:::

【109年 應用案例】 RPA機器人,加速15倍電商工作效率

人力吃重、容易疏失與錯誤、出貨效率低落

國內某黏扣帶傳產代工製造轉型升級經營品牌,並透過電商平台模式拓展新市場新商機,需要仰賴大量人力進行貨品上架、訂單整理、庫存管理、出貨追蹤,導致可處理之產品種類與數量受限,人工登打作業也常容易疏失或出錯,影響出貨效率與客戶滿意度,對於企業在電商上的競爭優勢至關重要。

企業內部往往有許多是仰賴所多的人力在各個電腦系統、網頁、email、…等資訊系統之間的重複作業。目前上架15個電商平台,僅更新單一電商資訊就需要工作2~3個月(200多項商品),難以快速擴展;受限於人力,產品資訊未能詳盡,導致各電商評論中多有疑慮,影響下單,也影響下單後的滿意度。目前僅每日確認一次訂單,資訊落差達24hr。每年約有上萬筆以上的訂單要開成出貨單,通常約累積15~30天才會一次開單扣庫,導致庫存永遠不準確。

精簡型用戶端,加速導入效率

輔導團隊與瑞精工科技合作,透過網頁型架構整合AI與RPA的技術,機器人流程自動化 (RPA) 應用程式不是安裝在使用者的本機桌面上,而是存放在伺服器,只有在使用者有需要時才進行存取。

這項技術也稱做為精簡型用戶端 (Thin Client),相較於複雜型用戶端 (Thick Client) 必須將應用程式和資料下載到本機桌面,精簡型用戶端提供了更高的效能與安全性,精簡型用戶端不需要在本機下載。

RPA可協作服務功能包含:  網頁爬蟲:複雜網頁資料收集與整理  電子郵件操作:內文與附件的資料剖析與拆解  網頁操作:精確快速的網頁操作或填寫特定欄位資料  應用程式操作:定時定位操作其他視窗應用程式  資料處理:資料間格式轉換、拆解重組  檔案交換管理:檔案定時產出、新增刪修、FTP上傳下載  資料庫操作:異質資料庫資料交換、讀取或寫入特定DB  資料辨識:固定格式欄位資料處理;螢幕快照、截圖、英數文字解析與辨識  排程執行:可以定時重複,交叉處理以上所有流程  告警機制:Email、Line Notification等指定或廣播通知

軟體機器人技術方案執行架構

▲軟體機器人技術方案執行架構

AI 軟體機器人加速訂單、庫存管理、採購等製造營運處理速度,發展自動化處理服務,避免數據重複輸入和輸入錯誤,且跨系統流程串接、24/7 全天候運行,透過戰情室面板資訊統計分析各電商即時銷售狀況與預測優化產品庫存。

直購訂單解析自動化機器人流程

▲直購訂單解析自動化機器人流程

各家電商資訊戰情室統計分析看板

▲各家電商資訊戰情室統計分析看板

軟體零失誤,降低15%~90%成本

面對快速變化又競爭激烈的市場環境,更需要減少重複性、低產值的工作,將人力運用在更高價值的工作上。

RPA軟體機器人效率是間接作業人員的15倍,同時可以強化流程品質,趨近於零失誤率的作業執行品質,提供15%至90%的降低成本的機會,由於不需要大幅更動原有作業流程,因此對於業者來說,幾乎不太需要另外耗費人力重新訓練或配合新的作業流程,對於業者來說接受度也較高,甚至在軟體部署方面,僅需4~5周即可上線運作。

推薦案例

這是一張圖片。 This is a picture.
以植物生長箱為例 - 依影像建構電子設備程序標準化

近年來,全球氣候變遷和環境問題日益嚴重,對農業生產造成了巨大衝擊。傳統農業高度依賴天氣條件,面臨著作物品質不穩定、產量驟減、病蟲害難以控制等挑戰。特別是在台灣,農業生技業者和農民不斷遭受損失,亟需創新解決方案。同時,台灣植物工廠產業也面臨諸多困境:高昂的設備和人工成本、產業鏈不完整導致國際競爭力不足、企業間缺乏合作等問題制約了產業發展。此外,COVID-19疫情更凸顯了遠程監控和管理的重要性,傳統的人工巡檢和數據收集方式已無法滿足現代農業生產的需求。這些問題共同構成了智慧農業解決方案的迫切需求背景,推動了如台灣海博特等公司開發整合物聯網、雲計算和人工智能技術的創新項目。 海博特雲端數據整合分析平台 面對這些挑戰,農業領域亟需一套能夠精確控制生長環境、提高資源利用效率、實現遠程監控和智能管理的系統。現有的植物工廠設備往往需要整套更換,難以與舊有設備兼容,且感測器與攝影系統可能需要不同的操作界面,使用不便。因此,業界需要一種能夠靈活整合各種設備和技術的解決方案,既能提供實時監測和數據分析,又能根據植物生長狀況自動調節環境參數。這種需求不僅存在於台灣,也是全球智慧農業發展的趨勢。通過引入人工智能技術,可以建立更科學化的評量基準,優化生產流程,提高產量和品質,同時降低能源消耗和環境影響。此外,這種智能化的解決方案還能吸引更多年輕人參與農業生產,推動產業升級和可持續發展。總的來說,智慧農業解決方案的需求源於應對氣候變化、提高生產效率、降低成本、實現精準化管理的迫切要求,而這正是像台灣海博特這樣的公司所致力解決的問題。 台灣的植物工廠業者們正面臨著一系列嚴峻的挑戰,這些困難正逐漸侵蝕著他們的競爭力和生存空間。首先,高昂的設備和運營成本成為了他們最大的負擔。每一次電費賬單的到來都像是一次沉重的打擊,迫使他們在保證產品品質和控制成本之間艱難平衡。其次,氣候變遷帶來的不可預測性成為了他們的噩夢。突如其來的極端天氣事件可能在短時間內摧毀他們精心培育的作物,造成巨大的經濟損失。更糟糕的是,他們發現自己在國際市場競爭中日漸處於劣勢。相比之下,國外的大型植物工廠憑藉先進的自動化技術和完善的供應鏈,能夠以更低的成本生產出品質穩定的農產品,這讓台灣的業者們感到前所未有的壓力。 在技術層面上,他們同樣面臨著諸多問題。新舊設備的兼容性問題常常讓他們陷入困境,嘗試整合不同系統時總是遭遇各種技術障礙。缺乏精確的數據分析和預測能力也讓他們在生產決策上舉步維艱,難以準確把握每種作物的最佳生長條件。現有的監測系統提供的數據往往雜亂無章,難以解讀和應用。人力資源方面的挑戰同樣嚴峻,年輕人普遍對農業工作缺乏興趣,導致他們難以招募到具備現代農業技能的員工。即便是現有的員工,也常常因為繁瑣的手動操作和監控工作而感到疲憊不堪。這些問題交織在一起,形成了一個複雜的困境,讓植物工廠業者們感到既困惑又焦慮。他們迫切需要一個能夠全面提升工廠運營效率、降低成本、提高產品競爭力的綜合解決方案,以助他們渡過難關,重新在激烈的市場競爭中站穩腳跟。 在面對植物工廠業者的種種挑戰時,台灣海博特公司展現了卓越的技術創新能力和靈活的客戶導向開發策略。他們深刻理解到,解決方案必須能夠無縫整合現有設備,同時提供高度智能化的管理功能。為此,海博特的研發團隊採取了模組化設計的方法,開發出一套可以靈活配置的IoT(物聯網)系統。這個系統的核心是一個智能控制中樞,能夠與各種感測器和執行設備進行通信。在開發過程中,海博特密切與客戶合作,深入了解他們的具體需求和運營環境。他們甚至派遣工程師駐場,實地觀察植物工廠的日常運作,以確保開發的系統能夠真正解決實際問題。這種深度合作不僅幫助海博特優化了產品設計,還建立了與客戶的緊密關係,為後續的持續改進奠定了基礎。 海博特的創新不僅體現在硬件設計上,更體現在他們開發的智能軟體系統中。這套系統整合了先進的機器學習算法,能夠根據大量歷史數據和實時監測信息,對植物生長狀況進行精確預測和優化控制。為了幫助客戶克服技術障礙,海博特設計了一個直觀易用的用戶界面,即使是非技術背景的操作人員也能輕鬆掌握。此外,他們還提供全面的培訓和技術支持服務,確保客戶能夠充分利用系統的所有功能。在遇到難題時,海博特的技術團隊能夠通過遠程診斷迅速識別問題,並提供解決方案。在一次客戶遇到嚴重設備故障的緊急情況下,海博特的工程師通過系統遠程接入,成功指導客戶進行修復,避免了可能的巨大損失。這種全方位的服務不僅解決了客戶的即時困難,更增強了他們對智能化管理的信心,推動了整個行業向更高效、更可持續的方向發展。 海博特公司開發的智慧農業解決方案不僅為植物工廠帶來了革命性的變革,更為整個農業產業的未來描繪了一幅令人振奮的藍圖。這套系統的優越性體現在多個方面:首先,它實現了對植物生長環境的精準控制,大幅提高了作物產量和品質的穩定性。通過先進的人工智能算法,系統能夠根據歷史數據和實時監測信息,預測並調整最佳生長條件,使得每一株植物都能在最理想的環境中生長。其次,它顯著降低了能源消耗和運營成本,提高了資源利用效率。智能化的管理系統能夠優化用水、用電和養分供應,減少浪費,同時降低人力成本。此外,系統的模組化設計和強大的兼容性,使得它能夠輕鬆整合各種新舊設備,為植物工廠的逐步升級提供了靈活的解決方案。最重要的是,這套系統為農業生產注入了科技感和現代化氛圍,有助於吸引年輕一代加入農業領域,為行業注入新的活力。 展望未來,海博特的智慧農業系統具有廣闊的應用前景和擴展潛力。除了植物工廠,這套系統還可以應用於傳統溫室種植、都市農業、甚至是家庭園藝。在水產養殖領域,相似的技術可以用於監控和優化魚類或蝦類的養殖環境。在食品加工業,類似的智能監控和預測系統可以用於優化生產流程,提高食品安全性。甚至在製藥行業,這種精準控制的環境管理系統也可以應用於藥物研發和生產過程。為了進一步推廣這套系統,海博特可以採取多管齊下的策略。首先,可以與農業院校和研究機構合作,建立示範基地,讓更多人親身體驗智慧農業的優勢。其次,可以開發針對不同規模和類型農業生產的定制化解決方案,擴大產品的適用範圍。再者,可以通過舉辦行業論壇、線上研討會等方式,分享成功案例,提高業界對智慧農業的認知和接受度。最後,還可以探索與政府部門合作,將這套系統納入農業現代化和可持續發展的政策支持範疇,從而在更大範圍內推動智慧農業的普及。通過這些努力,海博特不僅可以擴大自身的市場份額,更能為全球農業的可持續發展做出重要貢獻,真正實現科技賦能農業的願景。

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛

臺灣是一個海洋國家,你去基隆八斗子漁港或潮境公園遊玩時,是否順道去占地48公頃的國立海洋科技博物館探索海洋世界的奧秘呢為了讓更多人親近海洋科技,基隆海科館導入科技服務,將場館化身為一個大型科技遊樂場,讓大小朋友都樂不思蜀,充分發揮「寓教於樂」的功能。 歷經長時間的規劃,北臺灣最大的基隆海洋科技博物館於2014年元月開幕營運,館內以海洋教育科技為主題,號稱擁有全臺最大的IMAX 3D海洋劇場,主題具有獨特性、又擁有新穎的視廳設備,理應成為基隆知名的地標景點。然而,原先的展覽規畫以靜態為主,內容相當專業,與民眾互動不足,曾經前往參觀的遊客也反映展出內容有限且十分無趣,整體消費者體驗評價欠佳。 海科館不滿意的前3項為周邊景點連結弱、展示內容不吸引人、展示內容少 根據海科館的統計數據顯示,海科館遊客結構當地民眾與外來客的比重約為 64,其中外地遊客以北部居多;交通方式以開車與客運方式為主;出遊類型以家族、親子、朋友居多;逗留時間為 1至2 小時。 再深入了解,遊客感到不滿意的前3項分別為周邊景點連結弱、展示內容不吸引人、展示內容少等,館方分析可能的原因包括部分展示內容的呈現方式過於專業,讓民眾看不懂,以及缺發互動體驗的元素,讓參展民眾覺得無趣,停留的時間匆促而短暫。分析遊客的輪廓可以發現,由於基隆科博館主要客源有半數以上來自於當地民眾,外來客必須以開車或大眾運輸方式前來,來一趟並不是那麼容易,因此,場館與展覽的設計必須導入更多的互動性及趣味性,讓本地客願意一來再來,外地客的停留時間也能拉長一點。並透過科技服務將博物館特色凸顯出來。 經由經濟部工業局AI團隊之一中華民國資訊軟體協會引薦,海科館就委託巨鷗科技協助解決場館無法吸引人的問題。 巨鷗科技初步訪談之後發現,許多遊客前往海科館,大多是受到海科館建築外型、周邊牆面所張貼的告示及懸掛的旗幟、或正在舉辦的活動所吸引;而遊客最感興趣的為 3D 海洋劇場,顯示內容以影音、實體景方式呈現較能吸引遊客。 七大AI科技導入 海科館帶動區域觀光人潮 巨鷗科技透過科技服務的導入,將占地48公頃的場域設計成AI語音導覽、尋寶解謎遊戲、AI展物互動活化、AI空間展館互動體驗、AI人流管控、Face AI互動式體驗、AI語音客服系統等7大服務,藉由AIoT物聯網以及雲端科技讓看展變有趣、不僅解決孩童靜態看展無趣的議題,並可提升雙倍學習效率,讓消費者對海科館的印象改觀,大大提升來客意願,也同步拉升區域觀光人潮。 國立海洋科技博物館導入AI語音導覽等七大科技應用服務。 巨鷗科技以改善海科館空間場域優化為目標,透過臺灣北部海濱鳥類特展的展覽背景為雛形,結合包括「人臉」、「肢體」、「人流」三大主軸,從提升功能的面向,來協助改善海科館對AI的應用。 在具體作法上,海科館及巨鷗科技首先針對場域內的特展進行篩選,先避免在已展出的展覽內進行水電工程、管路等相關建置,影響到展覽本身的觀看品質,轉而找出展期未到的場館先行導入,透過展覽本身的特點搭配一系列的科技服務進行導入。 在海科館內臺灣北部海濱鳥類特展施工內容與策展人討論,初步在展館入口處利用Bella X1做迎賓互動說明,接著搭配AI智慧導覽中文英文X1進行講解,搭配趣味性尋寶解謎集章活動-APP X1,讓民眾闖關,後續將鳥類特展內鳥種進行標本活化互動X1、甚至在展覽空間中導入AR之情境X1增添趣味性娛樂,最後在Face AI做人臉之互動測試臉部進行微笑打分數。nbsp 華麗變身後的海科館將成為親子最佳旅遊地點。圖海科館FB粉絲頁 海科館這套AIoT服務未來可延伸運用於各大展覽類博物館,甚至擴及到靜態美術館等地區,依據不同場域特點導入。同時也可透過政府專案及相關計畫推動,幫助農村再生,讓遊客不再只是去農村看看而已,添加趣味互動以擺脫對不同場域的刻板印象,應用服務範圍十分廣泛。

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95。 VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及ARVR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。 VCSEL技術應用層面廣,也可應用於無人機。圖為佐翼科技農用無人機 VCSEL技術應用層面廣 AI技術助攻瑕疵檢測 赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。 赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10,造成生產成本增加。 為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。 因此,赫銳特科技首先建立自動光學檢測裝置Automated Optical Inspection,AOI,自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像Test與一標準正常影像Normal,進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network ResNet或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。 導入AOI檢測 提升產能效率達20以上 比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試高溫回焊,失效樣品進再入重工流程。 但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95以上,預期可協助場域業者降低生產成本達10,提高產能效率達20以上。 導入AI影像檢測的前後之差異 赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。 而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。