南投紅十字會的「備災」物資(如乾糧、水、泡麵等)存量、有效期限、發給都是以人力來紀錄,當災害發生時,可能面臨「備災」物資已過期,無法成為「救災」物資。

也有可能前述兩種狀況同時發生! 造成花費更多時間把「備災」物資重新調配成可用「救災」物資。另一方面,民眾接到災區缺乏物資的訊息後,熱心捐贈的物資,時常與災區實際需求的物資品項差異甚大,容易造成物資過剩問題。

天災發生前後之物資作業流程
天災發生前後之物資作業流程

AI預判天災 補強備災物資調度正確性

應用 API 技術介接運算氣候狀態、災況搶救強度,並將南投紅十字會主要工作與搜救之需求地區為優先導入,並搭配南投紅十字會既有豪雨、颱風等模擬救災訓練,建立「天然災害緊急救備物資調度及補充決策系統」(以下稱急救備物資系統)

在物資管理上,將物資庫存資料與即時供給的資料輸入急救備物資系統,進行比對分析後,協助南投紅十字會快速辨認物資,如餅乾/乾糧、飲品、冷凍食品、衛生紙等,並判斷物資應成為「備災」物資或定期發放的物資。再加上資訊預判,了解偏鄉地區後續可能的災情狀況,進行食物遞送,同時解決前端食物浪費並解決後端實務需求。當天災發生時,可更快速進行應變與決策,完成物資部屬,使物資作業轉換速度增加20%

AI急救備物資系統 幫助物資調配快速應變
AI急救備物資系統 幫助物資調配快速應變

透過南投紅十字會的場域驗證將AI系統、物資管理、相關應用推廣至更多不同地區的急救難團體,同時持續改進急救備物資系統中的預警功能,加強預警技術基礎、提高預測精度/系統即時性、優化數據收集和分析過程。

同時可與政府機構、氣象部門或其他救援團隊合作,研討整合更多數據源後,建立共享資源和數據的機制,及時共享信息,幫助更多急救難團體提高災難應變的能力,掌握黃金救援時間。

推薦案例

這是一張圖片。 This is a picture.
實現無人商店夢想 喜鵲生活建構智能機產業未來

「喜鵲生活的DNA不會只有販賣機,我們相信販賣機結合科技、通路、人文,才能帶來令我們歡欣鼓舞的成果。」這是喜鵲生活官網上的一句話,讓販賣機帶來愉悅的生活,建構貼心、科技、永續的智能機產業未來,也是喜鵲生活創立的初衷。 成立於2018年的喜鵲生活,在成立4個月之後,即推出臺灣第一台自有品牌結合行動支付掃碼感應、藉由螢幕觸碰完成消費體驗、POS系統管理、數據聚集於後台的喜鵲U1智販機,讓消費者能同步世界的新零售腳步,體驗購買便利性、結帳安全性、視覺娛樂性、提升物流補貨效率的全新零售消費體驗。 傳統販賣機缺乏資訊可見度 AI技術協助資訊透明化 此次,喜鵲智能販賣機更搭載AI技術,提供可調整貨架空間、搭配工業電腦與大尺寸觸控顯示螢幕之自動販賣機,達成無店面商店之目的。 喜鵲生活表示,傳統販賣機最大問題即是缺乏資訊可見度。想要檢查庫存,就必須由補貨人員實際檢查每一部機器,這種做法既費時,成本也高。而當機器故障時,一般更是會長時間無法運作。大多數故障均無人通報,直到下次補貨人員抵達補貨才會發現。接著還必須等待維修技師排行程,而一等就可能需要數週的時間。 傳統販賣機缺乏即時互動性,當消費者投幣後遇到狀況時廠商無法當下處理。此外,傳統販賣機更缺乏彈性,無法應消費者偏好變化而調適。 傳統販賣機存在僅限零錢購物、支付工具單一;商品擺放數量有限,選擇性少等缺點。 受到COVID-19疫情影響,消費習慣轉為非接觸式的方式,致使無人化商店市場升溫。一般自動販賣機僅能擺放較單純的商品如飲料、食品等等。可販售的產業有限。而喜鵲開發出的專利販賣機可調整貨架空間,搭配升降貨梯,適用在各種類型的商品。此外,機台搭配工業電腦與大尺寸觸控顯示螢幕,能同時達到廣告託播的需求,預計朝無店面商店的方向邁進。 根據喜鵲生活觀察發現,近兩年來的消費者市場趨勢,消費者訴求便利生活、飲食消費型態重視餐飲體驗簡單快速,並且搭配手機連網訂購模式,而且熱飲及鮮食外送是兩大趨勢重點。而設置地點、販售品項、食用方式及多元付款方式是智能販售機的市場成長重點。 就便利性而言,臺灣消費者購買自動販賣機食品仍以車站、機場、學校、商業區公司附近為最高,多樣的付款方式也更獲得消費者支持,顯示未來自動販賣機可朝品項多元和支付方式多元兩大方向展開。 AI銷售預測技術整合後台管理 達到精準行銷目的 由於商品種類繁多,難以得知商品在不同因素如季節、市場情形、促銷活動等影響下的需求,容易造成缺貨或庫存過剩的狀況,喜鵲生活特別開發「AI銷售預測技術」,整合至後台管理系統,期能透過數據分析鎖定客戶購買偏好及意願,進而達到精準行銷之目的,進而做出精準的商業決策,有效分配有限資源。 導入AI系統可達精準行銷、庫存管理及供應鏈管理三大目標。 此一系統為專為供應鏈管理人員設計的調補貨決策輔助工具,透過 AI 預測未來銷量需求,協助企業有效優化產能、庫存及配貨策略。 其整體系統架構包括: 1資料探索性分析功能:針對資料內缺失值提供自動化補值、自動編碼及自動特徵篩選功能。 2建模功能 : 1提供迴歸Regression、時間序列Time Series Forecast共兩類預測問題類型之模型訓練功能。nbsp 2支援 Auto ML 自動建模,並由系統推薦提供最佳模型,亦可建立集成模型提升模型準度。nbsp 3支援多種演算法類型:Random Forest, XGBoost, GBM等演算法。nbsp 4支援多種時間序列模型:指數平滑、ARIMA、ARIMAX、間歇性需求、動態複迴歸等模型。nbsp 5支援多種模型評估指標:R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification等指標。nbsp 6支援自動切割訓練資料集及Holdout驗證資料集,並可手動調整比例。nbsp 7支援自動模型集成學習 Stacked Ensemble、平衡函數學習 Balancing Classes、早停法 Early Stopping。nbsp 8支援同時建立多個模型,系統將依照建模需求配置資源,讓建模、預測等任務擁有獨立的運算資源且互不影響,在整體伺服器空間有上限的情況下,運算資源能有效率被利用。nbsp 9具有記憶體運算In-memory computing功能,可藉由大容量及高速的記憶體進行運算,避免大量從硬碟中讀寫檔案,提高運算效能。 3資料串接功能: 運用API嫁接,採用完整的資料串接自動化,不需要手動匯入資料,提高使用者體驗。 4圖表分析功能:針對商品銷量提供視覺畫圖表及基本統計值。 AI數據分析解決方案具備兩大優勢: 1創業機台租售 低成本開設無人實體店與連鎖零售業合作,透過智能機讓創業者以低於店面租金的成本經營零售生意。提供機台買賣及租賃兩種合作模式,依業者評估選擇。 2多型態商品上架 24小時隨時隨地販售商品,可上架達60多種多樣化商品,透明大櫥窗提升商品能見度,定期補貨及追蹤商品販售狀況,依需求調整產品類型。 近來網路與實體界線模糊化,顧客互動方式大幅改變,消費需求多變且個性化,零售業面臨前所未有的挑戰和不確定性,掌握數據成為關鍵。AI 數據分析解決方案能幫助零售業快速活化大量資料,打造無縫的個人化體驗,最佳化營運價值鏈並提升效率,強化企業核心競爭力。

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵

隨著高齡人口增加,伴隨著各種慢性病的發生機率日增,其中,心臟衰竭不僅是隱形殺手,由於心衰疾病的病程非常長,復發機率高,造成醫護人員的負擔加重。然而,利用通過醫療認證之心電心音裝置,搭配心臟衰竭風險AI預測評估及遠距照護系統可輔助診斷幫助醫師做出正確的診斷,以利於後續病患的醫療或轉介。 心臟衰竭病程長 醫療支出是糖尿病5倍 如果你有呼吸易喘,甚至稍微動一下就喘,或是夜晚睡覺的時候,容易從睡夢中驚醒,需要坐起來才會比較舒服,又或是下肢容易有水腫等狀況,甚至合併有焦慮、不安、疲倦、食慾下降hellip等症狀,當心很有可能是心臟衰竭。 根據統計,全球心臟衰竭人口約有6000萬人,每年新增的心臟衰竭人口約500萬人。中國的心血管疾病患者將近29億人口,占城市居民死亡原因第二位;而全中國約有1200萬心臟衰竭病人,佔心臟病死因的59以上。尤其心衰疾病的病程非常長,且復發及再入院率非常高,使得醫療支出的成本是高血壓的2倍、糖尿病的5倍。 根據美國研究統計,心肌梗塞及心臟衰竭病人的30天內死亡率分別為166及111,並且30天內再住院率分別為199及244。心臟衰竭的症狀因為和其他疾病如慢性肺阻塞,氣喘等疾病相似,有185 的誤診率,對於醫療院所而言,是相當棘手的問題。 麗臺科技為顯示卡大廠,2000年起投入醫療及健康照護領域。由於董事長盧崑山曾分別與2011年及2015年兩度心臟病發,因此,麗臺科技專注於健康大數據,自主研發心臟衰竭AI辨識技術,此一AI應用讀取病患的心電圖以及心音圖做出異常檢測以及心臟衰竭的風險預測模型,可及早發現疾病徵兆。 麗臺科技自主研發心臟衰竭AI辨識技術 可預測病史及風險 麗臺自主研發之心臟衰竭AI辨識技術具以下三種判斷功能: 1 心臟衰竭病史之預測 將心電及心音圖資料分類為「具心臟衰竭住院病史」以及「未具心臟衰竭病史」兩類。 2 心臟衰竭風險預測 將心電及心音圖資料給予發生的心臟衰竭風險預測值。 3 心臟衰竭再發生風險預測 針對已有心臟衰竭的患者判讀其心音圖及心音圖,判斷其心衰再發生之風險預測。 麗臺科技表示,心臟衰竭AI辨識技術應用可輔助醫師更有效率且精確的診斷,以利後續病患的醫療或轉介。舉台北榮總研究心臟衰竭的離院病患為例,根據心電心音同軸檢測裝置所計算出的EMAT電機活化期指數與SDI心縮不全指數作為治療指引的病患,會比依據傳統症狀做為治療指引的病患,有更高的存活率,此研究也已刊登於國際心臟權威期刊JACC,獲得國際市場肯定。 系統廠商可將心臟衰竭AI辨識技術作其他加值應用 麗臺科技表示,合作系統廠商可選擇自建心臟衰竭AI風險預測引擎,將自有系統之心電心音圖上傳到麗臺心臟衰竭AI風險預測引擎後,引擎回傳風險預測值,做為系統整合廠商合作廠商的加值應用輸入。 不僅臨床使用 心臟衰竭AI風險預測引擎可延伸居家或工作場與使用 此外,這套系統也可以延伸至其他應用,包括: 一、醫院門診快篩:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,在門診、急診進行10秒快速檢測,評估病患心臟病史及心臟衰竭風險。 二、出院風險評估:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,評估病患住院期間的心臟衰竭風險,檢測數據可作為出院前的風險評估及預後指標。 三、居家連續照護:病患可使用心電心音記錄器、穿戴心電圖記錄器,透過居家傳輸盒閘道器,在家量測心電心音訊號,並上傳至amor健康雲平台進行心臟衰竭AI風險預測分析。病患可透過APP自主健康管理,檢視歷史生理趨勢;疾病個管師可透過健康管理後台Web管理會員健康。 四、居家康復訓練 病患可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 心臟衰竭AI辨識技術系統可以延伸至員工居家照護等應用。 此外,在工廠或辦公室等場域也可以透過這套系統達到員工健康管理的目標,應用的方向包括: 一、工作場域之作業安全單位:在員工執行工作業務前發給員工穿戴心電圖記錄器。 二、業務執行者生理監測:員工於執行業務或訓練時,配戴穿戴心電圖記錄器之疲勞警示,警示生理狀態是否可繼續執行任務。任務執行段落可使用資料傳輸盒或APP 將生理監測資訊上傳至健康管理平台,並評估作業員工心臟衰竭風險,檢測數據可作為企業資源人力單位做為風險評估及公共安全對應指標。 三、工作場域生理監控中心照護:工作場域的生理監控中心可透過健康雲平台,檢視並記錄員工值情時之歷史生理趨勢。 四、工作場域之護理單位:護理單位在接收生理監控中心指示,可依據值情員工的生理趨勢給予健康管理的建議;護理中心可透過健康管理後台Web管理員工健康。 五、員工可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 工作場域應用心臟衰竭雲端照護及大數據中心示意圖

【導入案例】挺進智慧物流50 新竹物流醫材配送班表超高效率
挺進智慧物流5.0 新竹物流醫材配送班表超高效率

傳統物流公司加上AI技術之後,在運送效率提升及運輸成本下降等效益大大提升,尤其是醫材轉運更涉及醫院及病患的服務時效及權益,透過智慧物流的建置,可為醫材業者節省投入建構GDP倉、配多達千萬元之成本。 國內重要物流領導廠商-新竹物流HCT擁有3,500輛車隊、6萬坪倉儲,提供物流、商流、金流、資訊流、流通、倉儲、加工之客製化物流解決方案。每日貨件處理件數達58萬件,最大處理能力每日可達90萬件,轉運效能的提升對於新竹物流而言,至關重要。 醫院醫材運送 需優化現有作業流程與提升系統化、智慧化 尤其是醫院醫材的運送,也面臨到難題。醫材業者需要針對客戶不同產品需求、不同溫層需求、不同配送時效等因素,透過多家物流業者進行出貨與物流作業,高度依賴作業人員的經驗與細心管制,無論是產品出貨過程與實際物流配送過程,需要環環相扣,若有任何人工失誤與錯誤,都會影響醫院與病患的服務時效與權益,因此各家業者與政府及醫院等,都致力於優化現有作業流程與提升系統化、自動化與智慧化程度,以有效降低服務過程中造成的失誤及成本損失。 新竹物流導入AI之前的配送流程。 現行在醫院需求端已有相關業者配合政府推動相關標準化平台作業,透過供應端業者的資料協同作業,改善產品出貨正確性與作業時效,提升需求端的作業品質與管理效益;同時,部分業者也投入企業內部作業流程標準化與系統化,提升業者營運效能與品質。 在貨運物流端方面,物流業者的倉庫出貨人員需要耗費人工進行管控不同的物流出貨作業安排,若因常常接到緊急任務通知,要出貨到醫療院所,往往需要依賴小型區域性物流業者來提供客製化配送服務,除配送時效提升外,並無法導入整合性的資訊化服務。 新上路的GDP醫材法規規範運銷品質,也就是醫材供應商必須進行GDP合規認證,必須導入符合GDP法令規範之倉儲與物流服務業者,如此一來,區域性小型公司將被淘汰,因此,新竹物流透過經濟部工業局的AI輔導計畫案協助,除延伸既有GDP符合法令的倉儲物流服務外,將進一步利用相關數據整合與最佳化AI技術,協助醫材業者簡化改善物流配送最佳化作業。 複雜的物流難題 運用Simulated AnnealingSA演算法求解 為能滿足新的「醫療器材優良運銷準則」中對於醫療器材優良運銷系統建構的要求,新竹物流除了積極導入新式物流車,更將導入人工智慧中數學最佳化技術,以協助公司在每日全國營業據點以及轉運站進行智慧班次排程規劃,期望以最佳化的車班進行醫材在營業據點間的對開,或是區域間的轉運,以提高醫材在運銷過程中的效率。 目前醫材在新竹物流的轉運過程中,使用可分離式拖車頭與貨櫃。每個營業所及轉運站由於區位與幾何設計不同,以及人員數量不同,單位時間內的吞吐量也有差異;再加上每天的貨況大小、目的地皆不相同,面對無法確定且需求不同的變化,拖車頭及貨櫃的派遣狀況便隨之改變。 在此情況下,新竹物流僅能根據以往的經驗來進行各個衛星所之發車班表,並根據此班表視每日不同變化之貨物需求量進行調整。 因為是根據經驗法則進行排班,所以,班表往往不能兼顧全盤的變化與考量,使得目前發車班表仍然存在著可以改善的空間。。 貨物遞送規劃本質上為一NP-Hard難題,因此難以用傳統的解析解法,新竹物流結合奇點無限公司採用Simulated AnnealingSA演算法進行求解。 新竹物流導入的新物流服務為「GDP櫃班次規劃」。所謂的班次規劃,指的是根據未來對於站所間醫材貨件的預估量,進行站所間貨櫃車班的班表規劃,目的是讓醫材能夠如期如質抵達,並且讓新竹物流在場站作業、車輛數、行駛里程得到最高的效益。 新竹物流導入AI最佳化班次規劃,從其起點至終點間建構出一條最有效率的運送路線。 新竹物流導入「最佳化班次規劃」服務 降低5運輸成本 導入方式是利用雲端軟體服務,由新竹物流定期輸入站所間醫材貨件之「交互件數表」至「最佳化班次規劃」服務後,設定好演算參數即可產生GDP櫃班次表。同時發展新竹物流醫材班表系統,使新竹物流醫材運務單位能透過交互件數表編制適合班表。在相同服務水準的前提下,預估可降低運輸成本5,為醫材業者節省下建構GDP倉儲、配輸成本達千萬元。 醫材由於其對於衛生、溫度的要求,以及其易碎性等特色,因此運輸與轉運的時間越少越好,越少時間暴露在外,則醫材配曝險程度越低,然而由於仍須考量物流效率與成本。AI將每個需要運送的貨物,從其起點至終點間建構出一條最有效率的路線,即可有效率地完成每日的運務作業。 因應未來產業物流高度發展需求,其中配送與轉運AI最佳化將是關鍵議題,透過本計畫將成立專案推動組織,配置AI技術、IT與流程領域人才,累積落地經驗後,逐步擴大AI實際應用場域,全面優化轉型新竹物流的營運體系,並結盟AIOT與各領域AI夥伴加速與擴大效益之達成。